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Generally the Brans–Dicke (BD) theory reduces to general relativity (GR) in the limit
ω → ∞ if the scalar field goes as φ ∝ 1/ω. However, it is also known that there are exam-
ples with φ ∝ 1/

√
ω that does not tend to GR. We discuss another case: a homogeneous

and isotropic universe filled with stiff matter. The power of time dependence of these
solutions does not depend on ω, and there is no GR limit even though we have φ ∝ 1/ω.
A perturbative and a dynamical system analysis of this exotic case are carried out.

Keywords: Modified gravity; Brans–Dicke theory; the general relativity limit; cosmolog-
ical perturbation theory; stiff matter.

1. Introduction

General relativity (GR) is a very successful theory to describe gravitational inter-
action. It is theoretically consistent and experimentally tested theory. So far, GR
has been confirmed by every experiment in the solar system1–4 and astrophysical
phenomena such as the emission of gravitational waves by binary systems and it is
in accordance with the bounds on the velocity of gravitational waves.5,6 However,
there are at least three reasons to seriously consider alternative theories of gravity.
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The necessity of the dark sector (dark energy and dark matter) on the standard
cosmological model; the theoretical motivation to unify the gravitational interaction
with the quantum interactions in a single theoretical framework; and the epistemo-
logical fact that alternative theories can be used to highlight the intrinsic properties
of GR by showing how it could be otherwise.

The prototype of alternative theory of gravity is Brans–Dicke (BD) theory.
Historically, it is one of the most important alternative to the standard GR theory,
which was introduced by Brans and Dicke7 as a possible implementation of Mach’s
principle in a relativistic theory. Solar System time-delay experiments set a lower
bound on the absolute value of the dimensionless parameter |ω| > 500,1,2 which
means that BD is strongly constrained for the solar system dynamics. The theory
is also constrained by the CMB, as pointed out in Refs. 8 and 9. Notwithstanding,
there are phenomenological applications for BD in cosmology and indeed it has
received recently much attention of the scientific community.10–20

In this work, we display a particular solution of BD with matter content
described by a stiff matter barotropic perfect fluid. This is a very interesting solution
with exotic characteristics revealing some of the new features, for better or worse,
that one can expect to find in BD-like alternative theories of gravity.21–24 In partic-
ular, the time evolution of the system is independent of the value of the parameter
ω. The evolution of the perturbations has only growing modes, which is also another
distinct feature of this solution. In addition, the scale factor evolution behaves as
a ∝ t1/2, typical of radiation dominated epoch in GR, hence this configuration
might have some applications in the early universe. Recently, this period of the
universe filled with stiff matter was also studied in the context of f(R) theories.25

It is argued in the literature that BD approaches GR in the |ω| → ∞ limit.26

The crucial point behind this argument is that when the parameter |ω| � 1, the
field equations seem to show that �ϕ = O( 1

ω ) and hence

ϕ =
1
GN

+ O
(

1
ω

)
, (1)

Gµν = 8πGNTµν + O
(

1
ω

)
, (2)

whereGN is Newton’s gravitational constant,Gµν is the Einstein tensor and assume
natural unit where c = 1. However, there are some examples27–42 where exact
solutions cannot be continuously deformed into the correspondinga GR solutions
by taking the |ω| → ∞ limit. Their asymptotic behavior differs exactly because
these solutions do not decay as Eq. (1) but instead as

ϕ =
1
GN

+ O
(

1√
ω

)
. (3)

aThe word corresponding here is used in the sense of the same matter content as in GR.
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Our particular solution, to be developed in Sec. 4, has the novelty of having the
appropriate asymptotic behavior given by Eq. (1) (see Eq. (35)) but no GR limit.

The paper is organized as follows. In Sec. 2, we briefly describe the system and
its equation of motion. In Sec. 3, we review the general solution studied by Gurevich
et al. In Sec. 4, we analyze a power-law solution with peculiar features and develop
the perturbation over this specific background in Sec. 5. In Sec. 6, we perform a
dynamical system analysis of the system and finally in Sec. 7 we end with some
final remarks.

2. The Classical Equations of Motion

In BD theory the scalar field is understood as part of the geometrical degrees of
freedom. This theory has a nonminimal coupling between gravity and the scalar
field. The action reads

S =
∫

dx4√−g
[

1
16π

(
φR − ω

φ
∇αφ∇αφ

)
+ Lm

]
, (4)

where Lm is the ordinary matter and ω is the scalar field coupling constant. Vari-
ation of the action Eq. (4) with respect to the metric and the scalar field gives,
respectively, the following field equations

Gµν =
8π
φ
Tµν +

ω

φ2

(
∇µφ∇νφ− 1

2
gµν∇αφ∇αφ

)
+

1
φ

(∇µ∇νφ− gµν�φ) , (5)

�φ = − φ

2ω
R+

1
2φ

(∇αφ∇αφ) =
8π

3 + 2ω
T, (6)

where we have used the trace of Eq. (5) in the last step of Eq. (6). The action
Eq. (4) is diffeomorphic invariant and since all variables are dynamic fields we have
conservation of energy-momentum, i.e.

∇µT
µν = 0. (7)

We shall consider the matter content described by a perfect fluid such that the
energy-momentum tensor is

T µν = (ρ+ p)uµuν − pgµν , (8)

and a barotropic equation of state p = αρ with 0 ≤ α ≤ 1. The equation of state
parameter α is bounded from above in order to avoid superluminal speed of sound.
In the extreme case, α = 1, the speed of sound equals the speed of light, which
corresponds to stiff matter. This equation of state was first proposed by Zeldovich
as an attempt to describe matter in extremely dense states such as in the very early
universe.

We shall restrict our analysis to the Friedmann–Lemâıtre–Robertson–Walker
(FLRW) universes where the metric has a preferred foliation given by homogeneous
and isotropic spatial sections. In spherical coordinate system for this particular
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foliation, the line element has the form

ds2 = dt2 − a2(t)
[

dr2

1 − kr2
+ r2(dθ2 + sin2(θ)dφ)

]
, (9)

where a(t) is the scale factor function and k = 0,±1 defines the spatial section
curvature.

A stiff matter fluid has equation of state p = ρ. Thus, conservation of the
energy-momentum tensor in a FLRW universe implies ρ = ρ0(a0/a)6 with ρ0 and
a0 two constants of integration. The flat FLRW case has been analyzed in a quite
general form in Ref. 43 but not all solutions were fully explored. In particular, we
describe some exotic features of a peculiar solution associated with this equation
of state. After integrating the conservation of energy–momentum equation, the two
remaining independent equations become

(
ȧ

a

)2

+
k

a2
=

8πρ0

3φ

(a0

a

)6

+
ω

6

(
φ̇

φ

)2

− ȧ

a

φ̇

φ
, (10)

φ̈+ 3
ȧ

a
φ̇ = − 16πρ0

(3 + 2ω)

(a0

a

)6

(11)

where a dot denotes differentiation with respect to the cosmic time t.

3. Gurevich’s Families of Solutions

In this section, we present the general solutions of scale factor and the scalar field
for the FLRW flat case in the BD theory obtained by Gurevich et al.43 We shall
follow closely their presentation but adapting specifically for the stiff matter case.
Gurevich et al. obtained a class of flat space solutions for the equation of state
P = αρ, where 0 ≤ α ≤ 1. There are three families of solutions depending on the
value of ∆ ≡ B2−4AC0 where 2A ≡ 2(2−3α)+3ω(1−α)2,B = 3σ(1−α)+(1−3α)β0

and C0 and β0 are integration constants. Using the time–time component of Eq. (5)
and the time component of the conservation of the energy–momentum Eq. (7), one
can show that for α 	= 1/3 the ∆ can be recast as

∆ =
(1 − 3α)2σ2

1 + 2ω/3
(β0 − 1)2 with σ ≡ 1 + ω(1 − α).

Note that for β0 	= 1 the sign of ∆ is negative for ω < −3/2 and positive for
ω > −3/2. It is also useful to define a parametric time θ, which is connected to
cosmic time through the relation dt = a3αdθ.

The first family of solutions is given by ∆ < 0 (ω < − 3
2 ). The general solutions

for the scale factor and scalar field φ read

a = a0[(θ + θ−)2 + θ2+]σ/2Ae±
q

( 2|ω|
3 −1)f(θ) (12)

φ = φ0[(θ + θ−)2 + θ2+](1−3α)/2Ae∓3(1−α)
q

( 2|ω|
3 −1)f(θ), (13)
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where

f(θ) =
1
A

arctan
(
θ + θ−
θ+

)
, θ+ =

√|∆|
2A

, θ− =
B

2A
. (14)

For the stiff matter case (α = 1), the solutions (12) and (13) simplify to

a = a0[(θ + θ−)2 + θ2+]−
1
2 exp

{
∓
√

2|ω|
3

− 1 arctan
(
θ + θ−
θ+

)}
, (15)

φ = φ0[(θ + θ−)2 + θ2+]. (16)

Note that the scalar field dynamics does not depend on ω anymore and the scale fac-
tor has a mild dependence on this parameter. The asymptotic behavior of Eqs. (15)
and (16) for θ → ±∞ are

a(θ) ∝ exp

(
ε
π

2

√
2|ω|
3

− 1

)
1
θ
, (17)

φ(θ) ∝ θ2, (18)

where ε = ∓1 for θ → −∞ and ε = ±1 for θ → +∞. In this asymptotic behavior,
the cosmic time goes as t ∝ θ−2, hence, the scale factor Eq. (17) goes as a ∝ t

1
2 in

both asymptotic limits θ → ±∞. Similarly, the asymptotic behavior of the scalar
field is φ ∝ θ2 ∝ t−1. The two asymptotic limits θ → ±∞ describe two distinct
possible evolution where the universe behaves as a GR radiation dominated phase.
For θ → −∞, the universe starts from an initial singularity at t = 0 and expands
there from with a radiation dominated phase. In the limit θ → +∞, the universe
contracts from infinity until it reaches a big crunch singularity again at t = 0 during
a radiation dominated phase.

The second family is described by ∆ > 0 (ω > − 3
2 ). The general solutions are

given by

a = a0(θ − θ+)ω/3Σ∓(θ − θ−)ω/3Σ± , (19)

φ = φ0(θ − θ+)(1∓
√

1+2ω/3)/Σ∓(θ − θ−)(1±
√

1+2ω/3)/Σ± , (20)

Σ± = σ ±
√

1 +
2ω
3
, (21)

where now θ± ≡ (−B ± √
∆)/2A are constants of integration with θ+ > θ−. The

solutions for the stiff matter (α = 1) reduce to

a = a0[θ − θ+]ω/[3(1∓
√

1+2ω/3)](θ − θ−)ω/[3(1±
√

1+2ω/3)], (22)

φ = φ0(θ − θ+)(θ − θ−). (23)

The asymptotic behavior of Eqs. (22) and (23) shows that for |θ| � θ+ we have
a ∝ θ−1 ∝ t

1
2 and φ ∝ θ2 ∝ t−1. Thus, we have the same asymptotic behavior as

the ω < − 3
2 given by Eqs. (17) and (18).
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Finally, there is a third family of solutions given by ∆ = 0 (β0 = 1) that
describes power-law solutions, i.e.

a = a0(θ/θ0)σ/A = a0(t/t0)σ/A∗ , (24)

φ = φ0(θ/θ0)σ/A = φ0(t/t0)(1−3α)/A∗ , (25)

2A∗ = 4 + 3ω(1 − α2), (26)

where we have used the relation between the parametric time θ with the coordinate
time t. These solutions have singular behavior for t → 0 if the power of the scale
factor is positive. This happens when ω < −1/(1 − α) for α ∈ [−1, 1/3] and ω <

−4/3(1− α) for α ∈ [1/3, 1].
The third family of solutions can be derived by taking the appropriate limit

from the previous two families.b Indeed, for ∆ < 0 the limit ∆ → 0 implies θ+ → 0
with θ− 	= 0, hence Eq. (12) shows that a ∝ (θ+θ−)σ/A. For ∆ > 0 the limit ∆ → 0
implies θ+ = θ− = −B/2A and again Eq. (19) gives the same result a ∝ (θ−θ−)σ/A

compatible with Eq. (24).
Another interesting asymptotic limit for all these solutions is given by finite

time but allowing the BD parameter to increase boundlessly. The limit ω → ∞
depends crucially if α = 1 or not. For α 	= 1, the limit |ω| → ∞ gives σ = ω(1−α),
A = A∗ = 3

2ω(1 − α)2, hence all three functions diverge such that φ → φ0 in all
three cases. Furthermore, the scale factor becomes

lim
ω→−∞ a = a0[(θ + θ−)2 + θ2+]1/3(1−α), for β0 	= 1 and ω < −3

2
, (27)

lim
ω→∞ a = a0[(θ − θ+)(θ − θ−)]1/3(1−α), for β0 	= 1 and ω > −3

2
, (28)

lim
|ω|→∞

a = a0(θ/θ0)2/3(1−α) = a0(t/t0)2/3(1−α), for β0 = 1 and ω 	= −3
2
.

(29)

Therefore, if α 	= 1, independently of the sign(ω), all three families of solutions
asymptotically approach GR. However, that is not the case for stiff matter. For
α = 1, in the limit |ω| → ∞, φ does not go to a constant and the scalar field does
not go to its GR limit. Indeed, the α = 1 case has to be studied separately, which
is what we shall analyze in the next section.

4. Exact Power-Law Solution

Let us study the dynamic for FLRW universe filled with a stiff matter perfect fluid.
Following Gurevich’s et al. family of solutions, we propose a power-law ansatz such
that

a = a0t
r, φ = φ0t

s. (30)

bWe thank the referees for pointing out this limiting approach.
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Equating the power in the Klein–Gordon Eq. (11), it is easy to check 6r + s = 2.
Furthermore, the coefficients of Eqs. (10) and (11) imply

3r2 + 3rs− ω

2
s2 =

8πρ0

φ0
− 3

k

a2
0

t2−2r, (31)

s(s− 1) + 3rs = − 16πρ0

(3 + 2ω)φ0
. (32)

Using the previous relation for r and s and combining these two equations, we
find

r =
1
2
, s = −1 (33)

for spatial curvature k = 0, and

r = 1, s = −4. (34)

for k 	= 0. Note also that the equations require the constraint

φ0 = − 32π
(3 + 2ω)

ρ0 (35)

for flat spatial sections, and

φ0 = − 2π
3 + 2ω

ρ0 (36)

with k = −a2
0 normalized to −1 for nonflat. From now on, we will focus solely on

the solution (33) for a k = 0 FLRW universe.
Therefore, in order to have an attractive gravity with positive energy density,

i.e. ρ0 and φ0 > 0, we must have ω < − 3
2 . During the whole evolution the scale

factor mimics a GR radiation dominated expansion, namely a ∝ t1/2, while the
scalar field is always decreasing inversely proportional to the cosmic time φ ∝ t−1.
There is no GR limit in the sense that the evolution does not depend on the BD
parameter ω. Furthermore, Eq. (35) seems to show that the limit ω → ∞ is not
even well defined since the gravitation strength is inversely proportional to the
scalar field, i.e. G ∼ φ−1. Notwithstanding, this power-law solution is completely
consistent for finite values of ω. In the next section, we shall study the cosmological
perturbations over this particular solution.

5. Cosmological Perturbation

Consider the background solution found above for a flat FLRW universe filled with
stiff matter in BD theory, i.e.

a = a0t
1/2, φ = φ0t

−1. (37)

In Ref. 44, the general perturbed equations for a fluid with equation of state
of the type p = αρ, with α constant, have been established for the BD cosmology.
The full perturbed dynamical system is given by the perturbed version of Eqs. (5)
and (6). However, the evolution of the matter density perturbation can be analyzed

1950156-7
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using only the perturbed version of the time–time Einstein’s equations, the Klein–
Gordon, and the conservation of energy–momentum tensor.

The metric perturbation is defined as hµν = gµν − g
(0)
µν , where g

(0)
µν is given

by the FLRW solution with Eq. (37) and k = 0. Following Ref. 44, we adopt the
synchronous gauge where h0µ = 0. It is straightforward to calculate the perturbed
Ricci tensor, which has time–time component given by

δR00 =
1
a2

[
ḧkk − 2

ȧ

a
ḣkk + 2

(
ȧ2

a2
− ä

a

)
hkk

]
.

The time–time component of the perturbed energy–momentum tensor and its trace
read

δT 00 = δρ, δT = δρ− 3δp. (38)

Similarly, the perturbation of the scalar field is defined as δφ(x) = φ(x)−φ(0)(t).
The d’Alembertian of the scalar field is

δ�φ = δφ̈+ aȧhkkφ̇− 1
2a2

ḣkkφ̇+ 3
ȧ

a
δφ̇− 1

a2
∇2δφ. (39)

It is convenient to define new variables. In particular, we define the usual expres-
sion for the density contrast, a similar version for the perturbation of the scalar
field, the divergence of the perturbation of the perfect fluid’s velocity field (δui),
and a normalized version of the metric perturbation. They are defined, respectively,
as

δ =
δρ

ρ
, λ =

δφ

φ
, U = δui

,i, h =
hkk

a2
. (40)

Using (40) and decomposing them in Fourier modes n, the time–time BD and
the Klein–Gordon, Eqs. (10) and (11), read respectively

ḧ

2
+Hḣ =

8πρ
φ

(
2 + ω + 3α(1 + ω)

3 + 2ω

)
(δ − λ) + λ̈+ 2(1 + ω)

φ̇

φ
λ̇, (41)

λ̈+

(
3H + 2

φ̇

φ

)
λ̇+

[
n2

a2
+

(
φ̈

φ
+ 3H

φ̇

φ

)]
λ =

8π(1 − 3α)ρ
(3 + 2ω)φ

δ +
φ̇

φ

ḣ

2
. (42)

In addition, the conservation of energy-momentum tensor decomposes in two
equations, namely

2δ̇ − (1 + α)(ḣ− 2U) = 0, (43)

(1 + α)(U̇ + (2 − 3α)HU) = α
n2

a2
δ. (44)

where again n represents the Fourier mode. In the long wavelength limit n → 0,
Eq. (44) shows that the perturbation of the four velocity decouples. For a stiff
matter fluid, α = 1, it becomes a growing mode with

U ∝ a. (45)
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This growing mode has nothing to do with BD’s extra scalar degree of freedom.
Eqs. (43) and (44) come from perturbing the conservation of the energy-momentum
Eq. (7), which is identical in GR. For equation of state lower than α < 2/3, such
as for radiation, we have a decaying mode and can ignore it by setting U = 0 that
in turn implies 2δ = (1 + α)h. In contrast, in our case α = 1 the growing mode
together with Eq. (43) implies

δ = h− 4
3
U0t

3/2, (46)

with U0 a constant of integration. For this reason, we will retain this inhomogeneous
term.

Using the background expressions (Eq. (37)), the long wavelength limit (n→ 0),
and Eq. (46), the dynamical system simplifies to

ḧ

2
+
ḣ

2t
+

(5 + 4ω)
4t2

h = λ̈− 2(1 + ω)λ̇
t

+
(5 + 4ω)

4t2
λ+

(5 + 4ω)U0

3t1/2
, (47)

− ḣ

2t
+

h

2t2
= λ̈− λ̇

2t
+

λ

2t2
+

2U0

3t1/2
. (48)

These equations admit a solution under the form:

h = h0t
m + f0t

3
2 , λ = λ0t

m + g0t
3
2 (49)

with λ0, h0, f0 and g0 are constants. Equating the power in the time parameter and
the coefficients of the polynomials, we obtain a set of equations connecting these
different constants of integration, namely{

m2 +
(5 + 4ω)

2

}
h0 = 2

{
m2 − (3 + 2ω)m+

(5 + 4ω)
4

}
λ0, (50)

(1 −m)h0 = 2
{
m2 − 3

2
m+

1
2

}
λ0, (51)

f0 = −2
3
(3 + 4ω)g0 +

8
27

(5 + 4ω)U0, (52)

f0 = −2g0 +
8
3
U0. (53)

The constants h0 and λ0 give the homogeneous modes, while f0 and g0 give
the inhomogeneous modes associated with the growing mode U . The homogeneous
modes admit four power solution given by m = 0,−1, 1

2 and 1. The solutions corre-
sponding to m = 0,−1 are connected with the residual gauge freedom typical of the
synchronous gauge. A remarkable novelty is that the physical solutions correspond
only to growing modes. In fact, these modes appear also in the long wavelength
limit of the radiative cosmological model both in the GR and BD theories.44,45

However, there are two interesting aspects connected with these modes: there is no
dependence on ω, and when m = 1, h0 = λ0 = 0, while for m = 1

2 , h = 0 and λ0

is arbitrary. Thus, the most important perturbative modes are the inhomogeneous
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modes, which are represented by h = f0t
3/2, λ = g0t

3/2, with

f0 =
2
9

(7 + 2ω)
ω

U0, (54)

g0 = −4
9

(7 + 6ω)
ω

U0. (55)

An important feature of these inhomogeneous solutions is that the perturbation
grows very quickly with the scale factor, δ ∝ a3. It is also interesting to contrast
with the same situation in GR where this inhomogeneous modes identically cancel
for the pure stiff matter case.46,47 As a final remark, we should stress that these
homogeneous and inhomogeneous modes have a well defined ω → ∞ limit. However,
these solutions depend on the background solution, which is inconsistent in this
limit.

6. Dynamical System Analysis

The power-law solution for stiff matter fluid in BD displayed in Sec. 4 has distinct
features compared with Gurevich’s families with α 	= 1 see Sec. 3. In order to com-
pare these solutions, we perform a dynamical system analysis. Instead of using the
conservation Eq. (7), in this section, we shall use BD and Klein–Gordon equations
of motion. For a flat FLRW, the dynamical system reads

(
ȧ

a

)2

+
(
ȧ

a

)
φ̇

φ
=

8πρ
3φ

+
ω

6

(
φ̇

φ

)2

, (56)

(
ä

a

)
−
(
ȧ

a

)
φ̇

φ
= −8π

3φ
(3 + ω)ρ+ 3ωp

2ω + 3
− ω

3

(
φ̇

φ

)2

, (57)

φ̈

φ
+ 3

(
ȧ

a

)
φ̇

φ
=

8π
(3 + 2ω)

(ρ− 3p)
φ

. (58)

It is convenient to define the Hubble factor H = ȧ/a and its analogous for the
scalar field, namely F = φ̇/φ. Restricting ourselves to the stiff matter (p = ρ), we
can combine the Hamiltonian constraint Eq. (56) with Eqs. (57) and (58) obtaining
the following dynamical autonomous system:

Ḣ = − 6
(3 + 2ω)

(
(1 + ω)H2 +

ω

3
HF +

ω

12
F 2
)
, (59)

Ḟ = − 6
(3 + 2ω)

(
H2 +

(5 + 2ω)
2

HF +
(3 + ω)

6
F 2

)
, (60)

In fact, note that Eqs. (59) and (60) can simultaneously describe the stiff matter
and the vacuum (p = ρ = 0). It is easy to check that there are two fixed points for
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this dynamical system

H = F = 0 corresponding to the Minkowski case, (61)

H = −F
3

with ω = −4
3
. (62)

We can also find the invariant rays defined by the condition F = qH with q con-
stant, which correspond to power-law solutions of the system. Using Eq. (30), this
condition translates into q = s/r, where r and s are the powers in time of the scale
factor and of the scalar field, respectively. Imposing this condition and combining
the resulting expressions we find the following third-order polynomial for q

(q + 2)
(ω

2
q2 − 3q − 3

)
= 0, (63)

with solutions given by

q = −2, q± =
3
ω

(
1 ±

√
1 +

2
3
ω

)
. (64)

The first root corresponds to the power-law solution found previously, for which
gravity is attractive only if ω < −3/2. Indeed, using F = qH , the constraint Eq. (56)
reads (

−ω
2
q2 + 3q + 3

)
H2 =

8πρ
φ
. (65)

One can immediately see that if q = −2 then the energy density is positive only
for 2ω + 3 < 0 as already argued in Eq. (35). The other two roots correspond to
the vacuum solution. Again, Eq. (65) shows that for q = q± the left-hand side of
the above equation vanishes implying that ρ = 0. Note also that the invariant rays
q = q± disappear when ω < − 3

2 (the roots become imaginary). Varying ω into
negative values makes the two q± rays collapse into q = −2 when ω = −3/2. For
ω < −3/2 only the q = −2 invariant ray remains (see Fig. 1).

The q = −2 invariant ray does not depend on ω which means that it is insensitive
to the ω → ∞ limit. On the other hand, the q = q± decays as

lim
ω→∞ q± = ±

√
6
ω
. (66)

Thus, since F = qH , for arbitrary finite values of H we have φ̇ → 0 in the
ω → ∞ limit. Naively, one could expect that a vacuum solution with φ̇→ 0 should
approach the Minkowski spacetime. However, the term ωφ̇2 does not go to zero in
this limit producing a power-law expansion with a ∝ t1/3. Indeed, it has been shown
in Ref. 20 that in this regime the ωφ̇2 term behaves as an effective stiff matter like
term, which is responsible for the a ∝ t1/3 evolution of the scale factor.

6.1. Singular points at infinity

The stability of the fixed point at the origin of the phase space can be inferred
directly from the phase space diagrams. However, the stability of the invariant rays
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of the dynamical system must be analyzed at infinity. For this purpose we use the
Poincaré central projection method,48–50 using the coordinate transformation

H =
h

z
, F =

f

z
, with h2 + f2 + z2 = 1. (67)

Equations (59) and (60) can be recast as P (H,F )dF − Q(H,F )dH = 0, which
combined with Eq. (67) gives us

−zQdh+ zPdf + (hQ− fP )dz = 0, (68)

where the functions P (h, f, z) and Q(h, f, z) are given by

P (h, f, z) = − 6
(3 + 2ω)

(
(1 + ω)h2 +

ω

3
hf +

ω

12
f2
)
, (69)

Q(h, f, z) = − 6
(3 + 2ω)

(
h2 +

(5 + 2ω)
2

hf +
(3 + ω)

6
f2

)
. (70)

Collecting all terms we can explicitly write Eq. (68) in terms of the projective
coordinates as

z[6h2 + 3(2ω + 5)hf + (3 + ω)f2]dh− z
[
6(1 + ω)h2 + 2ωhf +

ω

2
f2
]
df

−
[
6h3 − ω

2
f3 + (3 − ω)hf2 + 9h2f

]
dz = 0. (71)

The singular points at infinity have projective coordinates in the plane (h, f, z =
0). Given Eqs. (67) and (71), they are solutions of the system:

h2 + f2 = 1,

6h3 − ω

2
f3 + (3 − ω)hf2 + 9h2f = 0. (72)

In order to find the invariant rays, we substitute f/h = q in the system (72). As
expected, there are three invariant rays

q = −2 : h = ± 1√
5
, f = qh, (73)

q+ =
3
ω

(
1 +

√
1 +

2
3
ω

)
: h =

1√
1 + q2+

, f = q+h, (74)

q− =
3
ω

(
1 −

√
1 +

2
3
ω

)
: h =

1√
1 + q2−

, f = q−h. (75)

The analytical expressions of the solutions of the scale factor and the scalar field
that correspond to these rays are given by
For q = −2 :

a(t) ∝ t1/2, φ(t) ∝ t−1, (76)

For q+ = 3
ω (1 +

√
1 + 2

3ω):

a(t) ∝ tω(3+q+)/3(4+3ω), φ(t) ∝ t(4−ωq+)/(4+3ω), (77)
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Fig. 1. Compacted phase portraits using the variables h, f that are respectively related to H and
F by Eq. (67). Each portrait uses a different value of BD parameter ω. In particular, we used the
values ω = −5,−4/3,−1, 1, 50, 500, respectively from the top left to the bottom right. The unity
circle corresponds to the projected singular points at infinity. The dashed straight lines depict the
invariant rays Eqs. (73)–(75) and the empty region has been excluded since it corresponds to the
unphysical situation of negative values of the energy density.

For q− = 3
ω (1 −

√
1 + 2

3ω):

a(t) ∝ tω(3+q−)/3(4+3ω), φ(t) ∝ t(4−ωq−)/(4+3ω). (78)

The phase portrait for six different values of ω: −5, −4/3, −1, 1, 50 and 500 are
plotted in Fig. 1. As mentioned before, the two spread invariant rays for ω > −3/2
are related to the q± vacuum solution (ρ = 0), while the invariant ray in the middle
is for q = −2, which corresponds to our solution Eq. (30) for ω < −3/2. Increasing
the value of ω makes the q± invariant rays to move away from the q = −2 invariant
ray. As can be seen by Eq. (65), the region between the two invariant rays q±
corresponds to negative values of the energy density, hence should be excluded on
physical basis. Additionally, for large values of ω the q± invariant rays tend to lay
along the F = 0 line, which represent the ω → ∞ limit.

7. Discussion

In this paper, we analyzed the cosmological solution for a perfect fluid in BD theory
and showed that stiff matter (p = ρ) is a very particular solution. There are power-
law solution with the scale factor and the scalar field, respectively, proportional to
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a ∝ t1/2 and φ ∝ t−1. Even though the matter content behaves as stiff matter,
the cosmological evolution mimics a radiation dominated dynamics in GR. Fur-
thermore, the scalar field gives the effective gravitational strength, hence, gravity
becomes stronger with the expansion of the universe.

Equation (35) shows that the scalar field is inversely proportional to the BD
parameter ω. This condition is commonly understood as a sufficient condition for
a well-defined GR limit. However, we have shown that this is not the case for the
power-law solution (30).

The scalar cosmological perturbation also has interesting features. The velocity
field for the stiff matter fluid has a growing mode U that is proportional to scale
factor. This extra contribution produces new polynomial solutions for the density
contrast δ = δρ/ρ, the fractional scalar field perturbation λ = δφ/φ and the tensor
perturbation h = hkk/a

2. The homogeneous mode has four power solution in cos-
mic time tm with m = −1, 0, 1/2, 1. The first two are connected with the residual
freedom of the synchronous gauge and the other two are the physical solutions cor-
responding to two growing modes. There is no decaying mode. The inhomogeneous
mode related to the growing mode U goes as t3/2 ∝ a3, hence it is a steep growth
if compared with the standard cosmological model.

The dynamical systems analysis developed in Sec. 6 shows the existence of three
invariant rays associated with the system (59)–(60). The first corresponds to the
power-law solution of Sec. 4 with constant of proportionally q = −2. The other
two are vacuum solutions with constant of proportionally q± given by Eq. (64).
For ω < −3/2 there is only one invariant ray associated with q = −2 while for
ω > −3/2 there are two vacuum invariant rays q±. The region in the phase space
diagram between these two rays has negative energy density, which is unphysical.
Increasing the value of the BD parameter ω, these two rays rotate away from each
other expanding the unphysical region. The limiting case is for ω → ∞ when both
q± tends to zero. This limit has a vacuum solution with constant scalar field F = 0
but the scale factor increases as a ∝ t1/3, which is characteristic of a FLRW universe
with stiff matter in GR. Even though this is the vacuum case and the scalar field
is constant, we do not approach Minkowski spacetime.

We would like to point out to a possible cosmological realization of our solution
(33). Alternative theories of gravity, such as BD, are commonly used in cosmol-
ogy to explain the late time acceleration of our universe. One of these models are
Quintessence models, in which the matter component is described by a minimally
coupled scalar field, with a potential V (ψ). Some of these models,46 are such that
its potential goes to zero at early times, which implies that in this period the scalar
field has a stiff matter type equation of state. Therefore, the model described in
this work can be interpreted as the early time description of such models.

It is well known in the literature that there are examples where the BD param-
eter scales as φ ∼ 1/

√
ω but the system does not approach a GR regime in the

limit ω → ∞. Nevertheless, it is commonly expected to recover GR in this limit if
φ ∼ 1/ω and the matter energy-momentum tensor has a nonzero trace. We have
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explicitly showed an exact BD solution with φ ∼ 1/ω and T µ
µ 	= 0 that does not

approach GR in the limit ω → ∞.
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