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Abstract
A finite Hilbert space can be associated to a periodic phase space, that is, 
a torus. Then a subgroup of operators corresponding to reflections and 
translations on the torus form respectively the basis for the discrete Weyl 
representation, including the Wigner function, and for its Fourier conjugate, 
the chord representation. They are invariant under Clifford transformations 
and obey analogous product rules to the continuous representations, so 
allowing for the calculation of expectations and correlations for observables. 
We here import new identities from the continuum for products of pure state 
Wigner and chord functions, involving, for instance the inverse phase space 
participation ratio and correlations of a state with its translate. New identities 
are derived involving transition Wigner or chord functions of transition 
operators |ψ1〉〈ψ2|. Extension of the reflection and translation operators to a 
doubled torus phase space leads to the representation of superoperators and 
so to the construction of the propagator of Wigner functions from the Weyl 
representation of the evolution operator.
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1.  Introduction

It is well-known that any two-state quantum system can be represented on the Bloch sphere, 
whatever the physical context, be it a spin, the electromagnetic polarization, or a simplifica-
tion of an atom down to two levels. The generalization of the Bloch sphere to a d-state system 
is well known and leads to the complex projective space CP(d − 1) for a Hilbert space Hd  
with d dimensions (see e.g. [1, 2]). As CP(d − 1) carries a symplectic structure of complex 
dimension d  −  1 it seems natural to assign it as a phase space for such a quantum system. 
However a different association based on the Weyl–Heisenberg group (or on any other semi-
simple group) assigns a phase space structure to a complete set of operators, similar to the 
classical phase space associated to the semiclassical limit of ordinary quantum mechanics. In 
this way Hd  can be represented on a torus. Indeed, identifying any orthogonal basis for Hd  
with position states |qn〉 on a line, we can periodically extend them, such that |qn+d〉 = |qn〉. 
Then, a finite Fourier transform defines the conjugate periodic momentum basis |pn〉. This pair 
of representations taken together subsume a (discretized) periodic phase space torus in anal-
ogy to the (continuous) plane phase space with periodic boundary conditions that combines 
the position and momentum bases for an infinite Hilbert space.

Several successful schemes have been introduced to lift quantum mechanics into a full 
phase space theory. Particularly, in quantum optics, Cahill and Glauber [3] constructed a con-
tinuous parametrization that includes the so called P-function, for s  =  1, the Wigner function, 
for s  =  0, and the Husimi function, also known as the Q-function, for s  =  −1. The scheme 
was adapted to the discrete case in [4]. Here, we are concerned exclusively with the Weyl 
representation of quantum operators [5] , including the Wigner function [6] in the case of the 
density operator5. Position and the momentum representations of quantum states subsume a 
phase space only in as far as they are combined as Fourier conjugates. In contrast, the Weyl 
[5] representation of quantum operators, including the Wigner function [6] in the case of 
the density operator, are specified in the full phase space. Their Fourier conjugates, respec-
tively, the chord representation and the chord function, are again full phase space functions. 
These are continuous in the case of infinite Hilbert space and are fundamentally based on the 
Heisenberg–Weyl group of phase space translation operators, or on their symplectic Fourier 
transforms, the reflection operators, also called phase point or Fano operators [7, 8]. Having 
chosen the torus as the phase space that corresponds to a finite Hilbert space, its portrayal as a 
periodic plane allows us to import periodically equivalent translation and reflection operators, 
now forming a finite affine subgroup. The special properties of these fundamental operators 
on the plane and on the torus then percolate down to the discrete representations for any finite 
quantum system [9].

Apparently the first construction of a discrete Wigner function was presented by Hannay 
and Berry [10] followed by many others [9, 12–18], based on various properties of the con-
tinuum that one wishes to emulate. However, the Weyl–Wigner representation should not be 
reduced to a phase space display of quantum states. It is required to provide a complete frame-
work for their evolution and for evaluation of mean values and correlations among (Weyl 
represented) observables. This program is achieved by a construction based on the discrete 
translation and reflection operators defined on the torus that serve as complete operator bases. 
For instance, the product rules for calculating mean values and correlations are replaced by 
analogous sums [9]. Again, the simple classical propagation of arbitrary Wigner functions 

5 Association of a torus phase space to Hd  is not in itself a necessity. Finite Hilbert spaces arise naturally as finite 
dimensional representations of compact semisimple groups, such as SU(2). They are naturally associated to phase 
spaces on the coadjoint orbits [19] of the group, with widely different topologies [20, 21].
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for a quadratic Hamiltonian also has its analogue for Clifford transformations on the torus  
[9, 18, 22].

In a recent publication [23], we studied the Wigner–Weyl representation of superopera-
tors in the continuum case. In close analogy to the ordinary reflections and translations in 
‘single’ phase space it was possible to define reflection and translation superoperators in a 
phase space with doubled dimensions, maintaining in that space all the structure of the usual 
Heisenberg–Weyl group. Thus center and chord functions of a superoperator could be defined 
as projections on these superoperator bases, retaining all the usual properties of center and 
chord functions of operators. The construction of these phase space distributions on the dou-
bled phase space led to a wide range of surprising identities connecting products of pure state 
Wigner functions to their Fourier transforms. It is the main purpose of the present paper to 
extend these results to the discrete case and incorporate them to the tool box of discrete phase 
space methods. Indeed, we here derive new identities that relate products of different Wigner 
functions to transition Wigner functions or chord functions that represent transitions between 
pairs of states.

The structure of the paper is as follows. In section 2 we recall the classical affine group of 
translations and reflections and its quantization in terms of Heisenberg–Weyl operators in con-
tinuum quantum mechanics. The main difference with the previous [23] treatment is the label-
ling of translations by half-chords [24]. This has the advantage of providing very compact and 
symmetrical group properties, simplifying many formulae and leading in a natural way to the 
transition to the discrete case, which we treat in detail in section 3. The group properties are 
preserved, but positions and momenta on the periodic torus are now on an integer d × d grid. 
However centers and half chords can assume integer and half integer values and therefore 
translation and reflection operators take values on a larger 2d × 2d grid, leading to Wigner 
and chord functions as discrete arrays on this grid. As operator bases, the (2d)2 translations 
or reflections are overcomplete, as only d2 can be linearly independent. This overcomplete-
ness of the operator basis can only be streamlined in the case where d is odd, as explained in 
[9, 13, 22]. Here we will keep to the general formulae that are valid whatever the parity of d. 
It should be further noticed that, although in the continuum case the quantum representation 
of translations and reflections is essentially unique, in the discrete case there is latitude for 
inequivalent representations leading to a quasi periodic structure characterized by Floquet 
phases [9, 14]. These have been extensively used in the theory of the quantum Hall effect and 
in quantum chaos, but we do not make use of this latitude here. Section 4 is devoted to projec-
tions of centers and chords and the peculiarities arising from the redundant operator bases. 
In section 5 we rewrite the pure state identities of [23] identifying the differences that arise 
because of the discreteness. They involve quadratic and quartic relationships between Wigner 
and chord distributions. In section 6 we show, following [23], that reflection and translation 
superoperators can be defined and used as lagrangian coordinates in double phase space, thus 
allowing the representation of general superoperators either as double center or double chord 
discrete arrays, in exact correspondence to the representation of operators in ‘single’ phase 
space. A pair of appendices discuss the Choi conjugacy of superoperator bases and provide a 
simple application to qubits and qutrits.

2. Translation and reflection operators in continuum quantum mechanics

In this introductory section we review briefly the well known geometry of affine transforma-
tions in phase space, constituted by translations and reflections, and their well known unitary 
representations in continuum quantum mechanics [7, 8, 24, 26]. For simplicity of notation 

M Saraceno and A M Ozorio de Almeida﻿J. Phys. A: Math. Theor. 52 (2019) 095301



4

we restrict the discussion to one degree of freedom, noting that the generalization to more 
degrees is straightforward. The presentation is standard, except for the fact that throughout we 
label translations with the half-chords [24], leading to a simplified and completely symmetric 
notation for reflections and translations, that stresses the complementarity of the two sets of 
operators.

We consider two classical phase space canonical transformations

Tξ : x− → x+ = 2ξ + x− Rx : x− → x+ = 2x − x−� (1)

where x± = (q±, p±) are two phase space points and x = 1
2 (x+ + x−) labels its center and 

ξ = 1
2 (x+ − x−) labels the half-chord. In figure 1 we show the relationship between these 

four vectors whose relationships will be used repeatedly in what follows. The transformations 
satisfy the composition rules

TξTχ = Tξ+χ RxRy = Tx−y

TξRx = Rx+ξ RxTξ = Rx−ξ.� (2)

These operations are represented in quantum mechanics by the unitary operators

T̂ξ =

∫

R
dq |q + ξq〉〈q − ξq| e2i/�qξp ≡

∫

R
dq |q + 2ξq〉〈q| e2i/�(q+ξq)ξp� (3)

R̂x =

∫

R
dq |q + xq〉〈xq − q| e2i/�qxp ≡

∫

R
dq |q + 2xq〉〈−q| e2i/�(q+xq)xp

� (4)
where the Dirac bras and kets span the usual position basis for the Hilbert space of square inte-
grable wave functions on the real line. We have also introduced the vector notation for centers 
and half-chords x = (xq, xp), ξ = (ξq, ξp). The rightmost identities result from a shift within 
the integral and will be useful in the transition to the discrete case. The two sets of operators 
are related by a symplectic Fourier transform

R̂x =
1
π�

∫

R2
d2ξ e2i/�〈x,ξ〉 T̂ξ� (5)

where we have introduced the symplectic form

〈ξ, x〉 =
(
ξq ξp

)( 0 −1
1 0

)(
xq

xp

)
= xqξp − xpξq.� (6)

ξ

x
x

+

x −

q

p

Figure 1.  Definition of centers x and half-chords ξ.
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Additional characteristic properties (besides unitarity) are

T̂†
ξ = T̂−ξ R̂†

x = R̂x.� (7)

These operators provide a unitary (projective) representation in quantum mechanics of the 
respective classical compositions (2):

T̂ξT̂χ = T̂ξ+χ e2i/�〈ξ,χ〉 R̂xR̂y = T̂x−y e−2i/�〈x,y〉

T̂ξR̂x = R̂ξ+x e2i/�〈ξ,x〉 R̂xT̂ξ = R̂x−ξ e−2i/�〈x,ξ〉.
� (8)

On account of the Stone–von Neumann theorem, the representation is essentially unique, up 
to unitary equivalence, which amounts to the choice of an arbitrary origin in phase space. The 
labelling of translations by half-chords leads to these very symmetric group properties, which 
symmetry will translate later to the discrete case. Notice the special cases

T̂x = R̂xR̂0,0 R̂x = T̂xR̂0,0� (9)

which give a special prominence to the reflection through the origin, which in quantum optics 
is called the parity operator

R̂0,0 =
1
π�

∫

R2
d2ξ T̂ξ =

∫

R
dq |q〉〈−q|.

� (10)
Inverting the symplectic Fourier transform in (5) an expansion of the identity is obtained

T̂0,0 =
1
π�

∫

R2
d2x R̂x =

∫

R
dq |q〉〈q|.

� (11)
Taking the trace of these relations we obtain:

tr T̂ξT̂†
χ = π�δ(ξ − χ) tr R̂xR̂y = π�δ(x − y)

tr T̂†
ξR̂x = e−2i/�〈ξ,x〉 tr R̂xT̂ξ = e−2i/�〈x,ξ〉

�
(12)

where we have used the fact that tr R̂x = 1 and tr T̂ξ = π�δ(ξ). Thus reflections and transla-
tions provide orthogonal—in the Hilbert–Schmidt sense—unitary operator bases, which are 
related to each other by the symplectic Fourier transform (5).

They provide two complementary bases in which any operator Â has projections 
A(x) = tr R̂xÂ and Ã(ξ) = tr T†

ξÂ. These constitute the well known Wigner (or center) and 
Weyl (or chord) [5] representations of quantum mechanical operators. They are complemen-
tary displays in phase space of the properties of the operator, in exactly the same way as 
the ordinary position and momentum representations are complementary. When applied to 
quantum states, given by positive density matrices, they yield respectively, the well known 
Wigner and characteristic functions. The former is a real quasi-probability distribution which 
displays both the classical features of the state, through its smooth positive parts and the 
nonclassical interferences by means of rapid ‘sub-Planck’ oscillations [25]. While possibly 
assuming negative values, the Wigner function has positive marginal distributions [6]. On the 
other hand the characteristic function is complex and does not generate marginal distributions 
so nicely, and is therefore less used. Here we want to stress the complete phase space sym-
metry and complementarity between these two representations. Just as the q and p  Lagrangian 
coordinates provide the complementary position and momentum representations of a quantum 
state, reflections and translations provide Lagrangian planes in double phase space in which 
to represent operators [23, 24, 36] with the added feature that the planes are themselves single 
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phase spaces. When combined to span a double phase space they provide a framework for the 
representation of superoperators [23], that we review in the discrete case in section 6.

We also remark that on account of the group properties (8) the trace of the product of any 
number of reflections and translations can be easily computed. When the product includes 
an odd number of reflections its trace is just a phase that can be interpreted as the area of a 
polygon in phase space, while a product with an even number of reflections will give a delta 
function times an area as a phase. As an example we compute two typical examples

tr T̂ξ1
T̂ξ2

T̂ξ3
T̂ξ4

= π� δ(ξ1 + ξ2 + ξ3 + ξ4) e2i/�(〈ξ1,ξ2〉+〈ξ3,ξ4〉)� (13)

tr R̂x1 R̂x2 R̂x3 R̂x4 = π� δ(x1 − x2 + x3 − x4) e−2i/�(〈x1,x2〉−〈x3,x4〉).� (14)

In figure 2 we illustrate the areas involved. The large quadrilateral ABCD has an inscribed par-
allelogram with corners at the centers xi whose area is the same as that of the hatched regions 
subtended by the half chords ξi (bold face arrows). A detailed description of polygons in phase 
space subtended by centers and chords have been used to derive center path integrals [26].

3. Translation and reflection operators for finite Hilbert space

There have been many proposals to adapt the previous well known scheme to a finite Hilbert 
space Hd  [4, 9, 11–13, 16, 17]. If periodic boundary conditions on positions and momenta 
are imposed, the classical phase plane R2 turns into a torus T2, which can be assumed to be of 
unit area, with no loss of generality. We adopt adimensional units and unit periodicity for both 
position and momentum. In quantum mechanics the immediate consequence of this double 
periodicity is that both positions and momenta become quantized |q〉 → |qj〉 and |p〉 → |pk〉 
with qj = j/d, pk = k/d, j, k = 0, · · · , d − 1 with periodicity |qj+d〉 = |qj〉 and |pj+d〉 = |pj〉. 
Moreover the fact that the symplectic area of the torus is finite means that Area/(2π�) is an 
integer d thus leading to the quantization of �

4

A

B

C

D

ξ

ξ

x1
x2

x3

x4

1

ξ2

ξ3

Figure 2.  Geometry of centers and half-chords. The symplectic area of the inner 
parallelogram with corners at the centers xi is the same as the hatched areas subtended 
by half-chords ξi (bold-face arrows). In the discrete case the grid is the integer lattice 
described in section 3.
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� = (2πd)−1.� (15)

This reflects the semiclassical rule that assigns an area 2π� to each orthogonal state in Hd . 
The limit d → ∞ yields the classical continuous torus. In this limit, states that are localized, 
such that they avoid aliasing phenomena, can be assimilated to continuous distributions in 
the flat phase space R2 analogous to the usual Wigner and chord functions [4]. A different 
approach to the transition from the plane phase space to the discrete torus can be found in [9].

The two bases are related by the finite Fourier transform

〈pk|qj〉 = exp− i
�

pkqj = exp−2iπ
d

kj.� (16)

The allowed phase space points are labeled by a periodic d × d lattice Z2
d  with integer coordi-

nates ( j, k). On this lattice the phase space points x± = (qj, pk)± are integer vectors scaled by 
d and therefore centers and half-chords defined as

x =
x+ + x−

2
ξ =

x+ − x−
2

� (17)

become also discretized, but on a lattice with halved spacing. This fact is clearly illustrated 
in figure 2. The lattice drawn has spacing 1/d. The phase space points A, B, C, D belong to 
this lattice, while the centers xi and half-chords ξi between pairs of points assume values on 
a refined lattice (not drawn) with spacing 1/2d. It is now remarkable—and this is the main 
advantage of the labelling by half-chords—that the transition from the continuum to the dis-
crete case is simply done by the replacements

(ξq, ξp) → (ξq, ξp)/2d with (ξq, ξp) ∈ Z2

(xq, xp) → (xq, xp)/2d with (xq, xp) ∈ Z2.

Reflections can then be labeled by x = (xq, xp) and translations by ξ = (ξq, ξp) just as in the 
continuum but now xq, xp, ξq, ξp are integers. The scaling by 2d is taken care of in the phases as

exp

(
2i
�
〈x/2d, ξ/2d〉

)
= exp

(
4iπd
4d2 〈x, ξ〉

)
= τ 〈x,ξ〉� (18)

where we have used (15) and the new phase τ = eiπ/d6 has been defined.
Thus labelled, the subset of discretized translations and reflections inherit the group prop-

erties from (8)

T̂ξT̂χ = T̂ξ+χ τ 〈ξ,χ〉

R̂xR̂y = T̂x−y τ
−〈x,y〉

T̂ξR̂x = R̂ξ+x τ
〈ξ,x〉

R̂xT̂ξ = R̂x−ξ τ−〈x,ξ〉.

� (19)

As expected the periodicity is now

T̂ξ+2dχ = T̂ξ R̂x+2dy = R̂x� (20)

6 We should mention here that in some recent applications [22] involving the Clifford group this phase is defined 
with a minus sign, leading to different periodicity properties and making a distinction between the even and odd d 
cases.
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so that the unit torus is mapped to the double periodic lattice Z2
2d. On this lattice the even–

even sites correspond to integer centers and half-cords, while the other sub-lattices correspond 
to some coordinate being half-integer. Both operator sets are still related by the symplectic 
discrete Fourier transform—on the double lattice— 

R̂x =
1

2d

∑
ξ∈Z2

2d

T̂ξ τ 〈x,ξ〉.� (21)

The expansions of the operators in the discretized position basis are also obtained from (3) 
and (4)

T̂ξ =
∑
j∈Zd

|qj+ξq〉〈qj| τ (2j+ξq)ξp

R̂x =
∑
j∈Zd

|qj+xq〉〈−qj| τ (2j+xq)xp .
� (22)

We also remark the two relations analogous to (9)

T̂x = R̂xR̂0,0 R̂x = T̂xR̂0,0� (23)

and the normalization relationships

R̂0,0 =
1

2d

∑
ξ∈Z2

2d

T̂ξ =
∑
j∈Zd

|qj〉〈−qj|� (24)

T̂0,0 =
1

2d

∑
x∈Z2

2d

R̂x =
∑
j∈Zd

|qj〉〈qj|.� (25)

For easy comparison with other approaches we recast the definitions in terms of the 
Schwinger operators [29]. Notice that

T̂1,0 =
∑
j∈Zd

|qj+1〉〈qj|
def
= V̂ T̂0,1 =

∑
j∈Zd

|qj〉τ 2j〈qj|
def
= Û.� (26)

In terms of these operators we rewrite (22) as (see [16] )

T̂ξ = V̂ξq Ûξpτ ξqξp R̂x = V̂xq Ûxpτ xqxp R̂0,0� (27)

V̂ , Û  are d-periodic, while the phase τ  is what leads to the double periodicity.
In terms of the representation of the affine group, we then conclude that the transition from 

the continuum to the discrete case is quite straightforward and only involves the appropriate 
discretization on Z2

2d and the scaling of the phases (18). However, when we attempt to proceed 
to the use of reflections and translations as operator bases we encounter the obvious fact that 
they are now overcomplete, as only d2 operators can be linearly independent in Hd . The over-
completeness is, however, rather trivial, because of the property

R̂x+dy = R̂x(−1)〈x,y〉(−1)dyqyp T̂ξ+dχ = T̂ξ (−1)〈ξ,χ〉(−1)dχqχp� (28)

signifying that the operators, while strictly 2d-periodic on the double lattice Z2d × Z2d , are 
also periodic up to a sign in the Zd × Zd  sub-lattices. The completeness of the two bases is 
reflected in the property
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tr ÂB̂ =
1

4d

∑
ξ∈Z2

2d

tr AT̂ξ tr T̂†
ξB̂ =

1
4d

∑
x∈Z2

2d

tr AR̂x tr R̂xB̂.� (29)

The extra factor of 4 in the normalization compensates for the overcompleteness. In fact, 
taking into account (28), the double lattice sums in (29) consist of four equal contributions 
from the four d × d quadrants. We prefer to keep this redundant normalization as it provides 
uniform formulae throughout, particularly in section 5.

The center and chord representations of an operator in Hd  are still defined as

A(x) = tr ÂR̂x Ã(ξ) = tr ÂT̂†
ξ .� (30)

They are 2d × 2d periodic arrays, but, because of (28) only one fourth of the array has inde-
pendent entries. The reconstruction of a general operator in Hd  in terms of these representa-
tions is

Â =
1

4d

∑
ξ∈Z2

2d

Ã(ξ)T̂ξ =
1

4d

∑
x∈Z2

2d

A(x)R̂x.� (31)

Just as in the continuum case, some properties of the operators can be obtained as averages 
over their representations. From (25) and (24) we obtain

tr Â =
1

2d

∑
x∈Z2

2d

A(x) tr ÂR̂0,0 =
1

2d

∑
ξ∈Z2

2d

Ã(ξ)� (32)

while the Hilbert–Schmidt scalar product of two operators is given by

tr ÂB̂† =
1

4d

∑
ξ∈Z2

2d

Ã(ξ)B̃(ξ)∗ =
1

4d

∑
x∈Z2

2d

A(x)B(x)∗.� (33)

The important case when the operator is a quantum state ρ̂  deserves a specific notation

W(x) = tr Rx ρ̂ χ(ξ) = tr Tξ
† ρ̂� (34)

respectively for the centre-Wigner and chord functions. The normalization of the state then 
yields the properties

1
2d

∑
x∈Z2

2d

W(x) = 1 χ(0, 0) = 1.� (35)

Moreover, from (24) we also obtain

1
2d

∑
ξ∈Z2

2d

χ(ξ) = tr ρ̂R̂0,0.� (36)

Quadratic averages are given by

1
4d

∑
x∈Z2

2d

W2(x) =
1

4d

∑
ξ∈Z2

2d

|χ(ξ)|2 = tr ρ̂2.� (37)

Notice that in the literature it is customary to change the normalization so that the Wigner func-
tion normalizes to unity. In view of the developments in section 5 we prefer to keep the present 
normalization, as it provides uniform factors in all formulae. In this context, it is important 
to remark that the present normalization for pure states yields for the two distributions the 
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upper bounds |W(x)| � 1 and |χ(ξ)| � 1. To exemplify the way that these distributions give 
complementary phase space representations of a state we plot in figure 3 the center and chord 
distributions for a coherent state (a gaussian wave-packet) centred at (q, p) = (.25, .25) on 
the unit torus placed symmetrically with respect to the origin. The center distribution yields 
smooth positive values (blue or dark gray) peaked at xq/2d, xp/2d ≈ (.25, .25) and also oscil-
lating positive and negative ‘images’ (blue and yellow) at a half-way distance around the 
torus. These images can be understood as the well known interference patterns arising from 
the ‘cat’ state formed by the original wave packet and its repetitions on the periodic torus. 
The chord representation displays the features of the state in a different way. The position of 
the wave-packet is reflected in the complex phases near the center (displayed with an HLS 
colour scheme). The modulus of the distribution is centred near zero, reflecting the fact that 
only small chords are relevant for a gaussian. Many more graphical examples can be found 
in [13, 16].

Framed in this way, the discrete theory provides a scheme valid for all d and follows the 
presentations in [9, 16]. Other schemes in the literature [13, 17, 22] distinguish even and odd 
values of d, while [12, 15] restricts d to be a prime power.

3.1. The odd-d case

In the odd-d case it is possible to eliminate completely the redundancy of the operator bases 
and deal only with d × d chord and center distributions. This is done simply by considering 
only the even-even sublattices of integer centers and half-chords R2x and T2ξ. The results are 
identical to the approach in [13]. Writing out the group properties thus restricted we obtain

T̂2ξT̂2χ = T̂2(ξ+χ) τ
4〈ξ,χ〉 R̂2xR̂2y = T̂2(x−y) τ

−4〈x,y〉

T̂2ξR̂2x = R̂2(ξ+x) τ
4〈ξ,x〉 R̂2xT̂2ξ = R̂2(x−ξ) τ

−4〈x,ξ〉.
� (38)

Figure 3.  Center (left) and chord (right) representation of a gaussian coherent state 
centered at (xq, xp) = (.25, .25) with d  =  16. Complex amplitudes are displayed using 
the H.L.S. system with Hue giving the phase, Lightness giving the modulus in the 
interval (0, 1) and Saturation  =  1. In this system real positive values are colored blue 
(dark gray), and real negatives are colored yellow (light gray).
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All labels are integers in Z2
d  where the operators are d-periodic

T̂2ξ+2dχ = T̂2ξ R̂2x+2dy = R̂2x.� (39)

Written in terms of the Schwinger operators we have

T̂2ξ = V̂2ξ1 Û2ξ2τ 4ξ1ξ2 R̂2x = V̂2x1 Û2x2τ 4x1x2 R̂0,0.� (40)

We remark that, for odd d, τ 4 = e4iπ/d  is a primitive d-root of unity, which is not the case 
when d is even. For the same reason Û2 and V̂2 are also primitive, in the sense that their pow-
ers cycle once through all powers of Û  and V̂—although in a different order—, thus provid-
ing a complete basis of operators. In the even-d case this scheme does not work, because the 
powers of Û2 and V̂2 cycle only among half of the independent operators, and the basis then is 
not complete. It is important to observe that, thus restricted, the two sets of operators are still 
related by a symplectic Fourier transform

R̂2x =
1
d

∑
ξ∈Z2

d

τ 4〈x,ξ〉T2ξ.� (41)

4.  Projections of centers and chords

In the continuum case it is well known that, while the Wigner function of a state can assume 
negative values, its projections on the coordinate axes—and in fact on any pair of rotated 
axes—are always positive. In this section we explore how this result translates to the discrete 
case when the center representation is used and how a closely related result applies also to the 
projection of chords.

Consider first the definition of a line L in the discrete periodic lattice Z2
2d. Given the integer 

vector ξ = (ξq, ξp), a line through the origin is given by the set of points x ∈ Z2
2d that satisfy 

〈ξ, x〉 = 0 mod 2d . Likewise lines parallel to it are given by 〈ξ, x〉 = a mod 2d  with a ∈ Z2d. 
When the lines are wrapped on the periodic lattice Z2

2d it is important to know how many dif-
ferent points belong to it. This depends on the relative divisibility of ξq, ξp and 2d: (a) when 
ξq, ξp are relatively prime then there are exactly 2d parallel lines with 2d points each; (b) when 
ξq, ξp have a common factor k, if this factor is prime to 2d, then the same situation arises. 
However if k is a factor of 2d then the line through the origin consists of 2d × k  points and the 
parallel lines where k is relatively prime to a are empty. With these considerations the sum of 
reflection operators on a line can be written as

L̂a
ξ =

1
2d

∑
x∈Z2

2d

R̂x δ2d(〈x, ξ〉 − a)� (42)

where the integer a labels the family of parallel lines oriented by ξ. Then, taking the Fourier 
transform of the δ-function

L̂a
ξ =

1
(2d)2

2d−1∑
s=0

∑
x∈Z2

2d

R̂x τ
s(〈x,ξ〉−a) =

1
2d

2d−1∑
s=0

T̂s
ξτ

−sa
� (43)

where we have used the inverse symplectic transform in (21) to relate reflections to transla-
tions. One should note that the group properties of Tξ imply that Tξ

s = Tsξ if sξ belongs to 
the fundamental cell. Otherwise these vectors are pulled back periodically using (20). To 
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determine the nature of the L̂a
ξ operators we first notice that they are hermitian. Furthermore 

we compute

L̂a
ξL̂b

ξ =
1

4d2

2d−1∑
s,t=0

T̂(s+t)
ξ τ−(sa+tb) = δ2d(a − b)

1
2d

2d−1∑
s=0

T̂s
ξτ

−sa = δ2d(a − b)L̂a
ξ,

� (44)
showing that they are orthogonal positive projection operators. Moreover, they also satisfy

2d−1∑
a=0

L̂a
ξ = 1.� (45)

Thus each set of parallel lines in a given direction ξ gives rise in the general case to a partition 
of unity in terms of positive projection operators. Clearly at least half of the 2d operators must 
be zero as only d can be linearly independent. To show how this comes about we use the half-
periodicity property (28) to split the sum in (43)

L̂a
ξ =

1
2d

(
d−1∑
s=0

+

2d−1∑
s=d

)
T̂s
ξτ

−sa =
1 + (−1)a(−1)dξqξp

2d

d−1∑
s=0

T̂s
ξτ

−sa.� (46)

Thus for even d the odd parallel lines project to zero, while for odd d the same thing happens 
except when ξ is odd–odd, in which case this happens for the even lines. The rank of the pro-
jectors is given by

tr L̂a
ξ =

1 + (−1)a(−1)dξqξp

2d

d−1∑
s=0

tr T̂s
ξτ

−sa.� (47)

This rank is determined by the order of Tξ, i.e. the minimum power r such that T̂r
ξ = ±1̂. 

When r  =  d only one trace survives for each a and then one obtains d one-dimensional projec-
tors, i.e. an orthonormal basis. When the order is less than d, in which case d/r is an integer k 
then the projectors are k dimensional when a = 0 mod d and null otherwise.

An equivalent look at the projection properties of reflections is provided by the spectral 
decomposition of T̂ξ. Taking for simplicity the d even case when the order is d, the spectrum 
is given by the d-roots of unity

T̂ξ =

d−1∑
b=0

|φ(b)
ξ 〉e2πib/d〈φ(b)

ξ |.� (48)

The Fourier transform in (47) then yields L̂2a
ξ = |φ(a)

ξ 〉〈φ(a)
ξ |, with a similar calculation in the 

other cases, which needs taking care of degeneracies in the spectrum when the order is less 
than d. In the simplest case of vertical projections with ξ = (0, 1) the eigenbasis |φa

(0,1)〉 of 
T̂(0,1) ≡ Û is simply the original discretized position basis |qa〉. In this case we can rewrite the 
general result as

1
2d

2d−1∑
xp=0

R̂xq,xp =
1 + (−1)xq

2
|xq〉〈xq|.� (49)

We can use these considerations also to compute the projections in the chord representa-
tion. Using T̂x = R̂xR̂0,0 we rewrite (42) as
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L̂a
ξ R̂0,0 =

1
2d

∑
x∈Z2

2d

T̂x δ2d(〈x, ξ〉 − a).� (50)

Thus the projection of chords along a direction ξ, in the simplest case, yields the same projec-
tors as before times a reflection through the origin.

When these results are applied to the distributions of a positive density matrix ρ̂− W(x) 
and χ(ξ)—we then obtain, for d even and for ξq, ξp relatively prime

1
2d

∑
x∈Z2

2d

W(x) δ2d(〈x, ξ〉 − 2a) = 〈φ(a)
ξ | ρ̂ |φ(a)

ξ 〉� (51)

1
2d

∑
x∈Z2

2d

χ(x) δ2d(〈x, ξ〉 − 2a) = 〈φ(a)
ξ | ρ̂ |φ(−a)

ξ 〉.� (52)

Thus the center and chord projections yield respectively the diagonal and the skew-diagonal 
elements of the density matrix in the eigenbasis of T̂ξ. Considering again the vertical projec-
tions we see that the center projections provide the populations in the position basis, while the 
chord projections yields some information on the coherences.

We should note at this point that whenever d is a prime number (or a power of a prime) all 
operators Tξ have order d and therefore every direction ξ defines an orthonormal basis just as 
in the continuum case. If this property is taken as a requirement for a proper definition of a 
Wigner function, then one is led to the constructions only valid in those cases, which then use 
in an essential way the theory of Galois fields [12, 15].

5.  Center and chord identities for pure states

In a recent publication [23] we obtained in the continuum a collection of new relationships 
involving products and correlations between center and chord functions associated to pure 
states that, besides their intrinsic interest, resulted in previously unknown relationships among 
special functions, and in generalized pure state conditions. In this section we provide a new 
way to derive these relationships, more adapted to the discrete case. The fact that the group 
properties are identical to the continuum case result in formulae which are an almost direct 
transcription of the previous results in [23].

Consider the computation of the quantity tr ÂR̂xB̂†R̂y. One way to compute it [23] is to 
expand Â, B̂† as in (31) and use the trace of the resulting quadruple product to perform the 
sums. An alternative is to use (29) to expand the product in the translation basis as

tr ÂR̂xB̂†R̂y =
1

4d

∑
z∈Z2

2d

tr ÂR̂xT̂†
z tr B̂†R̂yT̂z =

1
4d

∑
z∈Z2

2d

tr ÂR̂x+z τ
〈x,z〉 tr B̂†R̂y−z τ

−〈y,z〉.� (53)

The rightmost equality follows from the group rules (19). A similar expansion in the reflection 
basis yields

tr ÂR̂xB̂†R̂y =
1

4d

∑
z∈Z2

2d

tr ÂR̂xR̂z tr B̂†R̂yR̂z =
1

4d

∑
z∈Z2

2d

tr ÂT̂x−z τ
−〈x,z〉 tr B̂†T̂y−z τ

−〈y,z〉
� (54)

where again the group properties (19) have been used. A similar derivation for the quantity 
tr ÂT̂xB̂†T̂†

y  and the definition (30) of the center and chord representations of Â, B̂ yield our 
two main formulae

M Saraceno and A M Ozorio de Almeida﻿J. Phys. A: Math. Theor. 52 (2019) 095301



14

tr ÂRxB̂†Ry =
1

4d

∑
z∈Z2

2d

A(x + z)B∗(y − z)τ 〈x−y,z〉 =
1

4d

∑
z∈Z2

2d

Ã(z − x)B̃∗(z − y)τ−〈x+y,z〉
� (55)

tr ÂTξB̂†Tω
† =

1
4d

∑
z∈Z2

2d

A(z + ξ)B∗(z − ω)τ 〈ξ−ω,z〉 =
1

4d

∑
z∈Z2

2d

Ã(z − ξ)B̃∗(z − ω)τ−〈ξ+ω,z〉.

� (56)
Notice that if we define [23] the superoperator Â • B̂† which acts on an operator Ĉ as 

ÂĈB̂†, then the above results amount to the computation of the matrix elements of this super-
operator in the reflection or translation operator bases. In this generality, formulae of this kind 
provide a way to represent superoperators in double phase space [23] in which lagrangian 
planes corresponding to reflections and translations are the coordinates, as will be discussed 
in section 6.

The adaptation of the identities derived in [23] to the discrete case now follows from 
these formulae in the special case in which Â, B̂ are both equal to the pure state projector 
ρ̂ = |ψ〉〈ψ|. In that case the computation reduces to

W(x)W(y) =
1

4d

∑
z∈Z2

2d

W(x + z)W(y − z)τ 〈x−y,z〉
� (57)

=
1

4d

∑
z∈Z2

2d

χ(x + z)χ(y + z)τ 〈x+y,z〉
� (58)

χ(ξ)χ(ω) =
1

4d

∑
z∈Z2

2d

χ(ξ + z)χ(ω − z)τ 〈ξ−ω,z〉
� (59)

=
1

4d

∑
z∈Z2

2d

W(ξ + z)W(ω + z)τ 〈ξ+ω,z〉
� (60)

where we have used the specific notation (34) χ(ξ) = 〈ψ|T̂†
ξ |ψ〉 and W(x) = 〈ψ|R̂x|ψ〉 for 

the chord and center functions of |ψ〉, and used the fact that W(x) is real and χ∗(ξ) = χ(−ξ). 
These general formulae relate products of pure state centers and chords to their convolutions, 
and in some respect they generalize the pure state condition ρ̂ = ρ̂2. Restricted to special 
values, they lead to several identities relating quadratic and quartic products of centers and 
chords. For example setting x = y in (58) and relabeling the sum we obtain

W2(x) =
1

4d

∑
ξ∈Z2

2d

χ2(ξ)τ 2〈x,ξ〉.� (61)

Thus the two distributions W2(x) and χ2(ξ) constitute a symplectic Fourier transformed pair. 
The Parseval identity then leads to

M =
1

4d

∑
ξ∈Z2

2d

|χ(ξ)|4 =
1

4d

∑
x∈Z2

2d

W4(x).� (62)
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Another identity of this type is obtained using (61) to show that

L =
1

4d

∑
ξ∈Z2

2d

χ(ξ)4 =
1

4d

∑
x∈Z2

2d

W2(x)W2(−x).� (63)

Another set of identities is obtained setting x = −y in (57) and ξ = −ω in (59). We obtain

W(x)W(−x) =
1

4d

∑
ξ∈Z2

2d

χ(x + ξ)χ∗(x − ξ) =
1

4d

∑
z∈Z2

2d

W(z)W(−z) τ 2〈x,z〉

� (64)

|χ(ξ)|2 =
1

4d

∑
z∈Z2

d

W(z + ξ)W(z − ξ) =
1

4d

∑
γ∈Z2

2d

|χ(γ)|2 τ 2〈ξ,γ〉.� (65)

The first part of these identities show that W(x)W(−x) is the chord autocorrelation while 
|χ(ξ)|2 is the center autocorrelation. The second part shows that they are invariant under 
Fourier transform and center-symmetric [27, 28]. Setting x = 0 in (64) we obtain

W(0)2 =
1

4d

∑
ξ∈Z2

2d

χ(ξ)2 =
1

4d

∑
x∈Z2

2d

W(x)W(−x).� (66)

So far, we have specialized (55) and (56) to the case Â = B̂ = |ψ〉〈ψ|, but other interest-
ing formulae can be obtained inserting Â = ρ̂1 = |ψ1〉〈ψ1|, B̂ = ρ̂2 = |ψ2〉〈ψ2|. One obtains 
Fourier or convolution relationships between the center or chord functions for the two states 
and the transition center or chord functions corresponding to the transition operator |ψ1〉〈ψ2|. 
Here we just exhibit some special cases:

|W12(x)|2 =
1

4d

∑
z∈Z2

2d

W1(x + z)W2(x − z) =
1

4d

∑
z∈Z2

2d

χ1(z)χ2(z)τ−2〈x,z〉

� (67a)

|χ12(ξ)|2 =
1

4d

∑
z∈Z2

2d

W1(z + ξ)W2(z − ξ) =
1

4d

∑
z∈Z2

2d

χ1(z)∗χ2(z)τ−2〈ξ,z〉

� (67b)

where, with obvious notation, we have defined W12(x) = 〈ψ2|Rx|ψ1〉 and χ12(ξ) = 〈ψ2|T̂†
ξ |ψ1〉 

as the center and chord functions of the transition operator |ψ1〉〈ψ2|. The symplectic Fourier 
transforms in (67a) then imply the equality of the quartic sums

K =
1

4d

∑
x∈Z2

2d

|W12(x)|4 =
1

4d

∑
x∈Z2

d

|χ12(x)|4� (68)

wich generalize (62).
Some of these formulae can be reinterpreted as special cases of parametrized phase space 

functions [4]. For example, if we set |ψ2〉 as a gaussian reference state centered at the origin, 
i.e. the ground state of the Harper Hamiltonian, then the lhs of (67b) is the discrete Husimi 
function Q1(ξ) of ρ̂1, which is then computed as

Q1(ξ) = tr(ρ̂1T̂ξρ̂2T̂†
ξ) =

1
4d

∑
z∈Z2

2d

χ1(z)∗χ2(z)τ−2〈ξ,z〉
� (69)
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in terms of the symplectic transform of the product of the two characteristic functions. In the 
notation of [4], this is the s = −1, x = −1 parametrized phase space Husimi function.

Another interesting identity yields

W∗
12(x)W12(−x) =

1
4d

∑
z∈Z2

2d

W1(z)W2(−z)τ 2〈x,z〉
� (70)

that again implies the quartic identity

1
4d

∑
x∈Z2

2d

|W12(x)|2|W12(−x)|2 =
1

4d

∑
x∈Z2

2d

|W1(x)|2|W2(−x)|2.� (71)

Evidently, these new identities that involve transition chord and center functions, and which 
were not included in [23], generalize immediately to the continuum case, as they are merely 
special cases of the general formulae (55) and (56).

All the formulae in this section are valid for all values of d, both even and odd, and they 
involve sums over the periodic cell of the 2d × 2d periodic lattice. However the sums are 
redundant, and, as we saw in (29) the four d × d quadrants contribute equally, and therefore 
the sums can be restricted to one of the d × d quadrants, simply removing the factor of 4 in 
the denominator.

5.1.  Localization measures in phase space

As an application of the previous identities we first consider the quantity M in (62). First 
of all we notice that, on account of the symplectic invariance of the Wigner function [34], 
M is constant not only for all translations of the state |ψ〉, but also when |ψ〉 is acted upon 
by the representation of linear canonical transformations. Thus M is invariant under all 
Clifford [22] operations on the state. Second, the fact that for a normalized pure state we 

have 1/(4d)
∑

x∈Z2
2d

W2(x) = 1 means that W(x)2 is a probability distributio and therefore the 
quartic quantity M can be considered as a a kind of inverse participation ratio measuring the 
phase space localization of pure states [30]. Moreover M is bounded as

2
d + 1

� M � 1.� (72)

The upper bound is a simple consequence of the fact that 1 � W(x)2 � W(x)4. The lower 
bound was derived by Welch [32] when considering bounds on the cross correlation of signals. 
Both bounds can be achieved by special classes of states of interest to the quantum informa-
tion community. The upper bound obtains for pure position states |qj〉 and for all its symplectic 
transformations. These constitute the set of stabilizer states, which were also called line states 
[13]. At the opposite lower bound, M characterizes symmetric informationally complete (SIC) 
fiducial states. In fact M is used as a cost function whose minimization leads to the numerical 
search for such states [22]. We remark that it is not proven that the bound can be reached for 
all values of d, but many numerical and some analytical results seem to show that indeed it is 
so. Notice also that, while the identity between chord and Wigner expressions for this quantity 
persists in the continuous case, we are not aware of an analogous lower bound in that case. In 
figure 4 we show the Wigner representation of a gaussian state and of a numerically computed 
[31] SIC state for d  =  10.

The quantity M also provides a bound for L in (63). A simple application of Schwartz ine-
quality to the definition of L shows that L � M  with equality implying that W(x) = W(−x). L 
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is obviously positive, and it would be interesting to know if it also has a positive lower bound 
for pure states.

Another interesting localization property is provided by K in (68). Consider a pure ‘cat’ 
state |ψ〉 = 1/

√
2(|ψ1〉+ |ψ2〉) with normalized |ψ1〉, |ψ2〉. Its center function, for example, is 

given by

Wψ(x) =
1
2
(W1(x) + W2(x) + W12(x) + W∗

12(x)).� (73)

Thus the transition center function characterizes the phase space extent of the coherences 
between the two states. Therefore the amplitude and the phase space distribution of these 
coherences can be computed from (67a) in terms of W1 and W2. Moreover, as

1
4d

∑
z∈Z2

2d

|W12(z)|2 =
1

4d

∑
z∈Z2

2d

|χ12(z)|2 = 1� (74)

K can be interpreted as an inverse participation ratio for the phase space localization of the 
amplitude of coherences. Just as M, L it is a Clifford invariant and can be computed indiffer-
ently from center or chord transition functions.

6.  Chords and centers in double phase space: superoperator representations

Superoperators determine the linear dynamics of operators, whether observables or density 
operators. When they are represented in the phase space operator bases R̂x, T̂ξ, the matrix 
elements of superoperators require a doubled phase space consisting of two centers (or two 
chords). The general treatment of superoperators in double phase space developed in [23] for 
continuous Hilbert spaces is readily adapted to doubled tori in the discrete case. We provide 
here the essential features with the purpose of making it more readily available to the quantum 
information community7.

We adopt a double Dirac notation 〈〈A‖B〉〉 = tr Â†B̂ for the Hilbert–Schmidt scalar product 
in operator space. Thus the expansion of a general superoperator S in, i.e. the center–center 
basis, will be

S =
1
d2

∑
x,y∈Z2

2d

〈〈Rx‖ S ‖Ry〉〉‖Rx〉〉〈〈Ry‖� (75)

acting on operators in the usual Dirac way. It will be convenient to think of ‖Rx〉〉 as a double 
position ket, while of ‖Tξ〉〉 as a double momentum ket. Thus the chord–chord double matrix 
element would be the momentum representation of the superoperator. Associated to the super-
operator basis ‖Rx〉〉〈〈Ry‖ we have defined in [23] the Choi-conjugate basis R̂x • R̂y whose 
action on operators is defined in a different way as (Â • B̂)Ĉ def

= ÂĈB̂. In the appendix we 
reproduce from [23] how the two bases are related and how their unitary relationship general-
izes the simple partial transposition of indeces that underlies the Choi–Jamiolkowsky homo-
morphism [1, 33].

With this notation we defined in [23] reflection and translation superoperators as Choi 
monomials

7 When comparing formulae in [23], besides the obvious discretization, one should keep in mind the differences 
arising from the use of half-chords, leading to simplified and more symmetrical formulae.
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Tx,ξ = T̂x+ξ • T̂†
x−ξ = T̂x+ • T̂†

x− .� (76)

Rx,ξ = R̂x+ξ • R̂x−ξ = R̂x+ • R̂x− .� (77)

They inherit their properties from the corresponding ‘single’ centre and chord operators and 
provide a ‘double’ representation of the Heisenberg–Weyl group. Their basic properties are

T†
x,ξ = T̂†

x+ξ • T̂x−ξ = T−x,−ξ R†
x,ξ = R̂†

x+ξ • R̂†
x−ξ = Rx,ξ.� (78)

A pleasant surprise stems from their periodicity properties on the torus. Using (28) we derive

Tx+dy,ξ+dα = Tx,ξ.� (79)

Thus they only need to be defined on the Z4
d  4-dimensional periodic lattice and there is no 

need for redundancy as in the single case.
We next compute the composition properties

Tx,ξTx′,ξ′ ≡ T̂x+ξT̂x′+ξ′ • T̂†
x′−ξ′ T̂†

x−ξ

= T̂x+x′+ξ+ξ′ • T̂†
x+x′−ξ−ξ′ τ

〈x+ξ,x′+ξ′〉+〈x′−ξ′,x−ξ〉

�

(80)

Rx,ξRx′,ξ′ ≡ R̂x+ξR̂x′+ξ′ • R̂x′−ξ′ R̂x−ξ

= T̂x−x′+ξ−ξ′ • T̂†
x−x′−ξ+ξ′ τ

−(〈x+ξ,x′+ξ′〉+〈x′−ξ′,x−ξ〉)

�

(81)

Tx,ξRx′,ξ′ ≡ T̂x+ξR̂x′+ξ′ • R̂x′−ξ′ T̂†
x−ξ

= R̂x+x′+ξ+ξ′ • R̂†
x+x′−ξ−ξ′ τ

〈x+ξ,x′+ξ′〉+〈x′−ξ′,x−ξ〉

�

(82)

Figure 4.  Center representation of position eigenstate |q3〉〈q3| with d  =  10 (left) and 
a numerically computed SIC fiducial state labelled ′10a′ in [31] (right). The states 
exemplify the upper and lower bounds on the localization measure M in (72).
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Rx,ξTx′,ξ′ ≡ R̂x+ξT̂x′+ξ′ • T̂†
x′−ξ′ R̂x−ξ

= T̂x−x′+ξ−ξ′ • T̂†
x−x′−ξ+ξ′ τ

−(〈x+ξ,x′+ξ′〉+〈x′−ξ′,x−ξ〉).
� (83)

The phase in the exponent is in all cases 2(〈ξ, x′〉+ 〈x, ξ′〉). Then if we define 
X = (x, ξJ) = (xq, xp, ξp,−ξq) = (Q1, Q2, P1, P2) as canonical coordinates in double phase 
space together with the corresponding symplectic form

〈〈X, X′〉〉 = 〈ξ, x′〉+ 〈x, ξ′〉 = P′ · Q − Q′ · P� (84)

we obtain the composition laws in double phase space as

TXTY = TX+Y η〈〈X,Y〉〉� (85)

RXRY = TX−Y η−〈〈X,Y〉〉� (86)

TXRY = RX+Y η〈〈X,Y〉〉� (87)

RXTY = RX−Y η−〈〈X,Y〉〉� (88)

where we have absorbed the factor of 2 in the definition of η = τ 2 = e2πi/d. These have 
exactly the Weyl Heisenberg structure expected from a system with two degrees of freedom, 
where the positions are the centers and the momenta are the chords. The relationship between 
RX and TY  can be worked out using (21)

RX =
1
d2

∑
Y∈Z4

d

TY η〈〈X,Y〉〉.� (89)

Given these properties we then identify TX and RX as complementary superoperator bases

Tr T†
XTY = d2δ(X − Y) Tr RXRY = d2δ(X − Y)� (90)

Tr T†
XRY = η〈〈X,Y〉〉 Tr RXTY = η−〈〈X,Y〉〉,� (91)

where Tr  is the superoperator trace Tr(Â • B̂) = tr Â tr B̂. In complete analogy with the single 
phase space definitions, we can then define the double center and chord representations of 
superoperators as their projections on the two complementary bases

S(x, ξ) = TrRx,ξS S̃(x, ξ) = TrT†
x,ξS.� (92)

They have all the same properties of the ‘single’ variety and they provide a way to represent 
superoperators in phase space. The two representations are related by a double symplectic 
transform (89) and the superoperators are reconstructed from these c-number arrays as

S =
1
d2

∑
x,ξ∈Z2

d

S(x, ξ)Rx,ξ� (93)

S =
1
d2

∑
x,ξ∈Z2

d

S̃(x, ξ)Tx,ξ.� (94)

Properties associated to center and chord functions translate readily in this setting. Thus
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TrS = S̃(0, 0) =
1
d2

∑
X∈Z4

d

S(X)� (95)

Tr(S1S2) =
1
d2

∑
X∈Z4

d

S1(X)S
∗
2(X) =

1
d2

∑
X∈Z4

d

S̃1(X)S̃
∗
2(X).� (96)

Moreover, for hermitian superoperators S(X) is real and S̃
∗
(X) = S̃(−X).

An example of these methods is provided by unitary propagation. The superoperator 
U = Û • Û†, propagates unitarily the density matrix as ρ̂′ = Ûρ̂ Û†. Its matrix elements in 
the reflection basis are 〈〈Rx+‖ U ‖Rx−〉〉. Defining W(x) = 〈〈Rx‖ρ〉〉 as the representation of 
the density matrix in the reflection basis, the propagator is obtained as

W ′(x+) =
1
d

∑
x−∈Z2

d

〈〈Rx+‖ U ‖Rx−〉〉W(x−).� (97)

On the other hand the double center or chord representations of U are easily calculated in 
product form using (92)

U(x, ξ) = Tr URx,ξ = tr(ÛR̂x+ξ)tr(U†R̂x−ξ) = U(x + ξ) U∗(x − ξ)� (98)

Ũ(x, ξ) = Tr UT†
x,ξ = tr(ÛT̂†

x+ξ) tr(Û†T̂x−ξ) = Ũ(x + ξ) Ũ∗(x − ξ)� (99)

where U(x) = 〈〈Rx‖Û〉〉 and Ũ(x) = 〈〈Tx
†‖Û〉〉 are the single Weyl and chord transforms of Û , 

i.e. its Weyl and chord propagators. The matrix element can then be computed explicitly using 
the formulae in the appendix

〈〈Rx+x1‖ U ‖Rx−x1〉〉 =
1
d

∑
ξ∈Z2

d

U(x + ξ)U∗(x − ξ)η〈x1,ξ〉.� (100)

This is the inverse transform leading from the double Wigner function to the superoperator 
matrix elements. Clearly these considerations extend easily to the Kraus representation of 
completely positive superoperators [35]

K =
∑

j

K̂j • K̂†
j� (101)

where now the K matrix elements are given in terms of the Weyl (or chord) functions of K̂j.

7.  Discussion

Projection of translation and reflection operators onto a finite group on a torus defines a 
pair of bases for the representation of arbitrary operators acting on a finite set of quantum 
states. Discrete Weyl and chord representations are defined in this way for any Hilbert 
space dimension. We have stressed throughout their symmetry and complementarity which 
closely parallels these properties for the ordinary position and momentum representations. 
Many properties that hold in the continuum translate to the discrete. In particular, we have 
shown that surprising new identities involving quadratic and quartic relationships between the 
Wigner and the chord functions [23] have discrete analogues. Special cases of these identi-
ties include a measure of the inverse participation ratio for phase space localization of pure 
states. Clifford invariance of the Wigner function carries over to this measure, while the new 
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identity allows one to calculate it indifferently from either the Wigner or the chord function. 
Another remarkable identity establishes that the correlation of a pure state with its translation 
is Fourier invariant. If the Hilbert space dimension is large, this forces a duality between large 
scale structures of the Wigner function with its smallest scales in close analogy to the sub-
Planck structures deduced for the continuum [25]. One should note that the breaking of each 
of these identities as a pure density operator evolves under a non unitary evolution provide 
delicate measures of how mixed the state has become, thus generalizing and complementing 
the usual von Neumann or linear entropies. Finally, the relationships that link the transition 
functions to products or convolutions of the individual functions provide a way to study both 
the magnitude and the localization properties of coherences.

Finally, we note that generalization of reflection and translation superoperators to a dou-
ble torus, in strict analogy to their definition in the continuum, leads to analogous relations 
between the Weyl representation of the evolution operator and the propagator for the Wigner 
function in (100) to those that are known to hold in the continuum (see references in [23]): 
the propagator is recognized as the inverse of the double-Wigner transform of the evolution 
operator in the double phase space. A similar formula holds for the Kraus superoperator that 
evolves Markovian open systems.
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Appendix A

We provide here the derivation of the relationship between the Choi conjugate bases 
‖Rx+〉〉〈〈Rx−‖ and R̂x+ • R̂x− that further justifies our definitions of super translations and 
reflections. To this end we expand the Choi basis as in (75)

R̂x+ • R̂x− =
1

4d2

∑
y,z∈Z2

2d

〈〈Ry‖ R̂x+ • R̂x− ‖Rz〉〉‖Ry〉〉〈〈Rz‖ =
1
d2

∑
y,z∈Z2

d

tr(R̂yR̂x+ξR̂zR̂x−ξ)‖Ry〉〉〈〈Rz‖

� (A.1)
where we have used the d-periodicity to restrict the sum to Z2

d  to eliminate the factor of 4, and 
replaced x± = x ± ξ . The trace can be evaluated using the group properties (19)

R̂x+ξ • R̂x−ξ =
1
d

∑
y,z∈Z2

d

δ(y + z − 2x)τ−〈y,x+ξ〉τ−〈z,x−ξ〉‖Ry〉〉〈〈Rz‖

=
1
d

∑
y,z∈Z2

d

δ(y + z − 2x)τ−〈y+z,x〉τ−〈y−z,ξ〉‖Ry〉〉〈〈Rz‖

=
1
d

∑
y,∈Z2

d

τ−〈2y−2x,ξ〉‖Ry〉〉〈〈R2x−y‖.

We now shift the summation and absorb a factor of 2 in the phase to obtain

R̂x+ξ • R̂x−ξ =
1
d

∑
y∈Z2

d

‖Rx+y〉〉〈〈Rx−y‖ η−〈y,ξ〉.� (A.2)
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On the right we recognize the usual definition of a reflection operator in terms of position 
matrix elements analogous to (4). A similar derivation for the super translations yields

T̂x+ξ • T̂†
x−ξ =

1
d

∑
y∈Z2

d

‖Ty+ξ〉〉〈〈Ty−ξ‖ η−〈y,x〉.� (A.3)

These relationships generalize to reflection and translation bases the simple partial transposi-
tion of indeces that occur when transition operator bases Êi,j = |i〉〈j| are used. In fact we have

Êk,i • Ê†
l,j = ‖Ek,l〉〉〈〈Ei,j‖� (A.4)

as can be easily verified by acting on some operator Â. This transposition is at the basis 
of the relationship between the linear map and its dynamical matrix underlying the Choi–
Jamiolkowsky [1, 33] isomorphism between quantum channels and positive operators.

Appendix B.  Qubits and qutrits on the torus

Consider first the case d  =  2. The U, V  matrices of (26) are simply the Pauli ones and τ = i

Û = σz =

(
1 0
0 −1

)
V̂ = σx =

(
0 1
1 0

)
σy = i

(
0 −1
1 0

)
= iσxσz

� (B.1)
with the usual properties σxσy = iσz , etc. Then the translation and the reflection arrays are

T̂ξqξp = σ
ξq
x σ

ξp
z iξqξp .� (B.2)

The 4 × 4 arrays are then

T̂ξq,ξp =

3 σz −σy −σz σy

2 1 −σx 1 −σx

1 σz σy −σz −σy

0 1 σx 1 σx

0 1 2 3

R̂xq,xp =

3 σz −σy −σz σy

2 1 −σx 1 −σx

1 σz σy −σz −σy

0 1 σx 1 σx

0 1 2 3.

This case is exceptional in that reflections and translations are identical. This follows from the 
fact that for d  =  2 R̂0,0 is the identity. This is not true for other values of d.

For the qutrit case d  =  3 we have

Û =




0 1 0
0 0 1
1 0 0


 V̂ =




1 0 0
0 τ 0
0 0 τ 2


 R̂0,0 =




1 0 0
0 0 1
0 1 0




and τ = eiπ/3.
The translation and reflection arrays are given by

T̂ξq,ξp = Ûξq V̂ξpτ ξqξp R̂xq,xp = Ûxq V̂xpτ xqxp R̂0,0.

In general translations are shifted diagonal matrices, while reflections have a shifted skew 
diagonal structure.

Using these operators as a basis, states and general operators are represented by doubly 
periodic arrays.
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