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Bekenstein’s inequality sets a bound on the entropy of a charged macroscopic body. Such a bound is
understood as a universal relation between physical quantities and fundamental constants of nature that
should be valid for any physical system. We reanalyze the steps that lead to this entropy bound considering
a charged object in conformity to Born-Infeld electrodynamics and show that the bound depends on the
underlying theory used to describe the physical system. Our result shows that the nonlinear contribution to
the electrostatic self-energy causes a rise in the entropy bound. As an intermediate step to obtain this result,
we exhibit a general way to calculate the form of the electric field for given nonlinear electrodynamics in
Schwarzschild spacetime.
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I. INTRODUCTION

It follows from black hole mechanics that the entropy of a
black hole (BH) can be identified with its area [1,2]. The
generalized second law (GSL) states [3] that the sum of the
entropy of the BH and that of ordinary matter fields outside
theBHcan never decrease.Considering the infall of an object
with radius R and energy E, Bekenstein first proposed [4] a
universal bound of the entropy of a macroscopic object by

S ≤
2πkB
ℏc

ER: ð1Þ

Despite having been derived purely by gravitational
considerations, a series of works confirmed the above
inequality in a variety of physical situations [5–9], a fact
which gives support to the universality of bound (1). Since
Bekenstein’s original idea, some generalizations have been
proposed to include charge [10,11] and angular momentum
[12]. The most general bound reads [13]

S ≤
2πkB
ℏc

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðERÞ2 − c2J2

q
−
Q2

2

�
; ð2Þ

whereR is the radius of the minimum sphere that encloses
the system, J is the angular momentum, Q is the charge,1

and c, kB, and ℏ are, respectively, the speed of light,
Boltzmann, and Planck constant.2 Inequality (2) is trivially
satisfied for nonrelativistic systems, and the Kerr-Newman
black hole saturates it. Hence, such BH are viewed as the
most entropic objects that can be characterized with these
three parameters. This is a remarkable result constructed
within BH thermodynamics that motivates the interpreta-
tion of the upper limit on the entropy given by (2) as a
universal relation between physical quantities and funda-
mental constants of nature that should be valid for every
physical system.
Starting from the fact that the entropy is always non-

negative, Dain [14] derived three subsidiary inequalities
relating the size, charge, angular momentum, and energy as
direct consequences of (2) and proved that they hold for any
field configuration obeying Maxwell electrodynamics in
flat spacetime. However, it can be shown [15] that non-
linear electrodynamics (NLED) easily violates the inequal-
ities presented in [14]. Thus, one must recognize that
Bekenstein’s inequalities might be theory dependent.
A minimum requirement for a viable NLED is to recover

Maxwell electrodynamics in the appropriate limit to satisfy
experimental constraints. Additionally, physical arguments
based on causality and unitarity restrict the form of NLED
Lagrangians. Among the many nonlinear theories for the
electromagnetic field, Born-Infeld (BI) electrodynamics
emerges as an interesting alternative to Maxwell’s theory.
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1Depending on the system of units used, a factor 4π dividing

the charge term may be present.

2We use electrostatic units such that the Coulomb constant
equals 1; hence the charge squared has dimensions of energy
times length.
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Originally, Born and Infeld [16–18] proposed the nonlinear
modification as a means to avoid the classical divergences
present in the linear theory. BI can be obtained as the low-
energy regime of string theory [19], and it is unique in the
sense that it is the only NLEDwithout birefringence [20,21].
Bekenstein’s inequality was derived via a gedanken

experiment where a spherically symmetric charged particle
(its field obeying Maxwell’s theory) is slowly lowered
radially to point as close as possible to the horizon and then
dropped into the BH. The bound on the entropy appears as
a consistency condition related to the change of the BH
area. Here we reanalyze the same gedanken experiment
but assuming that the field of the charged particle obeys BI
instead of Maxwell’s electrodynamics. In order to describe
this process we first need to obtain the BI electric field in
the vicinity of a Schwarzschild BH. We shall show that,
given the symmetry of the problem, it is possible to find an
expression for the electrostatic field of an arbitrary NLED
in Schwarzschild spacetime (Theorem 1 of Sec. III).
In the present work, we calculate the minimum change in

the area of the BH due to the absorption of a BI charged
body and obtain the corresponding entropy bound. Since
the contribution to the change in the area comes from the
electrostatic self-energy of the body, it should depend on q2

[which has dimensions of ðlengthÞ2] and R
λBI
, whereR is the

size of the body and λBI is a characteristic length associated
with BI theory. We shall see that our calculation yields
precisely such a combination, and that the BI nonlinearities
raise the entropy upper limit, thus showing that these
inequalities do depend on the underlying dynamical theory
being considered.
The paper is organized as follows: in Sec. II we review

Linet’s solution for a charged particle in the geometry of a
Schwarzschild BH. In Sec. III we generalize the result for
an arbitrary NLED, and in Sec. IV we explicitly give the
electric field for the case of BI. In Sec. V we analyze the
minimum change of the BH area and obtain the entropy
bound considering a BI particle. We close in Sec. VI with
some comments.

II. MAXWELL ELECTRODYNAMICS IN
SCHWARZSCHILD SPACETIME

Electromagnetism is a vector gauge theory for the
Uð1Þ symmetry group where the Faraday tensor is
given in terms of the dynamical vector field as
Fμν ¼ ∂μAν − ∂νAμ. Thus, for any electromagnetic theory,
we assume the validity of the second pair of Maxwell’s
equations, i.e., ∂ ½αFμν� ¼ 0, where the brackets imply total
antisymmetrization in the indices. The dual of the Faraday
tensor is given by F̃μν ¼ 1

2
ημναβFαβ where ημναβ is the

totally antisymmetric Levi-Civita tensor. The electric and
magnetic fields are defined as the projection of the Faraday
tensor and its dual along the normalized observer’s world-
line vμ; hence

Eμ ¼ Fμ
αvα

Bμ ¼ F̃μ
αvα

�
⇒ Eμvμ ¼ Bμvμ ¼ 0:

There are only two Lorentz, linearly independent, invari-
ants constructed with the Faraday tensor, its dual, and the
metric, namely,

F≡ 1

2
FμνFμν ¼ EαEα − BαBα; ð3Þ

G≡ 1

2
F̃μνFμν ¼ 2BαEα: ð4Þ

In a generic Riemannian spacetime with metric gμνðxÞ,
Maxwell’s equations read

∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 4π

ffiffiffiffiffiffi
−g

p
jν; ð5Þ

where g is the determinant of the metric tensor and jν is the
current density.3

The properties of the electric field produced by a static
source in Schwarzschild spacetime have been analyzed in
several papers (see [22–27]). In particular, Copson [26]
found the solution for the electrostatic potential of a
charged particle in the vicinity of a Schwarzschild BH.
However, as shown by Linet [27], Copson’s solution needs
to be corrected by adding a spherically symmetric term in
order to compensate for the presence of an extra unwanted
charged particle inside the BH. Next we follow Linet’s
work [27] and present the general solution of a static
pointlike charged particle in the vicinity of Schwarzschild
BH. The Schwarzschild metric in standard coordinates
ðt; R; θ;φÞ is given by

ds2 ¼ ð1 − rs=RÞc2dt2 −
dR2

ð1 − rs=RÞ
− R2dΩ2; ð6Þ

where rs ¼ 2GM=c2, with M being the mass of the black
hole and dΩ2 ≡ dθ2 þ sin2 θdφ2. We shall consider only
the electrostatic case where B ¼ 0 and ∂tE ¼ 0. Thus, the
electric field can be written as the gradient of a scalar
function, i.e., E ¼ −∇ϕ. The time component of Eq. (5)
becomes a second order equation for the potential ϕ, namely

Δϕ −
rs
R3

∂
∂R
�
R2

∂ϕ
∂R
�

¼ −4π
�
1 −

rs
R

�
ρ; ð7Þ

where Δ is the flat spacetime Laplacian operator given by

Δ≡ 1

R2

∂
∂R
�
R2

∂
∂R
�
þ 1

R2

�
1

sinθ
∂
∂θ
�
sinθ

∂
∂θ
�
þ 1

sin2θ
∂2

∂φ2

�
:

3This equation is fully covariant due to the property
∂μð ffiffiffiffiffiffi−gp

AμνÞ ¼ ffiffiffiffiffiffi−gp ∇μAμν for an arbitrary antisymmetric
tensor Aμν.
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Linet’s solution of (7) for a charged particle as the source
is a modification of Copson’s solution [26], which is given
in isotropic coordinates ðt; r; θ;φÞ. In such coordinates, the
Schwarzschild metric has the form

ds2 ¼
�
1 − rs=4r
1þ rs=4r

�
2

c2dt2 − ð1þ rs=4rÞ4½dr2 þ r2dΩ2�:

ð8Þ

Note that in the isotropic coordinate system the horizon
is located at rh ¼ rs=4 ¼ GM=2c2. The transformation
that connects the standard ðt; R; θ;φÞ and the isotropic
ðt; r; θ;φÞ coordinate systems prompts the following
relations:

R ¼ r

�
1þ rs

4r

�
2

; 2rþ rs
2
¼ Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðR − rsÞ

p
;

∂r
∂R ¼

�
1 −

r2s
16r2

�−1
; 1 −

rs
R
¼
�
1 − rs=4r
1þ rs=4r

�
2

:

It is straightforward to show that, in the isotropic coor-
dinate system, Eq. (7) for the potential ϕðr; θ;φÞ reads

Δϕþ ð1 − rs=4rÞ
ð1þ rs=4rÞ3

∂
∂r
�ð1þ rs=4rÞ3
ð1 − rs=4rÞ

� ∂ϕ
∂r

¼ −4πρ
�
1 −

r2s
16r2

�
2

: ð9Þ

Copson obtained a solution Vcðr; θÞ for this differential
equation corresponding to a charge q located at (r ¼ a,
θ ¼ 0, φ ¼ 0) outside the horizon, i.e., a > rs=4, which is
given by

Vcðr; θÞ ¼
Q

rð1þ rs=4rÞ2
�
μðr; θÞ þ b

a
1

μðr; θÞ
�
; ð10Þ

where

μðr; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − bÞ2 þ 2brð1 − cos θÞ
ðr − aÞ2 þ 2arð1 − cos θÞ

s
; ð11Þ

Q ¼ qð1þ rs=4aÞ−2; b≡ r2s
16a

: ð12Þ

Linet has shown that this solution describes not one but
two charged particles: one of charge q at ða; 0; 0Þ and
another of charge −Qrs=2a inside the horizon. In order to
correct the solution to describe a single particle of charge
q at ða; 0; 0Þ, Linet added a term Vpðr; θÞ, arriving at the
solution

ψðr;θÞ ¼ Vcðr;θÞ þVpðr;θÞ ¼
Q
rμ

�
μþ rs=4a
1þ rs=4r

�
2

;

where Vpðr;θÞ ¼
Qrs=2a

rð1þ rs=4rÞ2
: ð13Þ

In the next section we shall show that the expression for
the electric displacement D in the electrostatic case for an
arbitrary NLED in Schwarzschild spacetime is solely given
in terms of any potential that is the solution of (9).
Therefore, if the NLED allows one to invert the electric
field in terms of the electric displacement vector, the
electric field E and its potential ϕðr; θÞ can be expressed
in terms of the potential ψðr; θÞ.

III. NONLINEAR ELECTRODYNAMICS IN
SCHWARZSCHILD SPACETIME

Nonlinear electrodynamics can be defined as general-
izations of Maxwell electrodynamics obtained by changing
the Larmor Lagrangian density (L ¼ −F=8π) to arbitrary
functions of the two invariants F andG. Although Maxwell
electrodynamics is well confirmed by experiments, there
are interesting theoretical arguments [16,17,19,28–33] that
motivate the examination of NLED. There are several
examples of NLED in the literature [34–39]. The minimal
condition is that the theory should recover Maxwell
dynamics in the appropriate limit but it is also desirable
to satisfy the causality and unitarity conditions [40–42].
Apart from these conditions most analyses maintain min-
imal coupling with the matter source, and hence the
coupling between field and current density is given by
the usual combination jμAμ. The dynamics for the
Lagrangian LðF;GÞ reads

∂μð
ffiffiffiffiffiffi
−g

p
EμνÞ ¼ −4π

ffiffiffiffiffiffi
−g

p
jν; ð14Þ

where Eμν is the excitation tensor, which together with its
dual are defined as

Eμν ¼ ∂L
∂Fμν

¼ 2ðLFFμν þ LGF̃μνÞ; ð15aÞ

Ẽμν ¼ 1

2
ημναβEαβ ¼ 2ðLFF̃μν − LGFμνÞ: ð15bÞ

The notationLX means derivative of the Lagrangian with
respect to X. Similar to the invariants F and G, we can
define two invariant quantities using Eμν and Ẽμν, namely

P ¼ 1

2
EμνEμν ¼ 4ðL2

F − L2
GÞF þ 8LFLGG; ð16aÞ

S ¼ 1

2
ẼμνEμν ¼ 4ðL2

F − L2
GÞG − 8LFLGF: ð16bÞ
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The decomposition of the excitation tensor follows
closely that of the Faraday tensor, namely

Dμ ¼ −Eμ
αvα

Hμ ¼ −Ẽμ
αvα

�
⇒ Dμvμ ¼ Hμvμ ¼ 0;

where Dμ and Hμ are, respectively, the four-dimensional
electric displacement and magnetic H field. The equations
of motion for the fields can be rewritten in terms of the
excitation tensors using a Legendre transformation. The
resulting formulation is called P-framework [21,43,44],
and it is based on the associated Hamiltonian-like density4

defined as

H ¼ 1

2
EμνFμν − L ¼ 2ðLFF þ LGGÞ − L: ð17Þ

In order to complete the above Legendre transformation
and write H as a function of Eμν and Ẽμν we need to invert
(15a) and write Fμν as a function of the excitation tensor
and its dual. If (15a) and (15b) are invertible, we can write

Fμν ¼ 2
∂H
∂Eμν

¼ 2ðHPEμν þHSẼμνÞ; ð18Þ

where HP and HS represent the derivatives of the
Hamiltonian density with respect to the invariants P and
S, respectively. Therefore, the Lagrangian can be written in
terms of the Hamiltonian and its derivatives as

LðP; SÞ ¼ 2ðHPPþHSSÞ −H: ð19Þ

Our strategy will be to solve (14) for the excitation tensor
in Schwarzschild spacetime and then use (15a) and (15b)
to find the electromagnetic fields. This procedure can be
stated as
Theorem 1: The electrostatic potential ϕðxÞ produced

by a charged particle in a generic NLED theory LðF;GÞ in
Schwarzschild spacetime is entirely specified by the
electrostatic potential ψðxÞ satisfying Maxwell’s electro-
magnetism in the same background. The displacement
vector is curl-free and given by D ¼ −∇ψðxÞ.
Proof.—For the pure electrostatic case, namely B ¼ 0

and ∂tE ¼ 0, the electric displacement is given solely in
terms of the electric field as D ¼ −2LFðEÞE, with E ¼
−∇ϕ. Thus, in Schwarzschild spacetime and using the
isotropic coordinate system, it is straightforward to show
that (14) becomes

Δϕþ ð1 − rs=4rÞ
ð1þ rs=4rÞ3

∂
∂r
�ð1þ rs=4rÞ3
ð1 − rs=4rÞ

� ∂ϕ
∂r

¼ 2πρ

LFð∇ϕÞ
�
1 −

r2s
16r2

�
2

−
1

LFð∇ϕÞ∇ϕ ·∇LF: ð20Þ

Let ψðxÞ be an auxiliary scalar function defined as the
integral along the path with tangent vector dl such that

ψðxÞ ¼ −2
Z

LFð∇ϕÞ∇ϕ · dl

⇒ ∇ψðxÞ ¼ −2LFð∇ϕÞ∇ϕ: ð21Þ

Inserting in (20) we find

Δψ þ ð1 − rs=4rÞ
ð1þ rs=4rÞ3

∂
∂r
�ð1þ rs=4rÞ3
ð1 − rs=4rÞ

� ∂ψ
∂r

¼ −4πρ
�
1 −

r2s
16r2

�
2

; ð22Þ

which is exactly (9). Thus, we can identify ψðxÞ as the
electrostatic potential for Maxwell electrodynamics in
Schwarzschild. Furthermore, the excitation tensor D ¼
−2LFðEÞE is minus the gradient of ψ , and inverting this
relation we find the electric field as a nonlinear function of
ψðxÞ and its derivatives. ▪

IV. BORN-INFELD ELECTRODYNAMICS IN
A SCHWARZSCHILD BLACK HOLE

Theorem 1 provides the electrostatic solution for a
generic NLED in Schwarzschild spacetime but the physical
features depend on the particular NLED theory chosen. In
this section we shall particularize to BI electrodynamics.
The BI action reads

S ¼ 1

4π

Z
d4x

ffiffiffiffiffiffi
−g

p
β2ð1 −

ffiffiffiffi
U

p
Þ; ð23Þ

where β is a field strength parameter and U ¼ 1þ
F=β2 −G2=4β4. In vector notation, the constitutive rela-
tions read

D≡ 1ffiffiffiffi
U

p
�
Eþ ðE · BÞ

β2
B

�
;

H≡ 1ffiffiffiffi
U

p
�
B −

ðE ·BÞ
β2

E

�
: ð24Þ

BI electrodynamics is an example of a NLED for which the
P-framework is well defined and completely analogous
to the F-framework. Indeed, defining V ¼ 1 − P=β2 −
S2=4β4 one can show that

4The factor 1=2 in the first term appears due to the notation
conventions we are using for Fμν. This Hamiltonian-like density
coincides with the energy density for NLED in flat spacetime.
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S ¼ G; P ¼ F −
F2 þ G2

Uβ2
; V ¼ ð1þ G2=4β4Þ2

U
:

ð25Þ

Using the above relations we can invert the constitutive
relations (15a) and (15b) and find

Fμν ¼ −
1ffiffiffiffi
V

p
�
Eμν þ S

2β2
Ẽμν

�
; ð26aÞ

F̃μν ¼ −
1ffiffiffiffi
V

p
�
Ẽμν −

S
2β2

Eμν

�
: ð26bÞ

A straightforward calculation shows that the Hamiltonian
for the BI electrodynamics reads H ¼ β2ð ffiffiffiffi

V
p

− 1Þ.
Decomposing (26) in terms of the electric and magnetic
fields we have

E≡ 1ffiffiffiffi
V

p
�
Dþ ðD ·HÞ

β2
H

�
;

B≡ 1ffiffiffiffi
V

p
�
H −

ðD ·HÞ
β2

D

�
: ð27Þ

In particular, for the electrostatic case, these relations
simplify to

D ¼ Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jEj2β−2

p and E ¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jDj2β−2

p : ð28Þ

Let us consider for a moment the static solution for a
pointlike particle in Minkowski spacetime. A pointlike
particle with charge q at rest at r ¼ a is described by
jμ ¼ ðqδðr − aÞ; 0Þ. In electrostatics, the field equations
reduce to

∇ ·D ¼ 4πρ ⇒ D ¼ q
ðr − aÞ3 ðr − aÞ ¼ β

x2
x̂; ð29Þ

where the adimensional variable x is defined as x≡ffiffi
β
q

q
ðr − aÞ. Using the constitutive equation (28), the

electrostatic field reads

E ¼ βffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x4

p x̂: ð30Þ

Note that, given the symmetry of the problem, Eqs. (29)
and (30) also describe the field outside a spherically
symmetric charged body. The electrostatic potential ϕBI
in flat spacetime is given by

ϕBIðrÞ ¼ −
Z

r

∞
dr ·E ¼

ffiffiffiffiffiffi
qβ

p
x 2F1

�
1

4
;
1

2
;
5

4
;−

1

x4

�
; ð31Þ

where 2F1½a; b; c; z� is the Gaussian hypergeometric func-
tion. We shall need below the following two well-defined
limits:

lim
x→0

2F1

�
1

4
;
1

2
;
5

4
;−x4

�
¼ 1þOðx4Þ; ð32Þ

lim
x→0

1

x 2F1

�
1

4
;
1

2
;
5

4
;−

1

x4

�
¼ Γð1

4
ÞΓð5

4
Þffiffiffi

π
p − xþOðx5Þ: ð33Þ

In particular, the second limit implies that the potential at
the position of the particle is finite and given by

ϕBIðaÞ ¼
Γð1

4
ÞΓð5

4
Þffiffiffi

π
p ffiffiffiffiffiffi

qβ
p ≡ q

λBI
: ð34Þ

The last equality defines a characteristic length scale
associated with BI electrodynamics, given by

λBI ≡
ffiffiffi
π

p
Γð1

4
ÞΓð5

4
Þ
ffiffiffiffiffiffiffiffi
q=β

p
≈ 0.54

ffiffiffiffiffiffiffiffi
q=β

p
:

The Maxwellian limit is obtained by β → ∞; hence the
length λBI can be interpreted as the radius within which the
BI nonlinearities become effective. For r ≫ λBI Maxwell’s
electrodynamics is to be recovered.
Let us now turn to curved spacetime. The expressions

for the displacement vector and the electric field in
Schwarzschild spacetime are straightforwardly given by
Theorem 1 of the last section. The electric displacement
is the gradient of Linet’s potential (D ¼ −∇ψ); hence the
BI electric field in a Schwarzschild spacetime reads

Eðr; θÞ ¼ −∇ϕðr; θÞ ¼ −
∇ψðr; θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇ψðr; θÞj2β−2p ; ð35Þ

where ψðr; θÞ is specified by (13). As in the case of the
electric field in flat spacetime, the electric field given by
(35) is finite everywhere, even at the particle position. In
Fig. 1 we plot the electric field for Maxwell and BI theories
in Schwarzschild spacetime as a function of the isotropic
radial coordinate for three fixed angles. As expected, far
from the particle both solutions coincide. Note also that
both fields vanish on the horizon, a fact that is consistentwith
interpreting the horizon as a conducting surface [45,46].
While we could not find an exact expression for the

electrostatic potential ϕðr; θÞ using Eq. (35), for our
purpose all we need is an expression for ϕ near and at
the particle. In the limit approaching the particle ψðr; θÞ
diverges, the divergence being driven by the behavior of
μðr; θÞ [see (11)]; hence it is Copson’s solution Vcðr; θÞ
that needs to be carefully analyzed close to the particle
while the second part Vpðr; θÞ is regular everywhere [see
(13)]. Equivalently, close to the particle, Linet’s potential is
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dominated by Copson’s solution, i.e., ψðr; θÞ ≈ Vcðr; θÞ for
r → a and θ → 0.
The nonlinearity of the electric field precludes us to use

the superposition principle, but we can still add displace-
ment vector fields D ¼ −∇ψ . In other words, we can add
ψ’s but we cannot add ϕ’s to obtain exact solutions to the
BI equations. In addition, since Copson’s potential Vcðr; θÞ
and the extra term Vpðr; θÞ are solutions of Einstein-
Maxwell equations in the Schwarzschild background, using
these potentials in Eq. (35) automatically gives us two exact
solutions ϕcðr; θÞ and ϕpðr; θÞ of BI in the Schwarzschild
background. Note, however, that Vpðr; θÞ is already regular
everywhere and satisfies j∇Vpj ≪ β; hence for the extra
term the BI nonlinearities are ineffective and ϕp ≈ Vp.
In order to circumvent the lack of an analytical expres-

sion for ϕ, we shall construct an approximate solution by
first decomposing the exact solution for the electric field as
a sum of two terms, as follows:

Eðr; θÞ ¼ −∇ϕ ≈ −
∇Vcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇Vcj2β−2
p −∇Vp; ð36Þ

which is equivalent to decomposing the BI electrostatic
potential as

ϕðr; θÞ ≈ ϕcðr; θÞ þ Vpðr; θÞ: ð37Þ

One can show (see the Appendix) that in the limit
approaching the particle

lim
r→a

∇Vc ≈
Vc

μ
∇μ ⇒ j∇Vcj ≈ β

V2
c

Σ2
; ð38Þ

with

Σ2 ≡ βqð1 − b=aÞ
ð1þ rs=4aÞ2

: ð39Þ

Thus, we can make the following approximations:

∇ϕc ¼
∇Vcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j∇Vcj2β−2
p ≈ Σ

∇ðVc=ΣÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðVc=ΣÞ4

p
⇒ ϕcðr; θÞ ¼ −

Σ2

Vc
2F1

�
1

4
;
1

2
;
5

4
;−
�
Σ
Vc

�
4
�
þ C∞;

ð40Þ

where C∞ is an integration constant. Using the limit given
in (33) in (40) we have

lim
r→∞

ϕcðr; θÞ ¼ C∞ − Σ
Γð1

4
ÞΓð5

4
Þffiffiffi

π
p þ Vc þOðr−5Þ: ð41Þ

In order to reobtain ϕ ≈ ψ far away from the particle, the
condition

ffiffiffi
π

p
C∞ ¼ ΣΓð1

4
ÞΓð5

4
Þ must be imposed. Thus, the

contribution of the Copson solution to the BI electrostatic
potential close to the particle reads

ϕcðr; θÞ ¼ Σ
�
Γð1

4
ÞΓð5

4
Þffiffiffi

π
p −

Σ
Vc

2F1

�
1

4
;
1

2
;
5

4
;−
�
Σ
Vc

�
4
��

:

ð42Þ

Figure 2 compares the exact solution with the approxi-
mate solution. The large dashed lines depict the divergent

FIG. 2. In order to check the validity of our approximations, we
plot the numerical solution given by integrating (35) and the
approximate solution given by (42). The long-dashed lines
correspond to Linet’s potential, solid lines represent the solution
obtained by numerical integration, and short-dashed lines corre-
spond to our approximate expression. Far away from the particle
all three solutions coincide. We have normalized every quantity in
units of the BH massM. The horizon is located at rh ¼ M=2, and
we placed the charged particle at (a ¼ 2.5rh, θ ¼ 0).

=0
= /4

= /8

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

r/rh

|E
|/ a

rh

rh

FIG. 1. Comparison of the BI solution for the electric field
given by the integration of Eq. (35) and Maxwell’s electric
field for a charged pointlike particle outside a Schwarzschild BH.
The particle is located at (θ ¼ 0, a ¼ 1.6rh) with the horizon
rh ¼ M=2 in geometrized units. We set the mass of the BH
M ¼ 2, the particle’s charge q ¼ 2 × 10−4, and the BI parameter
β ¼ 4 × 10−4. Solid curves correspond to BI solutions for θ ¼ 0,
θ ¼ π=4, and θ ¼ π=8 (the last two rescaled by a factor of 10),
while dashed lines are their Maxwellian versions.
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Copson’s solution while small dashed and solid lines are,
respectively, the approximate and the exact solutions.
Figure 3 displays the fractional difference between the
numerical solution obtained by integrating (35) to find ϕc
in terms of Vc to the above approximate solution; hence it
gives the goodness of the approximation given in Eq. (42)
in terms of the dependence on the parameters of the system.
For small values of the BI field strength parameter β the
error drastically decreases. These plots show that close to
the particle (42) indeed is a good approximation for the
electrostatic potential of the BI particle in the geometry of a
Schwarzschild BH.
In the limit approaching the charged particle, the term

associated with the Copson potential goes to a constant
given by

ϕcða; 0Þ ¼ ϕBI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − b=aÞp
ð1þ rs=4aÞ

¼ ϕBI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − rs=4aÞ
ð1þ rs=4aÞ

s
; ð43Þ

where ϕBI is the electrostatic BI potential at the particle’s
position for flat spacetime [see Eq. (34)].
Analyzing the exact solution, one can show that the

gradient of Linet’s potential goes to zero at the horizon
independently of the particle’s position. Therefore the BH’s
horizon works as a conducting sphere [45,46] that forces
the electric field to go to zero. A charged particle close to a
conductive sphere polarizes its surface; hence, the presence
of the charged particle polarizes the BH. This polarization
can be described by an image particle inside the BH. As a
result, we need to include the contribution of the image
particle for the total electrostatic potential. The relevant
contribution of the image particle comes from the region
where the function μ vanishes, as a result, we can define the
position of the image particle at r ¼ b. The vanishing of μ
causes a divergence in Linet’s potential ψðr; θÞ, hence

again close to the image particle ψðr; θÞ ≈ Vcðr; θÞ. The
Copson potential behaves as [see (A20)]

lim
r→b

ðμVcÞ ≈
qb=a

rð1þ rs=4aÞ4
; j∇μj ≈ ða − bÞ−1

ð1þ rs=4aÞ2
;

ð44Þ

∇Vc ≈ −
Vc

μ
∇μ ⇒ j∇Vcj ≈ β

�
Vc

Σ

�
2

with Σ2 ≡ βqð1 − b=aÞ
ð1þ rs=4aÞ2

: ð45Þ

Following the same reasoning as before, the electrostatic
potential reads

ϕcðr; θÞ ¼ −
Σ2

Vc
2F1

�
1

4
;
1

2
;
5

4
;−
�
Σ
Vc

�
4
�
þ const: ð46Þ

Equations (42) and (46) give the approximate solution of
the electrostatic potential close to the charged particle
outside the BH and its image particle inside the horizon,
respectively.
In order to interpret the physical meaning of each

contribution, let us analyze the divergent behavior of
Linet’s potential. Recall that in the case of a Maxwellian
charged particle, this divergence can be absorbed in the
renormalized rest mass of the particle [13,47]. To verify
that the divergence has the Coulombian form, it is useful to
change to a coordinate system adapted to the particle.
Hence, we define the coordinates ðt; ρ; ϑ;φÞ where the
relation between (ρ; ϑ) and (r; θ) is given by

r cos θ → aþ ρ cosϑ; r →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ρ2 þ 2aρ cosϑ

q
:

ð47Þ

The charged particle is located at ρ ¼ 0; hence it is
reasonable to expand the potential using a Laurent series in
powers of ρ

ψðρ;ϑ;φÞ ¼ ð1 − rs=4aÞ
ð1þ rs=4aÞ3

q
ρ
þ qrs
2a2ð1þ rs=4aÞ4

þ qrsð2 − rs=4aÞ
4a2ð1þ rs=4aÞ4

cos ϑþOðρÞ: ð48Þ

Clearly, for the limit ρ → 0, the dominant term (the first
one) has a Coulomb potential behavior as ψ ∼ q=ρ. The
extra factors appear due to the change of variables. A factor
ð1 − rs=4aÞ=ð1þ rs=4aÞ is responsible for the redshift
effect of the time component of the vector potential while
an additional ð1þ rs=4aÞ−2 reflects the change of coor-
dinate ρ to proper distance. In terms of the coordinate
system attached to the particle, the potential close to the

varying

varying a

0 1 2 3 4
10–7

10–6

10–5

10–4

0.001

E

E

FIG. 3. Variation of the approximation (36) as a function of the
free parameters of the solution. We normalize all parameters by
the mass of the BH in geometrized units. We plot the relative error
given by the difference of the exact solution (35) and (36) divided
by the exact solution. The error decreases rapidly as the BI
parameter β increases (lower curve). In addition, the approximation
is quite independent of the position of the charged particle.
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particle must be isotropic with respect to the point ρ ¼ 0;
hence we should average over all values of ϑ [13]. This
cancels any contribution of the third term proportional to
cosϑ. The divergent Coulomb part can be absorbed by
renormalizing the mass of the charged particle [47,48].
Then, for small values of ρ, the net contribution to the
potential is the finite second term of (48).
In flat spacetime, the electrostatic potential of a small

spherical charged body (or pointlike particle) is given by
the Coulomb potential. Thus, it is evident that the con-
tribution of Eq. (48) is a superposition of the potential of
the charged particle combined with the one coming from
the image particle. Equivalently we can interpret it as the
combined contribution of the charged particle and the
polarization of the BH horizon. Indeed, Linet’s potential is
defined as a linear sum of Copson’s solution with the
contribution coming from the polarization of theBHhorizon,
i.e., ψðr; θÞ ¼ Vcðr; θÞ þ Vpðr; θÞ [see Eq. (13)]. Using the
coordinate transformation of Eq. (47) and expanding in
powers of ρ, we identify

Vcðr;θÞ→
ð1−rs=4aÞ
ð1þ rs=4aÞ3

q
ρ
þ qrsð2− rs=4aÞ
4a2ð1þ rs=4aÞ4

cosϑþOðρÞ;

Vpðr;θÞ→
qrs

2a2ð1þ rs=4aÞ4
þOðρÞ: ð49Þ

Thus, the Vcðr; θÞ gives the Coulomb-like behavior and
the finite contribution of (48) comes from the polarization of
the BH horizon. As already argued, close to the horizon, the
BI electrostatic potential approaches Linet’s potential inde-
pendently of the distance of the charged particle to
the horizon. We can define the BI region, namely where
the nonlinear corrections are important, as the interior of the
boundary specified by j∇ψ j ¼ β. Figure 4 shows how the BI
region deforms as the charged particle approaches the
horizon. Each curve delimits the BI region for different
positions of the chargedparticle. TheBI regions get squeezed
and accumulate close to the horizon but never touch the
horizon. This is consistent with the vanishing of the electric
field at the BH horizon. Therefore, a BI charged particle
produces the same polarization on the BH as a Maxwellian
charged particle. As a consequence, the BI nonlinearities
modify only the first term of Eq. (48) while keeping the
contribution coming from the BH polarization unchanged.

V. LOWERING A BORN-INFELD BODY INTO
A SCHWARZSCHILD BLACK HOLE

After Bekenstein’s seminal paper [4] proposing a uni-
versal bound for the entropy of a macroscopic body, a series
of papers improved the bound by including the body’s
charge [10,11] and angular momentum [12]. The optimal
bound combining spin and charge of a macroscopic body
was derived by Bekenstein and Mayo in [13]. The bound
follows from the application of the GSL [3], which states

that the overall entropy of a physical system surrounded by
a BH can never decrease.
Since the entropy of a BH is determined by its horizon

area, a bound on the object’s entropy can be found by
calculating the minimum increase of the BH area due to the
object’s infall. Bekenstein and Mayo [13] showed that
dropping a charged Maxwellian small body of radius R,
charge q, and proper mass m causes an increment δA of the
area of the BH that obeys

δA ≥
4πG
c4

ð2mc2R − q2Þ: ð50Þ

The entropy of the object cannot exceed the change in
the area of the BH, since this would lead to the decrement
of the entropy of the entire system (BHþ object) after the
object’s assimilation. Thus, assuming GSL, we can set a
bound on the entropy of the body as

SBI ≤
2πkB
ℏc

�
mc2R −

q2

2

�
: ð51Þ

We shall generalize the above result by assuming that the
field of the charged particle is governed by BI theory, in the
presence of a Schwarzschild BH. The idea is to slowly
lower the charged body from infinity to the region close to
the horizon. Assuming an adiabatic process and keeping
only first order corrections, the area of the BH should not

–0.003 0 0.003
1

1.001

1.003

1.005

–0.003 0 0.003

1

1.001

1.003

1.005

x/rh

y/
r h

Zoom in the horizon

FIG. 4. In curved spacetime the BI region can be defined as the
compact region inside which j∇ψ j ≥ β. We plot the BI region for
a particle of charge q ¼ M, β ¼ 3M. The horizon is located at
rh ¼ rs=4 that corresponds to the dashed line at the bottom. Each
contour line defines the BI regions for different positions of the
particle. We plot for a=rh ¼ 1.0010, 1.0011, 1.0012, 1.0013,
1.0014, 1.0015, 1.0016, 1.0017. The box in the center shows a
zoom of the region close to the horizon. Note that indeed close to
the horizon the BI potential approaches that of Linet. This is
supported by the fact that none of the BI regions reach the
horizon.
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change during the lowering process [13,49]. We can lower
the body close to the horizon and then drop it into the BH.
After a brief period of stabilization, the BH’s entropy will
increase due to the increase in its massM → M þ E=c2 and
the emergence of a net charge q.
The action associated with the motion xμðτÞ of a particle

with rest mass m and charge q is [50,51]

S ¼
Z

dτ

�
mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _xμ _xν

q
þ q

c
_xμÂ

μ

�
; ð52Þ

where τ is the particle’s proper time, a dot means time
derivative with respect to τ, and Âμ is the background
electromagnetic potential vector. The Schwarzschild BH
has no net charge, and hence does not directly contribute to
Âμ. However, in curved spacetime the self-potential gives a
nontrivial contribution to the energy as measured at infinity.
Instead of reproducing Vilenkin [48] and Smith and Will
[47] analyses, we shall follow Bekenstein and Mayo [13]
who argue that it suffices to include a factor of 1

2
in front of

the self-potential, which instantiates the fact that part of
its energy comes from its own field and the rest from the
background.
For a stationary spacetime, the timelike Killing vector

ξμ ¼ ð1; 0; 0; 0Þ defines the conserved quantity E ¼ pμξ
μc,

which is the energy measured at infinity. The momentum
can be calculated directly from (52) by its definition
pμ ¼ ∂L=∂ _xμ. Thus, it is straightforward to show that

E ¼ pμξ
μc ¼ mc_xβg0β þ

q
2
A0

¼ mc2
ð1 − rs=4aÞ
ð1þ rs=4aÞ

þ q
2

�
ϕcða; 0Þ þ

qrs
2a2ð1þ rs=4aÞ4

�
;

ð53Þ
where we have included the 1=2 to account for the self-
energy and the second line follows from combining the two
contributions to the electrostatic potential [see (37) and
(49)]. As shown in the previous section, the BI potential in
the limit approaching the charged particle reads

ϕcða; 0Þ ¼ ϕBI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − rs=4aÞ
ð1þ rs=4aÞ

s
:

When the particle is close to the horizon, we have
a → rs=4, and hence we can write a − b ¼ að1 − b=aÞ ¼
að1 − rs=4aÞð1þ rs=4aÞ ≈ 2ða − rs=4Þ. The proper dis-
tance from the particle’s center of mass to the horizon is [13]

l≡
Z

a

rs=4
dr

ffiffiffiffiffiffi
grr

p
≈ 4ða− rs=4Þ⇒

8>>><
>>>:

a≈ rs
4
ð1þ l

rs
Þ

b=a≈ 1− 2l=rs
1þ rs=4a≈ 2− l=rs
1− rs=4a≈ l=rs

:

Hence, the energy of the particle as measured from infinity is

E ¼ 1

4rs

�
2mc2lþ q2

�
1þ

ffiffiffiffiffiffiffiffi
2lrs
λ2BI

s ��
þO

�
l
M

�
2

; ð54Þ

wherewe have used the BI characteristic length scale λBI [see
(34)]. The energywill beminimumwhen the proper distance
from the particle to the horizon is equal to the particle’s radius
R. Therefore, to leading order, the energy has a lower bound
given by

E ≥
1

4rs

"
2mc2Rþ q2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffi
2Rrs
λ2BI

s !#
: ð55Þ

After the particle is absorbed, the BH acquires a net
charge q and increases its mass M to M þ E=c2.
The Reissner-Nordström BH area is5 A ¼ 4πr2þ ¼
πr2sð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4r2q=r2s

q
Þ2, where r2q ¼ Gq2=c4. To first

order, we can approximate the area by A ¼ 4πðr2s−
2Gq2=c4Þ þOð3Þ. Thus, the change in the horizon area
reads

δA ¼ 8πG
c4

ð2rsE − q2Þ þOð3Þ

≥ 4π

"
2Gm
c2

R −
Gq2

c4

 
1 −

ffiffiffiffiffiffiffiffiffiffiffi
2Rrs
λ2BI

s !#
: ð56Þ

The minimum change in the area is given by the equality
in the above equation. We can restore the Bekenstein and
Mayo result by dropping out the terms inversely propor-
tional to λBI. At first, this might seem a contradiction since
Maxwell electrodynamics is recovered in the limit λBI → 0.
However, one must remember that Maxwell’s electrody-
namics gives a divergent contribution to the self-energy
which is commonly absorbed in the mass term. In BI
electrodynamics, the nonlinearity of the theory already
gives a finite value for the self-energy that corresponds to
the above extra terms inversely proportional to λBI. Thus,
the divergent term with λBI can be absorbed in the
renormalized mass of the charged particle, and the change
of the area coincides with that calculated in [13],
namely δA ≥ 4πð2GmR=c2 − Gq2=c4Þ.
Note, however, there is a crucial difference between (50)

and (56) that allows one to associate the minimum change
in the area with an entropy bound. In the Maxwellian case,
the change in the area of the BH depends only on the
particle’s properties. Therefore, even assuming GSL, one
cannot promptly associate the quantity on the right-hand
side of (56) with the maximal value of the object’s entropy.
A straightforward solution is to use the trivial inequality

5Since β is expected to be large, the expression for the radius of
the external horizon of the Reissner-Nordström BH can be used to
calculate the change in A instead of that of the BI black hole; see
for instance [52].
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rs ≥ R to eliminate the dependence on the BH mass. We
exchange the strength of inequality (56) with a condition of
the change in the area of the BH that depends only on the
particle’s charge and mass. Thus, the maximal value of a
charged particle’s entropy satisfying the BI electrodynam-
ics is given by

SBI ≤
2πkB
ℏc

�
mc2Rþ q2

2

�
−1þ

ffiffiffi
2

p R
λBI

��
: ð57Þ

We recognize the first two terms on the right-hand side as the
bound previously established, hence BI electrodynamics
raises the upper limit of the entropy of a macroscopic body.
The characteristic length scale λBI is inversely proportional to
the parameter β, which is expected to be very large in order
for BI electrodynamics to satisfy laboratory constraints. The
size of the object has to be small compared to the BH radius
but can be much larger than the BI length; i.e., it is perfectly
conceivable that R ≫ λBI. Thus, instead of a small correc-
tion, the above extra term can greatly enlarge the entropy
bound of a macroscopic body. Our result suggests that
Bekenstein’s inequalities heavily depend on the dynamical
structure of the underlying theories.

VI. CONCLUSION

The electrostatic potential for a charged particle satisfy-
ing Einstein-Maxwell dynamics in Schwarzschild has been
derived long ago by Copson and then improved by Linet.
We have generalized their results by proving Theorem 1 of
Sec. III, which gives the electrostatic potential for an
arbitrary NLED in Schwarzschild spacetime. This is an
interesting result that allows for the study of the self-energy
of a charged particle and possibly for the radiation emitted
by an accelerated BI charged particle, a problem that we
intend to tackle in a future publication.
Bekenstein’s inequality was deduced within BH thermo-

dynamics and sets a bound on the entropy of a charged
macroscopic body. It is envisaged as a universal relation
between physical quantities and constants of nature; hence
it should hold for arbitrary physical systems. That and other
inequalities of the same kind are derived via a gedanken
experiment consisting of slowly lowering a small body
close to the BH horizon and then calculating the minimum
change of its area after the object’s assimilation.
In the present work, we reanalyzed the same gedanken

experiment but assumed that the charged object obeys BI
electrodynamics. As in flat spacetime, BI gives a finite
value for the electrostatic potential ϕðxÞ and the modulus of
the electric field EðxÞ. Thus, there is no need to regularize
the contribution coming from the particle’s self-energy and
the minimum change in the BH area gains a positive extra
term. As a consequence, the entropy bound is augmented
by a nonlinear contribution to the electromagnetic self-
energy. This result is a definite proof that Bekenstein’s
inequalities depend on the underlying dynamical theory

used to describe the physical system, and it suggests that,
contrary to previous claims (see for instance [53]), non-
linear interactions may violate Bekenstein’s entropy bound.
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APPENDIX: MATHEMATICAL EXPANSIONS

We shall analyze here the behavior and definition of
some of the functions in the limit approaching the charged
particle. The function μðr; θÞ defined in (11) is finite for any
r and θ ≠ 0. Furthermore, it never goes to zero outside the
horizon and diverges only for θ ¼ 0 and r → a. Outside the
horizon we need to expand it around the point (r ¼ a,
θ ¼ 0). Inside the horizon, μ goes to zero close to the point
(r ¼ b, θ ¼ 0), which also gives a divergence for the
potential ψ . Thus we need to expand the potential around
these two divergent points. Recall that

ψðr; θÞ ¼ Q
rμ

�
μþ rs=4a
1þ rs=4r

�
2

; Q ¼ qð1þ rs=4aÞ−2;

μðr; θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr − bÞ2 þ 2brð1 − cos θÞ
ðr − aÞ2 þ 2arð1 − cos θÞ

s
; b≡ r2s

16a
:

Let us start by calculating the relevant gradients. Direct
calculation gives

1

μ3
∂μ
∂r ¼ ða − bÞ ½ðr

2 þ abÞð1 − cos θÞ − ðr − aÞðr − bÞ�
ðr2 þ b2 − 2br cos θÞ2 ;

ðA1Þ

μ
∂μ
∂r ¼ ða − bÞ ½ðr

2 þ abÞð1 − cos θÞ − ðr − aÞðr − bÞ�
ðr2 þ a2 − 2ar cos θÞ2 ;

ðA2Þ

1

μ3
1

r
∂μ
∂θ ¼ ða − bÞðab − r2Þ sin θ

ðr2 þ b2 − 2br cos θÞ2 ; ðA3Þ

μ

r
∂μ
∂θ ¼ ða − bÞðab − r2Þ sin θ

ðr2 þ a2 − 2ar cos θÞ2 ; ðA4Þ

1

ψ

∂ψ
∂r ¼ −

ð1 − rs=4rÞ
rð1þ rs=4rÞ

þ
�
μ − rs=4a
μþ rs=4a

�
1

μ

∂μ
∂r ; ðA5Þ

1

ψ

∂ψ
∂θ ¼

�
μ − rs=4a
μþ rs=4a

�
1

μ

∂μ
∂θ : ðA6Þ

There are three important regions to be considered: close
to the charged particle, close to the image particle, and
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close to the horizon. The horizon works as a “conducting
sphere,” which means that the electrostatic field vanishes
and the potential has a constant value. Furthermore, the
gradient of the potential is normal to the horizon surface.
Indeed, taking the r → rs=4 limit we find

μ →
rs
4a

; ψ →
q

að1þ rs=4aÞ2
; g11 → −

1

16
;

g22 → −
1

r2s
;

∂μ
∂θ ¼ ∂ψ

∂θ → 0;

j∇μj → ða2 − r2s=16Þ
2a½2ða − rs=4Þ2 þ arsð1 − cos θÞ� ; j∇ψ j → 0:

ðA7Þ
An important consequence is that close to the horizon the
nonlinearities of the electrostatic potential are negligible
and the potential approaches Linet’s potential; i.e., in the
limit r → rs=4 we have ϕ ≈ ψ . We can also take the limit
of the charged particle approaching the horizon, i.e.,
a → rs=4, and hence b → rs=4 ¼ a. In this case μ → 1 and

lim
a→rs=4

ψðr; θÞ ¼ q
rð1þ rs=4rÞ2

: ðA8Þ

Close to the charged particle (r → a, θ → 0) the function
μ diverges; hence we can expand it around this singular
point as r ¼ aþ δ and ε ¼ 2ð1 − cos θÞ giving

μ2ðr; θÞ ¼ ða − bÞ2 þ 2δða − bÞ þ bεðaþ δÞ
δ2 þ aðaþ δÞε ; ðA9Þ

1

μ3
∂μ
∂r¼

ða−bÞ½−2δða−bÞ−2δ2þaðaþbÞεþ2aδεþδ2ε�
2½ða−bÞ2þ2δða−bÞþδ2þabεþbδε�2

¼−
δ

ða−bÞ2þ
3δ2

ða−bÞ3þ
aðaþbÞ
2ða−bÞ3 εþOðδ3;δεÞ;

ðA10Þ
1

μ3
∂μ
∂θ ¼ −

ða − bÞðaþ δÞ½ab − ðaþ δÞ2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð4 − εÞp

2½ða − bÞ2 þ 2δða − bÞ þ δ2 þ abεþ bδε�2

¼ −
a
ffiffiffi
ε

p
ða − bÞ2

�
a −

ðaþ bÞδ
ða − bÞ

�
þOðδ2 ffiffiffi

ε
p

; ε3=2Þ:

ðA11Þ
The derivatives of the potential read

1

ψ

∂ψ
∂r ¼ −

ð1 − rs=4rÞ
rð1þ rs=4rÞ

þ
�
μ − rs=4a
μþ rs=4a

�
1

μ

∂μ
∂r

¼ ∂
∂r log

�
μ

rð1þ rs=4rÞ2
�
þOðδ; εÞ; ðA12Þ

1

ψ

∂ψ
∂θ ¼

�
μ − rs=4a
μþ rs=4a

�
1

μ

∂μ
∂θ

¼ ∂
∂θ log μþOðδ; εÞ: ðA13Þ

Therefore, in the limit approaching the real charged
particle we have ψ ≈ Vc and

Vc

μ
≈

q
rð1þ rs=4aÞ4

; j∇μj ≈ μ2ða − bÞ−1
ð1þ rs=4aÞ2

; ðA14Þ

∇Vc ≈
Vc

μ
∇μ ⇒ j∇Vcj ≈ β

�
Vc

Σ

�
2

with Σ2 ≡ βqð1 − b=aÞ
ð1þ rs=4aÞ2

: ðA15Þ

We can do a similar analysis close to the image particle
where the function μ goes to zero. Approaching the image
particle (r → b, θ → 0) we can expand the functions using
r ¼ bþ δ and ε ¼ 2ð1 − cos θÞ. Thus we have

μ2ðr; θÞ ¼ δ2 þ bðbþ δÞε
ða − bÞ2 − 2δða − bÞ þ δ2 þ abε

; ðA16Þ

μ
∂μ
∂r ¼ ða − bÞ ½ðbþ δÞ2 þ ab�ε − 2δðδþ b − aÞ

2½ðδþ b − aÞ2 þ aðδþ bÞε�2

¼ δ

ða − bÞ2 þ
3δ2

ða − bÞ3 þ
bðaþ bÞ
2ða − bÞ3 εþOðδ3; δεÞ;

ðA17Þ

μ
∂μ
∂θ ¼ ða − bÞ

2

½ab − ðbþ δÞ2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð4 − εÞp

2½ðδþ b − aÞ2 þ aðδþ bÞε�2

¼ b
ffiffiffi
ε

p
ða − bÞ2

�
bþ ðaþ bÞδ

ða − bÞ
�
þOðδ2 ffiffiffi

ε
p

; ε3=2Þ:

ðA18Þ

Similar to (A15), close to the image particle (μ → 0), we
have

μVc ≈
qðrs=4aÞ4

rð1þ rs=4aÞ4
; j∇μj ≈ ða − bÞ−1

ð1þ rs=4bÞ2
; ðA19Þ

∇Vc ≈ −
Vc

μ
∇μ ⇒ j∇Vcj ≈ β

�
Vc

Σ

�
2

with Σ2 ≡ βqð1 − b=aÞ
ð1þ rs=4aÞ2

: ðA20Þ
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