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In this paper we construct a bounce model that mimics the Starobinsky inflationary model. Our
construction relies on Wands’ duality, which shows that the Mukhanov-Sasaki equation has a symmetry
transformation by changing appropriately its time-dependent mass term. One of the advantages of this
constructive method is that one can control every contribution to the primordial power spectrum and check
how far we can emulate a given primordial model with a different scenario. We study the evolution of scalar
and tensor perturbations through a quantum bounce within the loop quantum cosmology framework and
show that mapping the Starobinsky inflation into a quasimatter bounce gives the correct relation between
the scalar spectral index ns − 1 and the tensor-to-scalar ratio r.
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I. INTRODUCTION

The Planck collaboration [1–3] produced the latest and
strongest constraints on the parameters of the standard
cosmological model. Their results confirmed previous
experiments, such as WMAP [4,5], showing that the
6-parameter ΛCDM model continues to be the best fit
model for the cosmic microwave background (CMB) data
at high redshift. In addition, low redshift experiments also
point to this concordance model as the best phenomenology
to describe the evolution of the universe. Thus, one of the
theoretical and observational challenges of present day
cosmology is to push our knowledge further back in time
into the primordial universe.
Inflation is certainly the most popular model to describe

the primordial universe and has become the paradigm
dynamics for this era. Inflation alleviates some of the
standard model problems such as the flatness problem and
provides a consistent origin for the primordial cosmological
perturbations [6–10]. However, there are other competitive
models that also solve the same problems of the standard
model and have a good fit to the available observational
data such as bounce models [11–14], pre-big-bang [15,16],
ekpyrotic [17–19], and string-inspired models [20,21].
In particular, bounce models figure among the simplest

extensions of the standard model. Evidently, in order to
produce a bounce one has to violate the null energy
condition or to appeal to modified gravity theories.
But similarly to inflation, one can also use bounce models

as a pure phenomenological scenario. Furthermore, a close
analysis shows that the theoretical support for inflation is as
good as for bounce models. Therefore, the current status is
that there is no reason to privilege one over the other.
Future experiments will allow us to probe deeper into

primordial universe physics by measuring the CMB
B-mode polarization, primordial non-Gaussianities, and
the spectrum of primordial gravitational waves [22–25].
This new data can break the above-mentioned degeneracy
between different primordial universe scenarios. In this
context, an important theoretical challenge is to make
concrete predictions that would allow us to discriminate
between these models.
The aim of the present paper is to construct a bounce

model that mimics the inflationary model that best fits the
observations, namely Starobinsky inflation. Our construc-
tion relies on Wands’ duality [26–28], which shows that
the Mukhanov-Sasaki equation [29,30] displays a sym-
metry transformation by changing appropriately its time-
dependent mass term. One of the advantages of this
construction is that one can control every contribution
to the primordial power spectrum and check how far we
can emulate a given primordial model with a different
scenario. Thus, the limits of this construction indicate how
one can distinguish different primordial universe models.
In particular, we show that a quasimatter bounce can
reproduce the same dependence of the scalar spectral
index ns and the tensor-to-scalar ratio r with the slow-roll
parameters as happens in Starobinsky inflation but there
is a numerical factor that encodes the physical different
between these two models.
The paper is organized as follows. Section II briefly review

the basic features of linear cosmological perturbation theory
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both in GR and modified theories of gravity and highlight
some important features of Starobinsky’s inflation. In
Sec. III we introduce Wands’ duality and use it to construct
the appropriate collapsing phase prior to the bounce.
Section IV is devoted to the bounce phase, which is
realized by quantum effects within the loop quantum
cosmology framework and in Sec. V we conclude with
some final remarks.

II. COSMOLOGICAL PERTURBATIONS

In this paper, we are interested in linear cosmological
perturbations and how they can be connected with cos-
mological observations. There are different primordial
scenarios and for each of them the cosmological perturba-
tions have specific developments. The original formulation
of Starobinsky inflation [31] is a modified theory of gravity
[32–34] and hence has to be treat differently from the
conventional single field inflationary models1 in general
relativity (GR). Notwithstanding, the dynamic equations
for the first order perturbations are formally very similar. In
this section we briefly summarize the theory of cosmo-
logical perturbations for a scalar field in GR and for fðRÞ
theories.

A. Cosmological perturbations in general relativity

Cosmological perturbation theory shows that at linear
order each type of tensor mode evolves independently and
hence we can treat scalar and tensor perturbations sepa-
rately. Let us consider GR minimally coupled with a scalar
field in the comoving gauge. Expanding the action up to
second order in the curvature perturbation R [29] gives

Sð2Þ ¼
M2

Pl

2

Z
dtdx3a3

_φ2

H2

�
_R2 −

ð∂iRÞ2
a2

�
; ð1Þ

where a dot means derivative with respect to cosmic time
and MPl is the reduced Planck mass.2 Defining the
Mukhanov-Sasaki variable vðt; x⃗Þ and the function zsðtÞ as

v≡ zsR; zs ≡ a
H

ffiffiffiffiffiffiffiffiffiffiffiffi
ρþ p

p ¼ a
_φ

H
; ð2Þ

the action (1) simplifies to

Sð2Þ ¼
M2

Pl

2

Z
dηdx3

�
v02 − ð∂ivÞ2 þ

z00s
zs
v2
�
; ð3Þ

where now the prime means time derivative with respect to
conformal time given by η ¼ R

a−1dt. Variation of the
above action with respect to vðt; x⃗Þ gives the Mukhanov-
Sasaki equation. Using a Fourier decomposition, the mode
function vkðηÞ satisfies the dynamic equation

v00k þ ðk2 − μ2sÞvk ¼ 0; with μ2s ¼
z00s
zs
: ð4Þ

Equation (4) is formally identical to a parametric
harmonic oscillator with mass term μsðηÞ. Its time depend-
ence comes from the background dynamics through the
function zsðηÞ. Strictly speaking, Wands’ duality [26] is a
variable transformation that leaves this mass term invariant.
The tensor sector of the second order action reads

Sð2Þ ¼
M2

Pl

8

Z
dηdx3a2½ðh0ijÞ2 − ð∂lhijÞ2�; ð5Þ

where hijðη; x⃗Þ is the tensor part of the metric perturbation,
i.e., a gauge invariant quantity. Using again a Fourier
decomposition for each polarization mode hλkðηÞ and
defining its associated Mukhanov variable

vλk ¼ aMPl

2
hλk; ð6Þ

the resulting Mukhanov-Sasaki equation for each polari-
zation is

vλk
00 þ ðk2 − μ2t Þvλk ¼ 0; with μ2t ¼

a00

a
: ð7Þ

It is worth recalling that for a quasidust domination
where H2 ≈ _φ2 ≈ constant, both mass term are equal
μ2s ¼ μ2t . As a result, the scalar and tensor modes have
identical power spectrum k-dependence.

B. Cosmological perturbations in f ðRÞ theories
Apart from the degrees of freedom (d.o.f.) already

present in GR, fðRÞ theories have an extra scalar d.o.f.
[32,35]. By their formal equivalence with massless scalar-
tensor theories, we know that this extra d.o.f. propagates
with the speed of light. At the background level, fðRÞ
theories are observationally indistinguishable from the
ΛCDM model. It is only in the perturbative level that this
two frameworks can be put to the test.
Considering a FLRW universe, the background value of

the Ricci scalar depends only on time. Contrary to GR
where the mechanism to generate inflation resides in the
matter field (commonly a scalar field with appropriate
potential), in fðRÞ models of inflation, it is the nonlinearity
of the Ricci scalar that guides the evolution without any

1The fact that Jordan frame description of Starobinsky in-
flation is formally equivalent to a single field inflationary model
in GR is a nontrivial exception.

2The reduced Planck mass absorbs the
ffiffiffiffiffi
8π

p
in its definition,

hence MPl ¼ mpl=
ffiffiffiffiffi
8π

p ¼ 2.44× 1018 GeV ¼ 4.35× 10−6 g and
we use throughout the paper ℏ ¼ c ¼ 1.
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scalar field. The extra d.o.f. is encoded in F ¼ ∂f=∂R,
which can be decomposed as Fðη; x⃗Þ ¼ F̄ðηÞ þ δFðη; x⃗Þ,
where F̄ðηÞ is the background and δFðη; x⃗Þ its perturbation.
Expanding the action up to second order inR [32–34] gives

Sð2Þ ¼
1

2

Z
dηd3xa2Qs½R02 − ð∂iRÞ2�; ð8Þ

Qs ¼ 3M2
Pl

F02=2F
½Hþ ðF0

2FÞ�2
; ð9Þ

where H≡ a0=a is the Hubble factor in conformal time.
The function Qs plays a similar role as _φ2=H2 in Eq. (1).
Therefore, it is straightforward to vary the above action and
find

v00k þ ðk2 − μ2fsÞvk ¼ 0; vk ¼ zfsRk; ð10Þ

μ2fs ¼
zfs00

zfs
; zfs ¼ a

ffiffiffiffiffiffi
Qs

p
: ð11Þ

Similar to GR, in this scenario the perturbation has
quantum origin. Modified theories of gravity follows the
same canonical quantization procedure and impose the
same Bunch-Davies initial vacuum state for the variable v.
The scalar power spectrum is defined as

PR ¼ k3

2π2
jRj2 ¼ k3

2π2
jvj2
a2Qs

: ð12Þ

The tensor perturbation expansion is completely analo-
gous to GR since there is no extra tensor d.o.f. Therefore,
the definition of the two polarizations remain identical but
there is an additional F term multiplying the second order
action that now reads

Sð2Þ ¼
M2

Pl

8

Z
dηdx3a2F½ðh0ijÞ2 − ð∂lhijÞ2�: ð13Þ

The extra F term is absorbed in the definition of the mass
term. Variation of the action gives

vλk
00 þ ðk2 − μ2ftÞvλk ¼ 0; vλk ¼ MPl

2
zfthλk; ð14Þ

μ2ft ¼
z00ft
zft

; zft ¼ a
ffiffiffiffi
F

p
: ð15Þ

Taking into account the polarization states, the spectrum of
tensor perturbations is given by

PT ¼ 2 ×
k3

2π2
jhj2 ¼ 4k3

π2M2
Pl

jvj2
a2F

: ð16Þ

The dynamic equation for the scalar and tensor linear
perturbations in GR and fðRÞ theories are formally
identical. The difference between Eqs. (4), (7), (10), and
(14) are encoded in the definition of the Mukhanov-Sasaki
variables and their mass terms. During reheating and the
bounce phase it is expected that the dynamics is modified
by new phenomena characteristic of these periods. Indeed,
loop quantum cosmology corrections modify the formal
structure of the dynamic equation depending on an energy
scale parameter ρc. We recover the Mukhanov-Sasaki
dynamics in the limit ρc → ∞.

C. Starobinsky inflation

Assuming the cold inflationary paradigm, the model that
best fits the observation data is the Starobinsky inflation.
This model can be described as a single field inflation [29]
(Einstein frame) or as a solution of a modified theory of
gravity [31] (Jordan frame). We shall follow its original
formulation and describe it in terms of a fðRÞ gravity using
the metric formulation.3 An exact vacuum de Sitter expan-
sion is a solution of the dynamic equations only if fðRÞ ¼
c0R2 [32]. The Starobinsky inflation proposes a theory with
fðRÞ ¼ Rþ c0R2, and hence, the gravitational sector of the
action reads

S ¼ M2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
Rþ R2

6M2

�
; ð17Þ

where M is a mass parameter that gives the energy scale
where the dynamics deviates from GR. During the infla-
tionary phase, the scale factor in leading order in the slow-
roll parameters can be approximated by [29,31]

aðtÞ ¼ a0ðts − tÞ1=2 exp
�
−
M2

12
ðts − tÞ2

�
: ð18Þ

Calculating the next order correction [38] gives

aðtÞ ¼ a0ðts − tÞ−1=6 exp
�
−
M2

12
ðts − tÞ2

�
: ð19Þ

Note that the difference between these two orders is just
the power of the polynomial. Since the evolution is
dominated by the exponential, this modification is very
small. The adequate definition of slow-roll parameters in
fðRÞ theories is slightly different than in GR. Following the
nomenclature of [32] we have

3Inflationary models work on both frames [36] but physical
quantities are well defined only in Jordan frame [32]. There is an
extensive discussion on the validity of the two frames in the
literature (see [37] for more details).
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ϵ1 ¼ −
_H
H2

; ϵ3 ¼
_F

2HF
; ϵ4 ¼

F̈

H _F
: ð20Þ

Let us calculate these parameters for a scale factor of the form

aðtÞ ¼ a0ðts − tÞp exp
�
−
M2

12
ðts − tÞ2

�
: ð21Þ

Straightforward calculation gives

ϵ1 ¼
6

M2ðts − tÞ2
�
1þ 6p

M2ðts − tÞ2
��

1 −
6p

M2ðts − tÞ2
�

−2
¼ 6

M2ðts − tÞ2 þOðM−4Þ; ð22Þ

ϵ3 ¼ −
M2

6H2

�
1þ p

Hðts − tÞ
�
1þ 3ð1 − 2pÞ

M2ðts − tÞ2
���

1þ M2

6H2

�
1 −

3p
M2ðts − tÞ2

��−1
¼ −

6

M2ðts − tÞ2 þOðM−4Þ; ð23Þ

ϵ4 ¼ −
M2

6H2

�
1 −

54pð1 − 2pÞ
M4ðts − tÞ4

��
1þ p

Hðts − tÞ
�
1þ 3ð1 − 2pÞ

M2ðts − tÞ2
��

−1
¼ −

6

M2ðts − tÞ2 þOðM−4Þ: ð24Þ

All three slow-roll parameters are equal in leading order
and do not depend on the power p of the polynomial in the
scale factor Eq. (21). Any correction from a different p is at
least of order OðM−4Þ.
During a quasi–de Sitter expansion, the general solution

of Eqs. (10) and (14) can be written in terms of Hankel
functions of order γ, which depends on the slow-roll
parameters. Assuming a Bunch-Davies initial state and
following the standard matching procedure at horizon
crossing one can show that

vkðηÞ ¼
ffiffiffiffiffiffiffiffi
πjηjp
2

eið1þ2γÞπ=4Hð1Þ
γ ðkjηjÞ: ð25Þ

The evolution of the scalar perturbation gives [32]

PR ≈
1

Qs

�
H
2π

�
2
�jkηcj

2

�
nR−1

;

nR − 1 ≈ −4ϵ1 þ 2ϵ3 − 2ϵ4; ð26Þ

where ηc is the time when the wave-number k crosses the
horizon. The tensor perturbation follows a similar reason-
ing, mutatis mutandis the evolution, and gives

PT ≈
2

π2F

�
H
MPl

�
2
�jkηcj

2

�
nT
; nT ≈−2ϵ1−2ϵ3: ð27Þ

Finally, the tensor-to-scalar ratio reads

r≡ PT

PR
≈

8Qs

M2
PlF

≈ 48ϵ23: ð28Þ

It is convenient to express all observables in terms of
the number of e-folds. By definition, the total number of
e-folds is N ¼ log af=ai where ti and tf are respectively,
the onset and end of inflation, i.e.,

N ≈
M2

12
ðts − tiÞ2 ≈

1

2ϵ1
≈ −

1

2ϵ3
: ð29Þ

Combining these results, the spectral index and the
tensor-to-scalar ration read

nR − 1 ≃ −4ϵ1 ¼ −
2

N
; r ≃ 48ϵ23 ≃

12

N2
: ð30Þ

The Planck 2018 release [2] gives a spectral index of
nR ¼ 0.9649� 0.0042 at 68% confidence level. This
implies that 50 < N < 65. We can recast the spectral index
and the tensor-to-scalar ratio as

nR − 1 ≈ −3; 51 × 10−2
�
N
57

�
−1
; ð31Þ

r ≈ 3; 69 × 10−3
�
N
57

�
−2
: ð32Þ

The Planck 95% confidence level upper limit on the
tensor-to-scalar ratio is r0.002 < 0.10. This value is tight-
ened by a combining analysis with the BICEP2/Keck Array
BK14 data that brings the tensor-to-scalar value down to
r0.002 < 0.064. The predicted value for the Starobinsky
inflation Eq. (32) is safely within the observational
measurements.

III. MIMICKING STAROBINSKY INFLATION

The Starobinsky model describes a universe with a
violent quasi–de Sitter expansion. This primordial universe
model has several known advantages that we simply
summarize here by stating that it is the inflationary model
that best fits the data. It can be considered as the archetype
of inflationary models. Thus, in order to be considered as
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competitive, any primordial universe model must fit the
data as well as the Starobinsky model.
Our goal now is to construct a bounce model that

encodes the key features of the Starobinsky model in the
first perturbative order. The suitable mathematical tool for
this is Wands’ duality [26]. This duality can be understood
as a symmetry transformation that leaves the mass term of
the Mukhanov-Sasaki equation invariant.
Every linear order perturbation equation described in

Sec. II has the same structure. They are parametric
oscillators with time dependent mass terms. The dynamics
of the background enters only on the mass μ2α ≡ z00α=zα
where the index α designates if we are considering a scalar
or a tensor perturbation and if the framework is the vacuum
fðRÞ theory or the scalar field minimally coupled in GR.
Any two distinct backgrounds composing the same mass
term μα will produce the same evolution for the linear order
perturbation. In order to implement this idea, consider a
given function zαðηÞ. We can define a new function

z̃αðηÞ≡ c0zαðηÞ
Z

η

η�

dx
z2αðxÞ

; ð33Þ

with c0 and η� two arbitrary constants. It can be straight-
forwardly verified that

μ̃2αðηÞ≡ z̃00α
z̃α

¼ z00α
zα

¼ μ2αðηÞ: ð34Þ

The arbitrary constant c0 only rescales the function zα
but has no observational effect, whereas η� sets a family of
one parameter solutions. Let us consider a specific scenario
to exemplify how this duality works. Scalar perturbations
with a minimally coupled scalar field in GR are described
by Eqs. (2) and (4). An exact de Sitter universe has _φ=H
constant, hence, zs ∝ a ∝ −1=η. Using transformation
Eq. (33) we find that z̃s ¼ η2, which describes a dust
dominated universe. Therefore, an expanding de Sitter
universe produces the same mass term for the linear scalar
perturbation as a contracting dust dominated universe. As a
consequence, both have the same spectrum of solution for
their Mukhanov-Sasaki variable. It is not a coincidence that
matter-bounce scenarios produce scale-invariant power
spectrum [28,39,40].
Generically, a universe dominated by an adiabatic perfect

fluid with equation of state given by p ¼ ωρ (with constant
ω) has a scale factor with a power law in cosmic time of the
form aðtÞ ∝ t2=3ð1þωÞ. In terms of conformal time, the scale
factor evolves as aðηÞ ∝ η

1
2
−ν with ν ¼ 3

2
− 3ð1þωÞ

1þ3ω . In GR,
the function zs ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffi
ρþ p

p
=H ∝ a and apart from a con-

stant factor it coincides with the zt. Thus, both mass terms
are given by μ2s ¼ μ2t ¼ a00=a. A radiation fluid has zero
mass term since a ∝ η and there is no possible duality to be
performed. For all other fluids, the mass term and the power
spectrum associated with this evolution are given by

μ2 ¼ ν2 − 1=4
η2

; ν ¼ 3

2
−
3ð1þ ωÞ
1þ 3ω

; ð35Þ

Pu ¼
C2ðjνjÞk2ð−kηÞ1−2jνj

4π2
; ð36Þ

where C2ðjνjÞ is a numeric coefficient. Note that the above
power spectrum is invariant under ν → −ν, which can be
translated into a transformation of the fluid’s equation of
state as (see Fig. 1)

ω → ω̃ ¼ 1þ ω

−1þ 3ω
: ð37Þ

This transformation has two fixed points at ω ¼ − 1
3

and 1. For these fixed points, the evolution of the linear
perturbations is univocally determined by the background
dynamics. For any other value, there are two background
dynamics associated with the same perturbed dynamics.
Indeed, it is straightforward to verify that two subsequent
transformations return to the same equation of state, i.e.,
˜̃ω ¼ ω. Therefore, in general, there is a pair of adiabatic
perfect fluid background dynamics associated with the
same evolution for the linear perturbations. Even though de
Sitter evolution is not a power law for the scale factor, its
duality transformation is still described by Eq. (37). As
already mentioned before, a de Sitter universe, which has
ω ¼ −1 is mapped into a dust dominated universe ω ¼ 0.
Note, however, that the duality transformation does not

specify the theoretical framework. Equation (33) maps two
distinct zα functions but does not restrict to which scenario
(matter field and gravity theory) they correspond to. We can
map, for instance, a scalar perturbation in GR into another
GR dynamics, zs → z̃s, but we can also map a scalar
perturbation in GR into a fðRÞ scenario with the adequate
definition of zfs, i.e., zs → z̃fs.
In the same manner we can map a de Sitter expanding

universe into a contracting matter-dominated universe. We
shall construct a contracting universe that shares the same
scalar mode mass term of the Starobinsky inflation, though,
there is one pitfall. Wands’ duality is defined using the
conformal time while Starobinsky inflation has an explic-
itly expression for the scale factor in terms of the cosmic
time. The conventional scheme would be to use the
definition of conformal time to invert aðtÞ into aðηÞ but
this relation cannot be analytically inverted for Eq. (19). In
order to circumvent this issue, we shall work with a slight
modification of Starobinsky’s scale factor. As has been
argued above, the power of the polynomial in the scale
factor is subdominant up to order OðM−4Þ. We shall use
this freedom to define a scale factor that allows us to invert
the relation and find aðηÞ. The appropriate definition of the
scale factor which shall be used henceforward is
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aðtÞ ¼ a0ðts − tÞ−1 exp
�
−
M2

12
ðts − tÞ2

�
: ð38Þ

The associated conformal time is

η ¼
Z

dt
aðtÞ ¼

−6
a0M2

exp

�
M2

12
ðts − tÞ2

�
: ð39Þ

Thus, the scale factor reads

aðηÞ ¼ −
ffiffiffi
3

p

Mη

1

ln1=2ðη̄Þ ; ð40Þ

where we have defined η̄≡ −a0M2η=6, which is a positive
quantity. A pure de Sitter universe has a ∝ −1=η, hence, in
Starobinsky inflation, the deviation from de Sitter comes
from the logðη̄Þ term. Since M is very large, logðη̄Þ ¼
logða0M2=6Þ þ logð−ηÞ ≈ logða0M2=6Þ, showing that
Eq. (40) indeed describes a quasi–de Sitter evolution.
Straightforward calculation also gives the Hubble factor
and the slow-roll parameters respectively as

HðηÞ ¼ −
1

η

�
1þ 1

2 lnðη̄Þ
�
; ð41Þ

ϵ1 ¼ −ϵ3 ¼ −ϵ4 ¼
1

2 lnðη̄Þ
�
1þO

�
1

lnðη̄Þ
��

: ð42Þ

Recalling Eqs. (9) and (11) we can calculate the zs
function for a scalar perturbation and its associated mass
term. Using their definitions we have in leading order

zsðηÞ ¼ −
ffiffiffi
6

p

η

1

lnðη̄Þ
�
1þO

�
1

lnðη̄Þ
��

; ð43Þ

μ2s ¼
2

η2

�
1þ 3

2

1

lnðη̄Þ þO
�

1

ln2ðη̄Þ
��

: ð44Þ

Expression Eq. (43) can be used to construct a con-
tracting zBs function that further will be associated with a
bounce model. The duality relation Eq. (33) gives

zBs ðηÞ ¼ c0:zsðηÞ
Z

η

η�

dη0

zsðη0Þ2

¼ c0
3

ffiffiffi
6

p η2 lnðη̄Þ
�
1 −

2

3 lnðη̄Þ þ
2

9ln2ðη̄Þ
�
þ Cðη�Þ

¼ C1η
2 lnðη̄Þ

�
1þO

�
1

lnðη̄Þ
��

; ð45Þ

where C1 is an arbitrary constant. Is is straightforward to
check that zBs and zs produce the same mass term μs up to
Oðln−1ðη̄ÞÞ. Once we have the function zBs , we must specify
within which scenario the universe is evolving. This extra

step is necessary to associate zBs with a specific background
dynamics. For the purpose of the present analysis, we
choose to immerse this function in a GR contracting
solution with the matter content described by a minimally
coupled scalar field, hence we have zBs ¼ aB _φ=H.
As argued before, in GR, a quasi–de Sitter inflation is

mapped through Wands’ duality into a quasimatter domi-
nated universe. Therefore, we expect that aB should
describe an almost matter dominated universe where

_φ2 ≃ 2V ⇒ H2 ≃
2V
3M2

Pl

⇒
_φ

MPl
≃

ffiffiffi
3

p
H: ð46Þ

As a result, the scale factor aB should be proportional to
the function zBs . Thus, we have

aBðηÞ ¼ aB0η2 lnðη̄Þ
�
1 −

2

3 lnðη̄Þ þO
�

1

ln2ðη̄Þ
��

; ð47Þ

H ¼ 2

η

�
1þ 1

2 lnðη̄Þ þO
�

1

ln2ðη̄Þ
��

: ð48Þ

In order to find the time dependence of the scalar field
and its potential, we can use the exact expression

φ02 ¼ 2ðH2 −H0Þ; ð49Þ

V ¼ ð2H2 þH0Þ
a2

; ð50Þ

which is valid for a scalar field with arbitrary potential V.
The approximation Eq. (46) is sufficient to argue that _φ=H
is constant, while Eq. (49) gives the correct numerical
factor for φ0. Using Eqs. (49) and (50), the time dependence
of the potential and of the scalar field read

VðηÞ ¼ 6

a2B0

1

η6log2ðη̄Þ
�
1þ 15

6 lnðη̄Þ þO
�

1

ln2ðη̄Þ
��

; ð51Þ

φ ¼ −
ffiffiffiffiffi
12

p
ln ½η̄ ln5=12ðη̄Þ� þO

�
1

lnðη̄Þ
�
: ð52Þ

As a consistency check we can calculate the effective
equation of state given by the ratio of pressure and energy
density, i.e., ω≡ p=ρ. Using the above equations we find

ω ¼ φ02 − 2a2V
φ02 þ 2a2V

¼ −
1

6 lnðη̄Þ þO
�

1

ln2
ðη̄Þ

�
: ð53Þ

For η̄≳ 104, the equation of state is close to zero with
less than 2%. Recall that η̄ ¼ −a0M2η=6 and the mass
parameter is expected to be very large, hence relatively
small values of conformal time should already satisfy this
condition. It is worth noticing that ω≲ 0. This is a crucial
property to guarantee a slight redshift in the almost scale
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invariant power spectrum. A positive equation of state
would produce a blueshift that contradicts current
observations.
Finally, we can combine the above equations to find the

potential in terms of the scalar field VðφÞ. After some
simple algebra we find

VðφÞ ¼ V0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ=φ�

p
e

ffiffi
3

p
φ; ð54Þ

with V0 and φ� two constant parameters that completely
specify the potential. A dust fluid can be described by a
scalar field with potential exp ½ ffiffiffi

3
p

φ�, hence it is not
surprising that VðφÞ has this kind of exponential depend-
ence. The novelty is the square root correction, which is

intrinsically related to the polynomial correction in the
scale factor of Starobinsky inflation. We can again check
our construction plotting the phase portrait associated with
the potential Eq. (54). Figure 2 shows the trajectories of the
scalar field in the ðφ; _φÞ plane. For relative large values of φ
the velocity _φ rapidly goes to zero, which is consistent with
a dust fluid given the exponential dependence of the
potential VðφÞ.

IV. CROSSING THE BOUNCE

Bounce models are a subclass of nonsingular models that
commonly have a single contracting phase followed by an
expanding phase. By construction, the contracting phase is
smoothly connected to the expanding phase, hence the
universe is eternal and free of spacetime singularities.
However, this does not mean that one should oppose
bounce and inflationary models. Even though a pure
inflationary mechanism cannot avoid the initial singularity
[41,42], a nonsingular model can accommodate an infla-
tionary phase [43,44]. However, bounce models are fre-
quently understood as alternatives to inflation.
There are viable bounce models that are consistent with

almost scale-invariant power spectrum and small tensor-to-
scalar ratio [45–51]. In these models, the dynamic through
the bounce influences the observable effects. For instance,
the mode mixing of scalar perturbations across the bounce
is responsible for producing the almost scale-invariant
power spectrum. Therefore, it seems reasonable that in
order to consider bounce models as a physically viable
scenario for the primordial universe, one should recognize
them as alternatives to inflation and not just as a comple-
mentary phase prior to it.
Bounce and inflation have completely distinct back-

ground dynamics. Besides the different concerning the
singularity problem, at the background level, inflation and
bounce models have different shortcomings and theoretical
challenges of their own [52–55]. Notwithstanding, at first
order perturbation, bounce and inflation are formally very
similar. Indeed, Wands’ duality described in Sec. III is one
manifestation of the mathematical similarity between these
two scenarios.
Generically, the dynamics of linear perturbations νk are

described by a parametric oscillator equation like Eq. (4)
where the time-dependent mass term μα encodes the
background dynamics. In each case we have a specific
definition for νk and μα but the framework is almost
identical. Let us compare some of their features.
In both scenarios, even though for different physical

reasons, the initial conditions are set in the most (possible)
remote past and have a quantum vacuum fluctuation origin.
In inflationary models, we have a quasi–de Sitter expan-
sion, which makes the physical length of interest for present
cosmology much smaller than the curvature scale. As a
consequence, the perturbations are not influenced by the
expansion and the initial state is set as a Minkowski

FIG. 1. Wands’ duality maps an equation of state ω into ω̃.
There are only two fixed points that mapped into itself given by
ω ¼ − 1

3
and 1. The solid lines represent the map according to

Eq. (37). The dots mark conventional equation of states in
cosmology such as ω ¼ −1;− 1

3
; 0; 1.

FIG. 2. Phase portrait of _φ versus φ for the potential Eq. (54)
using the values V0 ¼ φ� ¼ 1. One can see that the dynamics
generated by this reconstructed potential is very similar to the
exact dust (p ¼ 0) potential showing that the square root
deformation of the exponential potential works as a small
correction.
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vacuum state. In a bounce model, the initial conditions are
given in the far past much before the bounce phase. The
universe is immense and with negligible curvature, hence,
the initial state is a Bunch-Davies vacuum.
As the universe evolves the relation between the physical

length and the Hubble length changes. In both scenarios
the ratio between these two lengths increases. In terms of
the perturbed dynamic equation, this means that with the
background evolution, the mass term increases compared to
the wave number until they become comparable in magni-
tude. This moment specifies the crossing from outside to
inside the potential for the perturbations. The mass term
continues to grow until it reaches a maximum that typically
locates the bounce or the reheating period for inflationary
models. Then the potential starts to decrease until its value
becomes again comparable to the wave number character-
izing the crossing outside the potential (inside the Hubble
length).4 Thereupon, both scenarios are connected to the
FLRW radiation epoch and the dynamics follows the
standard model.
It is evident from the above description that the violent

quasi–de Sitter expansion phase is related to the long
contracting phase of bounce models. Moreover, the reheat-
ing phase of inflation should be compare to the physical
processes during the bounce phase. Thus, it is not surpris-
ing that the reheating and the bounce are the two most
speculative periods of the evolution.
Inflationary models often overlook the details of the

reheating processes. In a certain sense, this is due to the
assumption that whatever physical process taking place in
this period should only transfer energy into the matter fields
and not significantly modify the other physical quantities
such as the almost scale-invariant power spectrum or the
tensor-to-scalar ratio.5 This idea has support on Weinberg’s
theorem [56] that states that, in the large wavelength limit,
the field equations for the cosmological perturbations in the
Newtonian gauge always have an adiabatic solution withR
constant and nonzero in all eras.
In contrast, bounce models cannot avoid examining the

bounce phase since one must define the physical mecha-
nism that produces the bounce. In addition, the physics of
the bounce remains encoded in the spectrum of primordial
perturbations. As we will show in the following, the
relation between the scalar spectral index and the tensor-
to-scalar ratio depends on the physics of the bounce. The
observational data available are not yet sensitive enough to
discriminate between different bounce mechanisms but as

in the case of non-Gaussianities, future experiments might
allow us to probe the physics of the bounce.
In order to connect the contracting phase of the model

constructed in the last section to the CMB observables, in
the following sections we shall describe the bounce as a
quantum gravity effect using the loop quantum cosmology
(LQC) framework [39,57]. There are other appealing
frameworks such as Wheeler-DeWitt [58–63] or string
cosmology [64,65]. However, LQC has analytical bounce
solutions for a scalar field mimicking a perfect fluid, hence,
from a technical point of view, it is the most direct
description to accommodate a previous Starobinsky-like
contracting phase.
Loop quantum gravity (LQG) is a nonperturbative,

background independent quantum theory of gravity. It is
based on a reformulation of GR in terms of the Ashtekar-
Barbero variables. The classical variables promoted to
operators are the holonomies of the Ashtekar connection
and the fluxes of the densitized triads. One important
kinematical result of this quantization procedure is the
discretization of spacetime, which in turn establishes a
minimum of length, area and volume. LQC relies on using
loop quantization techniques to quantize the holonomies
and the fluxes of homogeneous and isotropic universes. It is
not a full quantum gravity theory but an effective approach
that hopefully captures the essential features of LQG in a
cosmological scenario (for further details see [47,66–68]).
The cosmological dynamics can be described by a phe-
nomenological Hamiltonian. Given a flat FLRWmetric, the
dynamics with respect to cosmic time reads

H2 ¼ M−2
Pl

3
ρ

�
1 −

ρ

ρc

�
; ð55Þ

_H ¼ −
M−2

Pl

6
ðρþ pÞ

�
1 −

2ρ

ρc

�
; ð56Þ

_ρþ 3Hðρþ pÞ ¼ 0; ð57Þ

where ρc is a critical energy density that establishes the
energy scale where quantum corrections are important.6

This dynamic system has analytical bounce solutions for
perfect fluids p ¼ ωρ with constant ω [39,69,70].
Furthermore, we can use a scalar field with exponential
potentials to model the perfect fluid. Indeed, using the fact
that

ρ ¼ 1

2
_φ2 þ VðφÞ; p ¼ 1

2
_φ2 − VðφÞ;4Note that the description in terms of the potential for the

perturbation (the time dependent mass term) is the opposite as
compared to the relative size of the physical and Hubble lengths.
Crossing outside the Hubble length means going inside the
potential and vice-versa.

5It is worth mentioning that non-Gaussianities encoded in the
bispectrum are much more sensitive to reheating.

6We have used the conservation of energy-momentum as our
third dynamic equation but we could instead have used the Klein-
Gordon equation for the scalar field. The two system of equations
are equivalent.
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one can show that there is an exact solution

ρ ¼ ρc

�
aB
a

�
3ð1þωÞ

; ð58Þ

aðtÞ ¼ aBð1þ α2ðt − tBÞ2Þ1=3ð1þωÞ; ð59Þ

φðtÞ − φB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcð1þ ωÞp

α
arcsinhðαðt − tBÞÞ; ð60Þ

where α ¼ ffiffiffiffiffiffiffi
3ρc

p ð1þ ωÞ=2MPl. The parameters tB and aB
are respectively the values of the cosmic time and the scale
factor at the bounce. Note that the energy density reaches
its maximum value at the bounce Eq. (58). This is a
characteristic feature of symmetric bounces. The scalar
field potential for this solution is given by

V ¼ ρcð1 − ωÞ
2

sech2
�
αðφ − φBÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcð1þ ωÞp �

; ð61Þ

where φB is an arbitrary constant. This solution has two
parameters aB and φB in addition to the energy density scale
ρc of LQC. The classical limit is approached when ρc → ∞.
In this limit, Eq. (61) tends to V ∼ exp ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ ωÞp
φ=MPlÞ,

which corresponds to the scalar field potential that describes
a perfect fluid with equation of state ω in GR.

A. Scalar perturbations in bounce models

Quantum cosmology is an attempt to include quantum
effects in the evolution of the universe. In this manner, we
must necessarily consider modifications in the GR equa-
tions of motion. However, bounce models generically
assume that far from the bounce region we recover the
GR dynamics. Therefore, long before and after the bounce
the scalar perturbations are described by

v00 þ ðk2 − μ2sÞv ¼ 0; with μ2s ¼
z00s
zs
; ð62Þ

v≡ zsR; zs ≡ a
H

ffiffiffiffiffiffiffiffiffiffiffiffi
ρþ p

p ¼ a
_φ

H
: ð63Þ

Using the quasimatter dynamics of last section Eq. (45),
we find that the classical contracting phase has

vinðηÞ ¼
ffiffiffiffiffiffiffiffiffi
−πη
4

r
Hð1Þ

γ ð−kηÞ; ð64Þ

γ ¼ 3

2
þ ϵc ¼

3

2
þ 1

lnðη̄Þ þ
2

3

1

ln ðη̄Þ2 ; ð65Þ

where Hð1Þ
γ is the Hankel function of the first kind and we

have defined in the last expression ϵc ≡ γ − 3
2
. The ϵc will

play a role analogous to a slow-roll parameter, which

differs from the matter bounce parameter [71] by being a
small quantity jϵcj ≪ 1. Indeed, during the period of
validity of the above solution, this term is very small
compared to unit, hence, we can consider series expansion
in its powers. Our task now is to describe the bounce and
use matching conditions to connect this contracting phase
with the expanding phase of the standard model. The LQC
perturbed equations have two modifications with respect to
GR. The Mukhanov-Sasaki equation now reads [72,73]

v00 þ
��

1 −
2ρ

ρc

�
k2 −

z00

z

�
v ¼ 0; ð66Þ

where the z function is defined as

z ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffi
ρþ P

p
H

¼ MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ ωÞ
1 − ρ=ρc

s
a: ð67Þ

Far away from the bounce, the energy density is much
less than the critical density, i.e., ρ=ρc ≪ 1 and we recover
the classical definitions. Thus, during the contracting phase
far away from the bounce, we have Eq. (64). We need to
match this solution with a solution valid during the bounce.
Equation (66) can be transformed into an integral equation
given by

vðηÞ ¼ B1zþ B2z
Z

η dη̄
z2

− k2
Z

η dη̄
z2

Z
η̄
d ¯̄ηzv

þ 2k2

ρc
z
Z

η dη̄
z2

Z
η̄
d ¯̄ηzv: ð68Þ

Close to the bounce, it is the mass term that dominates
hence we can series expand the solution in powers of the
wave number. The solution Eqs. (59) and (60) are given in
cosmic time. We can interpret the conformal time of the
above expression as a function of cosmic time. Using the
LQC background solution we find at leading order

vðtÞ ¼ B1zðtÞ þ B2zðtÞ
�
a−3B M−2

Pl

3ð1þ ωÞ
�

×

�
α2t3

3 2F1

�
3

2
;
2þ ω

1þ ω
;
5

2
;−α2t2

�
þ c2

�
; ð69Þ

where 2F1½a; b; c; z� is the hypergeometric function and c2
is an integration constant that can be chosen conveniently
to simplify the matching at the contracting phase. The
function x32F1½32 ; 2þω

1þω ;
5
2
;−x2� goes to a constant in the

limit x → �∞, hence we can choose c2 to cancel this
constant term in the far past. Consequently, we will have
2c2 in the far future after the bounce. Taking the limit
αt → −∞ we find that c2 ¼ π

4α. The coefficient B1 repre-
sents the decreasing mode during Hubble crossing in the
contracting phase. We can immediately see from the above
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expression that due to the behavior of the hypergeometric
function the bounce produces a mode mixing transferring
the coefficient B2 to the dominant mode after the bounce.
The validity of the contracting solution Eq. (64) relies on

ϵc being almost constant in time and small ϵc ≪ 1. Thus,
we can perform the matching between the contracting
phase and the bounce solution well inside the potential for
the perturbation but still very far from the bounce. This
means that we should take the limit kη → 0 in Eq. (64) and
the limit t ≪ −1=α in Eq. (69). In addition, our contracting
phase has equation of state given by Eq. (53), hence we
must identify ω ¼ − 1

6
ϵc. In this limit we can write the

scale factor and the cosmic time in terms of the conformal
time, i.e.,

aðηÞ ¼ aB

�
αð1 − ϵc=3Þ

3
aBη

�
2þϵc

; ð70Þ

αtðηÞ ¼
�
α

�
1 − ϵc=3

3

�
aBη

�
3þϵc

; ð71Þ

where we have used ϵc ≪ 1 and kept only the leading order
terms. Using Eqs. (67)–(69) we find

zðηÞ ¼ a3þϵc
B

�
1 −

13ϵc
12

� ffiffiffiffiffi
ρc

p
2

�
ρc

12M2
Pl

�ð1þϵcÞ=2
η2þϵc ;

ð72Þ

vðηÞ ¼ B1a
3þϵc
B

�
1 −

13ϵc
12

� ffiffiffiffiffi
ρc

p
2

�
ρc

12M2
Pl

�ð1þϵcÞ=2
η2þϵc

−
4B2ffiffiffi
3

p a−3−ϵcB ffiffiffiffiffi
ρc

p
�
1þ 5ϵc

12

��
M2

Pl

ρc

�ð1þϵcÞ=2
η−1−ϵc :

ð73Þ

This solution has to be matched with the contracting
solution Eq. (64) in the limit kη ≪ 1, namely

vinðηÞ ¼ 1

3
ffiffiffi
2

p k3=2þϵcη2þϵc þ iffiffiffi
2

p k−3=2−ϵcη−1−ϵc : ð74Þ

Straightforward comparison shows that

B1 ¼
ffiffiffi
2

p
a−3−ϵcB

3
ffiffiffiffiffi
ρc

p
�
1þ 13ϵc

12

��
ρc

12M2
Pl

�
−ð1þϵcÞ=2

k3=2þϵc ;

ð75Þ

B2 ¼ −i
ffiffiffi
3

p

4
ffiffiffi
2

p
ffiffiffiffiffi
ρc

p

a−3−ϵcB

�
1 −

5ϵc
12

��
ρc
M2

Pl

�ð1þϵcÞ=2
k−3=2−ϵc :

ð76Þ

The solution Eq. (69) is valid across the bounce. Having
defined the coefficients B1 and B2 we can find the solution

after the bounce. The expanding phase solution is described
by taking the limit t ≫ 1=α in Eq. (69), i.e.,

voutðηÞ¼
�
B1þB2

�
πa−3B ð1þϵc=3Þ
3

ffiffiffiffiffiffiffi
3ρc

p
MPl

��
zðηÞ

¼
�
k3=2þϵc

3
ffiffiffi
2

p −i
πð1−7ϵc

6
Þ

48
ffiffiffi
6

p
�
a2Bρc
M2

Pl

�
3=2þϵc

k−3=2−ϵc
�
η2þϵc :

ð77Þ

In cosmological perturbations we are interested in the
small wave number limit, hence for very small wave
number it is the k−3=2 that dominates. However, this is
true only if the numerical factors are of order one. The
parameter ρc is expected to be smaller but comparable in at
least a few orders of magnitude of the Planck energy
density, i.e., ρc ¼ 10−nρPl, with 1 < n < 10. The value of
the scale factor at the bounce must be at least a few order of
magnitude higher than the Planck mass, otherwise we could
not rely on our quantum cosmology effective scenario, i.e.,
aB ¼ 10mlPl with 5 > m > 2. The ratio between the two
term above is

≈14.28 × 103ðm−n=2Þl−3Pl k
−3 ≫ 1: ð78Þ

Therefore, it is indeed the k−3=2 the dominant coefficient for
all values of interest of wave number in cosmology and the
scalar perturbation is

R ¼ v
z
≈

π

12
ffiffiffi
2

p
ffiffiffiffiffiffiffiffi
ρc
M4

Pl

r
k−

3
2
−ϵc ≈ 0.185

ffiffiffiffiffiffiffiffi
ρc
M4

Pl

r
k−

3
2
−ϵc ; ð79Þ

with spectral index given by

ns − 1 ¼ −2ϵc: ð80Þ

As expected, the power spectrum is almost scale invari-
ant but with a small redshift. Using the Planck 2018 release
ns ¼ 0.9649� 0.0042 (see Ref. [2]), we have 0.0196 <
ϵc < 0.0155.

B. Tensor perturbations

Similarly to the scalar perturbations, the dynamic
equation for tensor perturbations in LQC has quantum
corrections proportional to ρ=ρc. The Mukhanov-Sasaki
variable is defined in terms of the tensor perturbations
h ¼ 2v=zTMPl, where function zT is also modified due to
quantum corrections. The Mukhanov-Sasaki equation
reads [74]

v00 þ
��

1 −
2ρ

ρc

�
k2 −

z00T
zT

�
v ¼ 0; ð81Þ

where the function zT is given by
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zT ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ρ=ρc

p : ð82Þ

The tensor perturbations in the contracting phase have the
same solution as the scalar perturbations, namely

vinðηÞ ¼
ffiffiffiffiffiffiffiffiffi
−πη
4

r
Hð1Þ

γ ð−kηÞ; ð83Þ

where again γ ¼ 3=2þ ϵc. Following the same procedure
as before, we can transform the differential equation into an
integral equation for μ similar to Eq. (68). The solution
across the bounce can be obtained by a series expansion on
powers of the wave number. At leading order in k, the
formal solution to its integral form is

vðtÞ ¼ D1zTðtÞ þD2zTðtÞ
Z

η̄ dη
zTðηÞ2

; ð84Þ

whereD1 andD2 are two constants of integration. By virtue
of Eq. (82), the formal solution is

vðtÞ¼D1zTðtÞþ
D2

a3B
zTðtÞ

�
α2t3

3 2F1

�
3

2
;
2þω

1þω
;
5

2
;−α2t2

�

− t× 2F1

�
1

2
;
2þω

1þω
;
3

2
;−α2t2

�
þC

�
: ð85Þ

As before, we chose the constant C conveniently to
cancel the constant term in the far past. As a result we
have C ¼ − πω

2α. Recall that α ¼ ffiffiffiffiffiffiffi
3ρc

p ð1þ ωÞ=2MPl and
ω ¼ − 1

6
ϵc. In order to match this solution with the

contracting phase, we must take the limit t ≪ −1=α that
gives

vðtÞ ¼ D1ð1 − ϵcÞ
a−3−ϵcB

�
ρc

12M2
Pl

�
1þϵc=2

η2þϵc

þ D2

3a3B

�
1þ 2ϵc

3

��
12M2

Pl

ρc

�
1þϵc=2

η−1−ϵc : ð86Þ

This expression has to be matched with the limit kη ≪ 1
for the classical solution (64), namely

vinðηÞ ¼ 1

3
ffiffiffi
2

p k
3
2
þϵcη2þϵc − i

1ffiffiffi
2

p k−
3
2
−ϵcη−1−ϵc : ð87Þ

Thus, we identify

D1 ¼
ð1þ ϵcÞ
3

ffiffiffi
2

p
a3þϵc
B

�
12M2

Pl

ρc

�
1þϵc=2

k
3
2
þϵc ; ð88Þ

D2 ¼ −i
3a3Bffiffiffi
2

p
�
1 −

2ϵc
3

��
ρc

12M2
Pl

�
1þϵc=2

k−
3
2
−ϵc : ð89Þ

The expanding phase is given by taking the limit
t ≫ 1=α. Thus, we have

voutðηÞ ¼
�
D1 −

D2

a3B

πMPl

3
ffiffiffiffiffiffiffi
3ρc

p ϵc

�
zcTðηÞ; ð90Þ

where D1 and D2 are given by Eqs. (88) and (89). It is
worth noting that the term proportional toD2 is linear in ϵc,
hence the mode mixing in the tensor perturbation depends
on how small is the slow-row parameter. To leading order in
wave number, the tensor perturbation reads

h ¼ 2v
zTMPl

¼ 2

MPl

�
D1 −

D2

a3B

πMPl

3
ffiffiffiffiffiffiffi
3ρc

p ϵc

�
ð91Þ

≈
iπ

6
ffiffiffi
6

p ϵc

ffiffiffiffiffiffiffiffi
ρc
M4

Pl

r
k−

3
2
−ϵc ≈ 0.214iϵc

ffiffiffiffiffiffiffiffi
ρc
M4

Pl

r
k−

3
2
−ϵc : ð92Þ

Thus, the tensor spectral index is nt ¼ −2ϵc ¼ ns − 1.
Finally, using Eqs. (79) and (92), we find the tensor-to-
scalar ratio

r ¼ PT

PR
¼ 2

jhj2
jRj2 ¼

8

3
ϵ2c ¼

2

3
ðns − 1Þ2: ð93Þ

Note that we succeed in obtaining the same relation
between ns − 1 and r as in the Starobinsky inflation.
However, even though with the correct power of the
slow-roll parameter ϵ2c, there is a numerical factor differ-
ence of order unit. Equation (30) shows that Starobinsky
inflation has a relation between the scalar spectral index
and the tensor-to-scalar ratio given by

r ¼ 3ðns − 1Þ2; ð94Þ

hence our model is a factor 2=9 smaller. This difference is a
convolution of two contributions coming from the ratio
zs=zT but they have a completely distinct physical origin.
First, in inflationary models, the ratio ðzs=zTÞ2 is 2ϵ−2c

larger than its value in bouncing models. Indeed, one can
check that in the Starobinsky model we have ðzs=zTÞ2 ¼
Qs=F ≈ 3

2
M2

Plϵ
2
c, while for a matter bounce model we have

ðzs=zTÞ2 ¼ 3M2
Pl. The simple fact that the horizon crossing

happens in two different background dynamics (quasi–
de Sitter for inflation and quasimatter for bounce) changes
the tensor-to-scalar ratio by a factor 2ϵ−2c . The factor ϵ2c=9
has a completely different physical origin. It comes from
the dynamics across the bounce.
Inflationary models with adiabatic perturbations have a

decreasing and a constant mode. With the quasiexponential
expansion, it is the constant mode that dominates and gives
the almost scale-invariant power spectrum. In contrast,
bounce models have a constant and an increasing mode
before the bounce. The bounce dynamics makes the latter
the dominant mode after the bounce (there is a mode
mixing), which has an integral contribution of z−2 [see
Eq. (84)]. This term carries information across the bounce
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and depends on the dynamics chosen to describe the
bounce. In our case we get a ϵ2c=9 contribution from the
time integral across the LQC bounce. Another bounce like
Wheeler-DeWitt should give a different numerical factor
but the same ϵ2c contribution.
In summary, there is a crucial difference on how inflation

and bounce models obtain a small tensor-to-scalar ratio.
Both dynamics start with the same vacuum state but the
inflationary dynamics amplifies more7 the scalar perturba-
tions than the quasimatter contraction by a factor 2ϵ−2c .
On the other hand, the evolution across the bounce
suppresses the tensor perturbations by a factor ϵ2c=9. The
net result is the 2=9 difference factor between the two
tensor-to-scalar ratios given by Eqs. (93)–(94).

V. CONCLUSIONS

In the near future, we expect to have decisive new
observational data of the very early universe. The 21 cm
redshift surveys together with measurements of the CMB
B-mode polarization, non-Gaussianities, and primordial
gravitational waves will enable us to discriminate between
different primordial universe scenarios. Therefore, it is
pressing to identify signatures of each type of primordial
universe scenario that would allow us to make testable
predictions.
In the present work, we have used Wands’ duality to

construct a quasimatter bounce that mimics the Starobinsky
inflation. This map allows us to identify the correct con-
tracting phase dynamics that gives the same time-dependent

mass term in the Mukhanov-Sasaki equation. The adequate
scalar field potential VðφÞ, given by Eq. (54), is a deforma-
tion of the exponential potential known to describe a
pressureless dust fluid. This result agrees with the fact that
a quasi–de Sitter phase should be mapped into a quasimatter
dominated contracting universe. After the linear perturba-
tions cross the horizon, the systemmust go through a bounce
phase.We chose to describe the bounce usingLQC inasmuch
it is the easiest quantumbounce if thematter field is described
by a scalar field.
Our constructive method enables us to discriminate the

contribution of each dynamical phase in the primordial
power spectrum. In particular, we showed that mapping the
Starobinsky inflation into a quasimatter bounce gives the
correct relation between the scalar spectral index ns − 1 and
the tensor-to-scalar ratio r but it appears a factor 2=9 of
difference. The crucial point is to understand the origin of
this numerical factor. It comes from the ratio zs=zT and it is
a convolution of two distinct contribution. The comparison
between this ratio from an inflationary expansion to a
quasimatter contraction gives a factor 2ϵ−2c , while the
dynamics through the LQC bounce results in an additional
factor ϵ2c=9.
An interesting feature of our analysis is to show that the

bounce leaves a signature in the primordial power spec-
trum. The scalar and tensor spectral indexes depend on the
background dynamics during the horizon crossing, but the
amplitudes of the scalar and tensor power spectrum, hence
the tensor-to-scalar ratio, carry information from the
dynamics across the bounce.
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