
 

Spacetime singularities in generalized Brans-Dicke theories

G. Brando,* F. T. Falciano,† and L. F. Guimarães‡

CBPF - Centro Brasileiro de Pesquisas Físicas, Xavier Sigaud st. 150, zip 22290-180,
Rio de Janeiro, Brazil

(Received 11 June 2018; published 20 August 2018)

We study the formation of classical singularities in generalized Brans-Dicke theories that are natural
extensions to Brans-Dicke where the kinetic term is modified by a new coupling function ωðφÞ. We discuss
the asymptotic limit ωðφÞ → ∞ and show that the system generically does not approach general relativity.
Given the arbitrariness of ωðφÞ, one can search for coupling functions chosen specifically to avoid classical
singularities. However, we prove that this is not the case. Homogeneous and spherically symmetric
collapsing objects form singularities for arbitrary coupling functions. On the other hand, expanding
cosmological scenarios are completely free of big rip type singularities. In an expanding universe, the scalar
field behaves at most as stiff matter, which makes these cosmological solutions asymptotically approach
general relativity.
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I. INTRODUCTION

In a recent paper, Alexander et al. [1] investigate possible
Higgs-like mechanisms to account for the emergence of
gravity in extensions to general relativity (GR). The main
idea is that symmetry restoration (breaking) could “turn
off” (“turn on”) gravity. The authors argue that a possible
realization of this scenario is to identify the scalar field in
Brans-Dicke (BD) theory with the Higgs-like field that
undergoes symmetry restoration. At low curvature con-
figurations the system must conform to GR but at high
curvature regime a phase transition can drastically modify
the dynamics. In particular, one might wonder if this type of
Higgs-like mechanisms could dynamically avoid classical
singularities.
BD theory is an attempt to incorporate Mach’s principle

in a relativistic gravitational theory. This pioneer work by
C. Brans and R. H. Dicke [2] can be seen as a scalar-tensor
gravity theory where the extra scalar field is nonminimally
coupled to the Ricci scalar. This coupling introduces an
effective gravitational strength inversely proportional to
the scalar field, Geff ∼ φ−1. Recently, BD received much
attention due to its phenomenological applications in
cosmology [3–7]. The kinetic term associated with φ
carries a constant dimensionless parameter ωBD. In order
for BD to be consistent with solar system astronomical
experiments, the BD parameter must be large (ωBD > 500
see [8]). Effectively, this constrains BD to be observatio-
nally indistinguishable from GR in the weak field limit.

There are black hole solutions in BD [9–12], even
though not with exactly the same features as in GR, and
an analogue version of Birkhoff’s theorem that proves that
a static, spherically symmetric, asymptotically flat, vacuum
solution in the Jordan frame is uniquely characterized by
the Schwarzschild solution [13]. Thus, it is certain that BD
has singular solutions.
A straightforward generalization of BD is to promote ω

to be a function of the scalar field as it is the case of
generalized Brans-Dicke theories (GBD). In fact, BD can
be seen as a particular example of GBD where the coupling
function is fixed to be a constant. GBD was first introduced
by Nordvedt [14], where he analyze the post-Newtonian
corrections to weak-field regime. Almost simultaneously,
Wagoner [15] also studied the weak-field limit considering
the predictions for classical tests as light propagation and
perihelion shift effects and the observable differences
between the scalar and tensor components in gravitational
waves.
Our goal in the present work is to analyze if GBD can

dynamically avoid the formation of singularities. For that we
shall discuss collapsing and cosmological solutions. In the
next section we briefly describe GBD theories and the
conditions for approaching the GR regime. In Sec. III we
discuss the necessary matching conditions and the geomet-
rical setting for our dynamic system. In Secs. IV and V we
analyze, respectively, the collapsing and cosmological sce-
narios and in Sec. VI we conclude with some final remarks.

II. GENERALIZED BRANS-DICKE THEORIES

The GBD theory describes a family of generalized
scalar-tensor theories. The action reads
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S ¼
Z

dx4
ffiffiffiffiffiffi
−g

p �
1

2κ

�
φR −

ωðφÞ
φ

∇αφ∇αφ

�
þ Lmat

�
: ð1Þ

where κ ≡ ð8πGÞ−1. The scalar field has been normalized
such that for constant φ ¼ 1 one recovers GR. For each
coupling functionωðφÞ one has a different modified gravity
theory.
The extra scalar degree of freedom motivates the use of

this framework to describe inflationary models. In 1989, La
and Steinhardt presented a new inflationary scenario, called
extended inflation [16–20], based on the original Brans-
Dicke theory. Using scalar-tensor theories of gravity with
canonical kinetic term, Acetta and Steinhardt [21] inves-
tigated inflationary models for an arbitrary function of
φ coupled to the Ricci scalar. Additionally, Barrow and
Maeda [22] used GBD theories (1) to model an inflationary
epoch. In contrast to pure BD framework, these last two
approaches were named hyperextended inflation [23–27].
Still in the context of cosmology, Barrow [28,29] used the
action (1) to study FLRW cosmological models. As already
pointed out, the widespread use of this modified theory of
gravity is due to its rich phenomenology, as seen by the
arbitrary character of ωðφÞ, and the possible role that the
scalar field may play in these scenarios.
From the action (1), we can obtain the dynamic equa-

tions by varying it with respect to the metric and the scalar
field:

Gμν ¼
8π

φ
TðmÞ
μν þ ωðφÞ

φ2

�
∇μφ∇νφ −

1

2
gμν∇αφ∇αφ

�

þ 1

φ
ð∇μ∇νφ − gμν□φÞ; ð2Þ

□φ ¼ −
φ

2ω
R −

1

2
ð∇αφ∇αφÞ

�
1

ω

dω
dφ

−
1

φ

�
; ð3Þ

with Gμν ¼ Rμν − 1
2
gμνR being the Einstein tensor. Taking

the trace of Eq. (2), we can rewrite Eq. (3) as:

□φ ¼ 1

2ωþ 3

�
8πTðmÞ −

dω
dφ

∇αφ∇αφ

�
; ð4Þ

where TðmÞ is the trace of the matter energy-momentum
tensor.
By construction, the action is diffeomorphism invariant.

Since all variables are dynamic fields, one immediately has
conservation of energy-momentum. One can also directly
check that by taking the divergence of (2) and using (3)

∇μTðmÞμν ¼ 0: ð5Þ

In our analysis, the matter content is described by
conventional barotropic fluids with constant equation of
state

p ¼ ðγ − 1Þρ; 1 ≤ γ ≤ 4=3: ð6Þ

We shall also mention the relation between the Jordan
and Einstein frames. As described above, GBD is written
in the Jordan frame. As it is well known, a conformal
transformation in the metric [30,31] take us to the Einstein
frame where the action resembles the Einstein-Hilbert
action but with the scalar field now nonminimally coupled
to the matter fields. Some authors claim that GBD
(including the original BD) is conformally equivalent to
Einstein’s theory. However, there is an intense debate in the
literature concerning the physical equivalence of these two
frameworks [32–37].
The collapse of a scalar field within the scope of GR has

already been analyzed in the literature. For example, the
seminal work of Christodoulou [38] showed that a naked
singularity can occur in the spherical collapse of a scalar
field, while Choptuik [39] developed a numerical study for
a massless scalar field considering a family of solutions
with the property that a critical parameter, p�, indicates the
formation of black holes. Since then several works studied
the critical behavior and the properties of the gravitational
collapse of scalar fields [40–47].
In the present work we will concentrate only on the

avoidance or formation of singularities within GBD for
the gravitational collapse and cosmological scenarios.
Furthermore, in our case the scalar field is part of the
geometry and not a matter field, as considered in the works
mentioned above. The difference on the causal structure
and the critical behavior for a collapsing system in GBD is
a very interesting subject that we shall analyze in the future.

A. General relativity limit

The experimental success of GR compels any alternative
theory of gravity to look for a regime that is indistinguish-
able from GR. BD theory is an example where solutions
can be continuously deformed into GR solutions as one
makes the parameter ωBD → ∞. In particular, it is argued
[8,48] that Solar System time-delay experiments sets a
lower bound of ωBD > 500. A typical argument to support
that BD theory approaches GR in the ωBD → ∞ goes as
follows [49]. The BD dynamics reads

□φ ¼ Tμ
μ

2ωBD þ 3
ð7Þ

Gμν ¼
8πTμν

φ
þ 1

φ
ð∇μ∇νφ − gμν□φÞ

þ ωBD

φ2

�
∇μφ∇νφ −

1

2
gμν∇αφ∇αφ

�
: ð8Þ

When the parameter ωBD ≫ 1, Eq. (7) seems to show that
□φ ¼ Oðω−1

BDÞ, hence
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φ ¼ 1

G
þO

�
1

ωBD

�
ð9Þ

Gμν ¼ κTμν þO
�

1

ωBD

�
ð10Þ

where G is Newton’s gravitational constant. Equation (10)
goes to Einstein’s equations in the limit ωBD → ∞.
However, it has been shown [11,50–61] that several exact
solutions of BD theory do not tend to the corresponding GR
solution in the limit ωBD → ∞. The asymptotic behavior
differs from Eq. (9) decaying as

φ ¼ 1

G
þO

�
1ffiffiffiffiffiffiffiffiffi
ωBD

p
�
: ð11Þ

In this case the last term of Eq. (8) does not go to zero,
which breaks the GR limit. This feature is closely related
with the conformal invariance of the matter content.
Conformal invariance of BD theory, when considering
pure gravitational systems or with a traceless matter
content, implies that the action functional is invariant under
an one-parameter Abelian group of transformation that
changes the value of the parameter ωBD. Faraoni has shown
[62] that the set of all BD theories connected by this
symmetry operation forms an equivalence class. Then,
conformal invariant rescale the BD parameter such that the
limit ωBD → ∞ can also be seen as a parameter change
under the same equivalence class of theories. GR is clearly
not invariant under the action of this Abelian group and
therefore cannot be reached by the limit ωBD → ∞. Thus,
one should not simply assume that BD approaches GR for
very large values of the parameter ωBD.
For GBD the situation is more involved since ω is no

longer a parameter but a function of the scalar field.
Furthermore, the scalar field dynamic equation (4) has
an extra term given by the derivative of the coupling
function with respect to the scalar field. This equation can
be recast as

∇μ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

p ∇μφ
�
¼ TðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωþ 3
p : ð12Þ

The coupling function is arbitrary apart from some
boundary conditions. A necessary condition to have a
GR-like regime is that when φ approaches unit ω increases
boundlessly. Thus, Eq. (12) gives

lim
φ→1

∇μφ ¼ Aμffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

p þ Bμ þO
�
1

ω

�
; ð13Þ

where Aμ and Bμ do not depend on the scalar field. For
vanishing Bμ and constant ω one recovers Eq. (11).
However, the nontrivial dependence of the coupling func-
tion on the scalar field prevents establishing the asymptotic
behavior of the scalar field without specifying the coupling

function. Notwithstanding, Eq. (13) suffices to show that
the last term of Eq. (2) does not vanish in the corresponding
limit. Furthermore, this result does not depend on the nature
of the matter content inasmuch as the dominant term on the
right-hand side of Eq. (4) is the derivative of the coupling
function with respect to the scalar field.
For a FLRW spacetime, Eqs. (12) and (13) are ordinary

time differential equations. While ω → ∞ the scalar field
velocity goes to zero, hence we have to analyzed carefully
this limit for the product ω _φ. For a finite scale factor, it can
be shown that ω _φ2 ∝ a−6 [see Eq. (21)] and the dynamic
equations reduce to

H2 ¼ κρ

3
þ κρ�

3

�
a0
a

�
6

−
k
a2

ð14Þ

ä
a
¼ −

κðρþ 3pÞ
6

−
2κρ�
3

�
a0
a

�
6

ð15Þ

where ρ� ≡ 1
4
ð2ω0 þ 3Þ _φ2

0 and ω0 and _φ0 are constants
associated with the initial values of the coupling function
and the scalar field velocity. Unless _φ0 is strictly zero, there
is always a stiff matter type fluid correction in the GR-like
regime. Furthermore, the coupling function has to increase
boundlessly when φ goes to unit, which can be accounted
for only if there is a discontinuity in the coupling function.
Thus, there are two disjoint branches as shown in Fig. 1.
For branch I, the GR limit is attained for φ → 1− and
dω
dφ > 0, while for branch II φ → 1þ and dω

dφ < 0.

III. MATCHING CONDITIONS AND
GEOMETRICAL SETTING

The singularity theorems developed by Penrose, Hawking
and collaborators [63–68] prove that under physical reason-
able conditions, singularities will unavoidably form within

FIG. 1. Asymptotic behavior of the coupling function ωðφÞ that
preserve three physically reasonable conditions: gravitation
strength is always non-negative (φ ≥ 0); the coupling function
satisfies 2ωþ 3 > 0 in order to avoid the scalar field velocity
singularity; the system approach asymptotically the general
relativity regime for φ → 1.
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GR dynamics. These theorems are general in the sense that
they donot suppose any spacetime symmetry.Aconsiderable
simpler case is to study the formation of singularities in
homogeneous and isotropic solutions. Friedmann-Lemaître-
Robertson-Walker (FLRW) solutions can be used to describe
cosmological and collapsing compact objects solutions.
Using a spherical coordinate system, the FLRW line

element reads

ds2 ¼ dt2 − a2ðtÞ
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2ðθÞdϕÞ

�
; ð16Þ

where k ¼ 0, �1 defines the spatial section curvature.
Conservation of energy-momentum for a barotropic fluid
[Eqs. (5) and (6)] implies

ρ ¼ ρ0

�
a0
a

�
3γ

ð17Þ

with ρ0 and a0 the initial values of matter density and scale
factor, respectively. Inserting the FLRW metric in (2)–(4),
the dynamics for a homogeneous and isotropic metric reads

H2 ¼ κρ0
3φ

�
a0
a

�
3γ

þ ω

6

�
_φ

φ

�
2

−H
_φ

φ
−

k
a2

ð18Þ

ä
a
¼ −

ð3þ ð3γ − 2ÞωÞ
2ωþ 3

κρ0
3φ

�
a0
a

�
3γ

þH
_φ

φ

−
ω

3

�
_φ

φ

�
2

þ _φ2

2φð2ωþ 3Þ
dω
dφ

ð19Þ

φ̈þ 3H _φ ¼ 1

2ωþ 3

�
ð4 − 3γÞκρ0

�
a0
a

�
3γ

− _φ2
dω
dφ

�
ð20Þ

where we have introduced the Hubble factorH ≡ _aa−1. It is
useful to rewrite the Klein-Gordon-like (KGL) equation as

_φ ¼ ð4 − 3γÞκρ0a3γ0
a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

p
Z

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

p
a3ðγ−1Þ

þ
�
a0
a

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0 þ 3

2ωþ 3

r
_φ0 ð21Þ

where _φ0 is the initial value of the scalar field velocity.
Each coupling function ωðφÞ defines a different gener-

alized Brans-Dicke theory. This function is arbitrary but
must respect a few constraints. Equation (21) shows that
ω ¼ −3=2 is a singular point, hence we shall impose
2ωþ 3 > 0. When φ ¼ 1 the strength of the gravitational
field equals its value in GR. Furthermore, the dynamics gets
close to GR when the coupling function becomes very
large, i.e., ω ≫ 1. In addition, the scalar field is associated
with the gravitational strength which makes sense only if
φ ≥ 0. Thus, we shall impose boundary conditions such
that (see Fig. 1)

lim
φ→0

ωðφÞ ¼ ∞; lim
φ→1

ωðφÞ ¼ ∞; and 2ωþ 3 > 0:

ð22Þ

A FLRW metric can be used to describe the interior of a
collapsing compact object. However, a complete solution
requires specifying the spacetime geometry everywhere.
Thus, the use of FLRW metric to model collapsing objects
needs matching conditions to connect with the exterior
solution. Two spacetimes can be smoothly joined by the
Israel-Darmois [69,70] matching conditions. We shall
impose that the first and second fundamental forms,
namely, the induced metric and the extrinsic curvature
are continuous at the boundary hypersurface

hðextÞab ¼ hðintÞab ; KðextÞ
ab ¼ KðintÞ

ab : ð23Þ

For a dust collapsing cloud (γ ¼ 1), the exterior space-
time is described by the Schwarzschild metric [71] written
in the Eddington-Finkelstein coordinates

ds2ðextÞ ¼
�
1 −

2M
χ

�
dv2 − 2dvdχ − χ2dΩ2 ð24Þ

where v and χ are, respectively, the advanced and radial
coordinates. The interior spacetime is the FLRW metric
(16). Using the matching conditions (23), we arrive at a
dust collapsing equation of motion

�
_a
a

�
2

þ k
a2

¼ 2GM
a3R3

; ð25Þ

where M is the total mass of the collapsing system. For
other fluids, the exterior solution cannot be Schwarzschild
since we have a nonzero pressure at the boundary. In these
cases, the appropriate exterior spacetime is the generalized
Vaidya spacetime [72–75]

ds2ðextÞ ¼
�
1 −

2Mðv; χÞ
χ

�
dv2 − 2dvdχ − χ2dΩ2: ð26Þ

In the Vaidya line element, the mass function depends
only on the advanced coordinates while in the generalized
version we have Mðv; χÞ, hence, the ∂χM ≠ 0 allows a
nonzero pressure at the boundary. We can match all FLRW
interior solution with 1 ≤ γ ≤ 4=3 to the generalized
Vaidya exterior solution. The matching can be done by
writing the FLRW metric in isotropic coordinates

ds2ðintÞ ¼ dt2 −
a2ðtÞ

ð1þ kR2=4Þ2 ðdR
2 þ R2dΩ2Þ: ð27Þ

For these cases, the Israel-Darmois matching conditions
read
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χ ¼ Ra

�
1þ kR2

4

�−1
; ð28Þ

_v ¼
�
1þ kR2

4

��
1 −

kR2

4
− R _a

�−1
; ð29Þ

2M ¼ aR3ð _a2 þ kÞ
�
1þ kR2

4

�−1
; ð30Þ

∂M
∂v ¼ −

∂2χ

∂v2 −
�
1 −

2M
χ

−
∂χ
∂v

��
M
χ
−
∂M
∂χ

�
: ð31Þ

For an interior FLRW metric, the exterior spacetime
compatible with the junction conditions (23) are the
Schwarzschild (24) or the generalized Vaidya metric
(26). In what follows we shall concentrate on the interior
FLRW solution since our concern is the possible formation
of spacetime singularities.

IV. COLLAPSING COMPACT OBJECTS

Our main goal is to study the dynamic system (18)–(20)
and see if a collapsing object can avoid the singularity
through the influence of the extra geometrical scalar field.
More precisely, we shall impose initial conditions com-
patible with GR and search for possible dynamics that
could avoid gravitational singularities. A direct inspection
of (18) shows that a bounce (H ¼ 0) can happen only if
ω < 0. However, GR initial conditions implies ωðφ0Þ ≫ 1
and j _φ0j ≪ 1, hence, in order to avoid the singularity, the
dynamics has to move far away from GR. Assuming initial
conditions compatible with GR for a collapsing compact
object means that we have H < 0 with finite initial size
(a0 is finite). Since ω ≫ 1, we can neglect the matter
contribution to the KGL equation, namely, the scalar field
dynamics reads

φ̈ ¼ −3H _φ −
_φ2

2ωþ 3

dω
dφ

: ð32Þ

Thus, initially we have

_φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0 þ 3

2ωþ 3

r �
a0
a

�
3

_φ0: ð33Þ

Note that for a pure barotropic radiation collapse, Eq. (33)
is precise since the matter contribution to the KGL equation
vanishes. Furthermore, as long as we can neglect the matter
content in the KGL equation, the scalar field velocity does
not change sign. If the scalar field starts increasing
(decreasing), while the neglected matter term approxima-
tion remains valid, it will continue increasing (decreasing)
its value.
The evolution of the system depends, evidently, on the

coupling function that defines the GBD theory. In order to

keep the discussion as general as possible, we shall impose
only the boundary conditions (22). Thus, there are two
distinct behaviors depending on the range of the scalar
field. In branch-I, the scalar field can take values on the
interval φ ∈ ð0; 1�. Branch-II covers the complementary
domain given by φ ∈ ½1;∞Þ. Let us analyze separately each
branch.

A. Branch-I

1. Case I-a: _φ0 > 0

In this branch, close to φ ¼ 1 we have dω
dφ ≫ 1.

Equation (21) shows that if _φ0 > 0 then the scalar field
climbs up the coupling function. The dynamics pushes the
system even further away from the ω < 0 region, hence,
there is no bounce. The scale factor contracts continuously
until the collapse produces a singularity. Even though the
velocity field does not change sign, its acceleration depends
on the strength of the velocity field. The manner in which
the system approaches the singularity depends on the relative
dynamics of the scalar field and a combination of the Hubble
factor and the coupling function.Equation (32) canbewritten
in a more suggestive way as

φ̈ ¼ −3H _φ

�
1 −

_φ

_φc

�
; ð34Þ

where we have defined a critical velocity

_φc ≡
				 1

3Hð2ωþ 3Þ
�
dω
dφ

�				
−1
: ð35Þ

If the velocity is smaller than the critical value, _φ < _φc,
Eq. (34) shows that φ̈ > 0, which increases the scalar field
velocity. If _φ > _φc, then φ̈ < 0, which decreases the velocity
of the scalar field.As far aswe canneglect thematter term,we
have three possible situations, depending on the dynamics of
_φc with respect to the velocity of the scalar field. In order to
see this behavior, let us approximate the coupling function
and its derivative. Close to the divergent point the coupling
function can be approximated by

lim
φ→1−

ω ¼ ω�
ð1 − φÞn ; ð36Þ

where ω� > 0 and n ∈ N. Thus, we have

lim
φ→1

_φ ¼
ffiffiffiffiffiffi
ω0

ω�

r �
a0
a

�
3

_φ0ð1 − φÞn=2; ð37Þ

lim
φ→1

_φ

_φc
¼

ffiffiffiffiffiffi
ω0

ω�

r
n _φ0

6H

�
a0
a

�
3

ð1 − φÞðn−2Þ=2: ð38Þ

Depending on the power n of the coupling function we
can have three different scenarios. When the evolution of
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_φc is slow enough, _φ oscillates around the value of _φc. For a
fast varying _φc, the scalar field velocity _φ never catches up
with the evolution of _φc. The third evolution is simply a
mixture of both dynamics. Figures 2 and 3 display typical
behaviors for these scenarios.

2. Case I-b: _φ0 < 0

Let us assume that _φ0 < 0. In this case, at least initially,
we have φ̈ < 0, hence the modulus of the scalar field
velocity increases as long as ω > 0. The dynamics
decreases the value of the scalar field while pushing down
the value of the coupling function.
In this regime, the scalar field contribution to

Friedmann’s equations is negligible until close to the
collapse where (33) is no longer valid. In principle, it is
possible to choose appropriately the coupling function such

that the scalar field reaches the ω < 0 region before the
collapse. The probability of a bounce increases with the
area of the region with negative values of ω. Therefore, let
us consider a flat potential well behavior for the coupling
function, which means we can neglect the dω

dφ term close to
the bounce. Numerical evaluation shows that indeed there
is a bounce with a negative constant coupling function.
Figure 4 displays a typical behavior of this kind of solution.
Notwithstanding, in order to have a full physical solution
we need to connect the bounce behavior of Fig. 4 with the
asymptotic regime ω ≫ 1.
Let us include Friedmann’s equations in our analysis. At

the bounce the curvature term is negligible, hence Eq. (18)
gives

_φ2
bounce ¼ κρ0

�
2φbounce

jωj
��

a0
abounce

�
3γ

: ð39Þ

To get an order of magnitude of the scalar field velocity
at the bounce, we can use the Sun’s astrophysical param-
eters. A compact object initially with the mean density of
the Sun has κρ0 ≈ 2, 5 × 10−6. If the length of the system
starts roughly with the Sun’s volumetric radius and the
bounce happens before the Sun’s Schwarzschild radius,
then a0=abounce ≈ 2; 4 × 105. Given that φbounce and jωj are
of the order of unit, and 1 ≤ γ ≤ 4=3, the scalar field
velocity is of the order of _φbounce ∼ 105.
The range of values of the scalar field in branch I is

φ ∈ ð0; 1�, hence this type of bounce is extremely fine-
tuned. The coupling function and the scalar field velocity
have to vary orders of magnitude while the scalar field
remains practically constant along the collapse. This is
possible only if the coupling function is so steep that the
deviation from GR happens almost instantaneously.
Furthermore, the range of the scalar field shows that
everything has to be finely adjusted to hit the ω < 0 region

FIG. 2. Numerical evolution for the initial values satisfying
_φcðt0Þ > _φ0. The dashed curve correspond to the evolution of _φc
while the solid curve to _φ. As long as _φc > _φ, the scalar field
acceleration is positive. But, for _φc < _φ the acceleration becomes
negative and decreases the scalar field velocity.

FIG. 3. Numerical evolution for the initial values satisfying
_φ0 > _φcðt0Þ. The dashed curve correspond to the evolution of _φc
while the solid curve to _φ. The dynamics of _φc is slow enough
that _φ has time to catch-up and the scalar field acceleration goes
to zero.

FIG. 4. Dynamics of the system close to the bounce for a flat
negative coupling function (ω ¼ −1.4). The solid curve shows
the scale factor bounce while the small-dashed and large-dashed
curves show respectively the Hubble parameter for the scale
factor and the scalar field (Hφ ≡ _φ=φ).
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with the correct velocity (39). A little bit less or more in the
initial conditions makes the coupling function never
reaches the ω < 0 region or leave it too soon as φ → 0.
Therefore, even though mathematically possible this
bounce is physically unreasonable.

B. Branch-II

There are two main differences from branch-I to branch-
II. Initially the derivative of the coupling function is
negative, i.e., dω

dφ < 0 and in principle there is no upper
limit to the value of the scalar field. Apart from this, we still
have H < 0 with finite initial size (a0 is finite), and since
ω ≫ 1 we can neglect the matter contribution to the KGL
equation

φ̈ ¼ −3H _φ −
_φ2

2ωþ 3

dω
dφ

: ð40Þ

Analogous to branch-I, we can divide branch-II in
two cases.

1. Case II-a: _φ0 < 0

This case is similar to case I-a. As long as we can neglect
the matter term we have

φ̈ ¼ −3H _φ

�
1þ _φ

_φc

�
; ð41Þ

where the critical velocity is defined strictly positive as
before and the change of sign is due to the change of sign of
the derivative of the coupling function. In a collapsing
system, for a negative initial velocity we have H _φ0 > 0,
hence if j _φj < _φc the acceleration is negative, which
increases the modulus of the scalar field velocity. On the
other hand, if j _φj > _φc, then the acceleration is positive.
Once more, while the approximation we have three
possible behaviors as depicted on case I-a.
There is, however, one important difference when the

matter term starts to dominate. Contrary to the case I-a, the
positive acceleration produced by the matter term reverse
the scalar field dynamics pushing it down to the ω < 0
region. The crucial point is now to analyze if the system can
reach the bounce allowed region before the scale factor
goes to zero. Once again we need to take into account
Friedmann’s equations.
Close to the singularity, when the matter term dominates,

Friedmann’s equation (18) can be approximated to

H2 ≈
κρ0
3φ

�
a0
a

�
3γ

þ ω

6

�
_φ

φ

�
2

; ð42Þ

and for positive coupling function we have kHk ≥ kHφk.
Thus the velocity of the scale factor is greater than the
scalar field’s. A comparison of the second Friedmann’s
equation (19) with KGL (20) also shows that the scale

factor acceleration is greater than the scalar field’s. In the
limit a → 0 we can approximate

ä
a
≈ −

ð3þ ð3γ − 2ÞωÞ
2ωþ 3

κρ0
3φ

�
a0
a

�
3γ

−
ω

3

�
_φ

φ

�
2

ð43Þ

φ̈

φ
≈
ð4 − 3γÞ
2ωþ 3

κρ0

�
a0
a

�
3γ

ð44Þ

For positive value of the coupling function, the above
equations show that j äa j ≥ j φ̈φ j. Even though the system
does move in the direction of the bounce allowed region,
the dynamics hits the singularity a ¼ 0 before the scalar
field reaches the ω < 0 region. Thus, there is also no
bounce for this case and the singularity is unavoidable.

2. Case II-b: _φ0 > 0

This is the most promising scenario for a bounce since
the system can be driven to the bounce allowed region
right from the beginning. Since dω=dφ < 0 and _φ0 > 0,
the right-hand side of Eq. (20) is positive, hence, during
the collapse the sign of φ̈ is always positive. Similarly to
case II-a, Friedmann’s equations show that the scale factor
dynamics is faster than the scalar field’s. During the
contracting phase, we can recast Eq. (18)–(19) as two
inequalities

H2 −
ω

6
H2

φ > 0; ð45Þ

ä
a
þ φ̈

3φ
< 0: ð46Þ

These relations show that indeed the scale factor velocity
and acceleration are greater than the scalar field velocity
and acceleration. Again, the issue is if the system has
enough time to reach the ω < 0 region. The coupling
function is arbitrary, which allows for fast variations of
ω even with small variation of φ as long as j dωdφ j ≫ 1.
Inequalities (45)–(46) give the relative dynamics of a and φ
but we need to compare how much ω varies with the scale
factor. As long as we can arbitrary choose the coupling
function we can always find a function that allows for the
system to reach the ω < 0 region before the singular point
at a ¼ 0. Notwithstanding a closer analysis shows that even
in this case there is no bounce.
At the bounce (if possible), combining Eqs. (18)–(19)

one can show that

ä
a
¼ 3½1 − ðγ − 2Þω�

2ωþ 3

κρ0
3φ

�
a0
a

�
3γ

: ð47Þ

A bounce means ä > 0, which using Eq. (47) translates
into the condition 0 > ω > −1=ð2 − γÞ. In order to have a
bounce, the coupling function has only a narrow window of
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at most ω ∈ ð0;−1Þ. As a consequence, we also need a
small derivative of the coupling function. Otherwise the
system would leave this region too soon. This condition
also has the advantage to increase the probability of a
bounce since, once in the ω < 0 region, the system will
remain there until a possible bounce occurs.
KGL equation (20) guarantees that the velocity field only

increases during the collapse and is always positive. This
feature, that at first sight could favor a bounce, actually
invalidates it. We can rewrite Friedmann’s equation (18) as

κρ0
3

�
a0
a

�
3γ

−
kφ
a2

¼ _φ

�
−
ω

6

_φ

φ
þH

�
þH2φ ð48Þ

At the bounce the scale factor reaches its minimum,
hence the left-hand side of Eq. (48) reaches its maxi-
mum. Since the second time derivative of the scalar field
has to be positive, if _φ > 0, then the velocity of the scalar
field will continue to grow during the bounce. Thus,
instead of decreasing, the right-hand side (RHS) of (48)
increases, which contradicts the hypothesis of a bounce.
A bounce with almost constant coupling function can
happens only if the velocity of the scalar field is
negative, which would allow the RHS of (48) to decrease
in time.

C. Summary for collapsing compact object

We considered all possible cases for a spherically
symmetric and homogeneous collapsing object with
arbitrary coupling function. We divided our analysis in
four cases. In both cases I-a and II-a the dynamics has
ω → ∞ as an attractor. In case I-a, this feature remains
during the whole evolution while in case II-a is an attractor
only till the matter term starts to dominate in the KGL
equation. Thereafter, the system moves away from this
regime but has not enough time to reach the bounce
allowed region (ω < 0) before the singularity at a ¼ 0. In
case I-b the system also moves away from ω ≫ 1 right
from the beginning and can eventually access the ω < 0

region. However, branch-I has a limited range for the
scalar field, which makes the bounce fine-tuned. Even
though mathematically possible, a bounce in case I-b
suffers from fine-tuning. Finally, case II-b can also access
the ω < 0 region, but a closer analysis of the dynamic
shows that a bounce can happen only if the scalar field
velocity is negative, which in this case is prohibited by the
KGL equation.

Summary for Collapsing Compact Objects

Branch _φ changes sign Access ω < 0 Singularity

I-a No No Unavoidable
I-b Yes Yes Fine-tuned
II-a Yes No Unavoidable
II-b No Yes Unavoidable

V. COSMOLOGY

For the purpose of our study, we shall consider only
homogeneous and isotropic cosmological models. They
have strong observational support and suffice for our
analysis. A FLRW universe can have a collapsing phase
and/or an expanding phase. A collapsing FLRW universe
is formally identical to the cases examined in the col-
lapsing compact object. Therefore, it suffice to study
expanding universes with H > 0. We consider only initial
conditions close to GR and investigate each branch
separately (see Fig. 1).
In an expanding universe the singularities are of the big-

rip type (BR) [76–78]. These singularities are characterized
by the divergence of spacetime parameters in a future finite
time tBR, i.e.,

lim
t→tBR

aðtÞ ¼ ∞; lim
t→tBR

HðtÞ ¼ ∞; lim
t→tBR

äðtÞ ¼ ∞:

ð49Þ

The first Friedmann equation shows that a BR can
happen only if jHφj also goes to infinity. Indeed, it is
the scalar field that must drive the BR, and, close to this
point, we can approximate Eq. (18) to

H2 þHHφ ≈
ω

6
H2

φ: ð50Þ

The above equation shows that, contrary to the collaps-
ing case, a necessary condition for a BR is ω > 0. Let us
analyze individually each branch of the coupling function.

A. Branch-I

1. Case I-c: _φ0 > 0

There is no novelty in this case. The integrated KGL
equation (21) shows that if _φ0 > 0 then _φ cannot change
sign and the system will climb up the coupling function
indefinitely. As long as the coupling function increases
boundlessly, the contribution of the scalar field can be at
most as stiff matter, which decreases with a−6, hence GR
can be seen as an asymptotic regime.

2. Case I-d: _φ0 < 0

In branch-I, the scalar field is limited to φ ∈ ð0; 1�. An
initial negative velocity pushes the system down in the
coupling function and to small values of the scalar field.
There are two ways to produce a BR: the velocity of the
scalar field can diverge to plus or minus infinity. Let us first
consider the Hφ → −∞ possibility.
Assuming initial conditions close to GR, the initial

velocity of the scalar field has to be small and the coupling
function (and its derivative) very large. In order to have a
Hφ → −∞ in finite time, the acceleration of the scalar
field has also to diverge to minus infinity. This implies that
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the matter term in the KGL equation can never dominate
and the coupling function derivative has to be positive.
Thus, the BR has to occur before the scalar field reaches
the ω < 0 region. Evidently, this is a very fine-tuned
condition and physically unrealizable.
Naively, one might expect that φ → 0 could engender a

BR since the right-hand side of the Friedmann equation (18)
is inversely proportional to the scalar field. However, on the
left side of branch-I, the scalar field acceleration becomes
positive and slow-down the scalar field. It is impossible to
produce a BR in the limit φ → 0 if the coupling function
diverges (ω ≫ 1) at the origin.
The second possibility is the scalar field velocity diverges

to plus infinity. For this to happen, the scalar field velocity
must change sign. AtHφ ¼ 0, the scalar field acceleration is
positive (φ̈ > 0) showing that it is a local minimum. After
this point, since we are considering an expanding universe
withH > 0, the scalar field will return and climb up the right
side of the coupling function and everything goes as in the
previous case I-c where there is no BR.

B. Branch-II

1. Case II-c: _φ0 < 0

A negative _φ0 in branch-II means that initially the scalar
field moves upward in the coupling function. Let us recall
the integrated version of the KGL equation

_φ ¼ ð4 − 3γÞκρ0a3γ0
a3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

p
Z

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

p
a3ðγ−1Þ

þ
�
a0
a

�
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω0 þ 3

2ωþ 3

r
_φ0 ð51Þ

The matter term on the right-hand side above is always
positive and, if _φ0 < 0, the last term is always negative.
Initially the matter term is negligible compared with the
other term since it has a higher power of the coupling
function in the denominator. In addition, the dynamics
decreases the matter term even further since H > 0 and the
scalar field is moving upward in the coupling function.
Thus, the negative term dominates and the scalar field
velocity never changes sign. Once again, the contribution
of the scalar field is at most of a stiff matter, which in an
expanding universe is negligible if compared with the
conventional matter term. Therefore, the system asymp-
totically approaches a GR regime.

2. Case II-d: _φ0 > 0

The KGL equation guarantees that an initially positive _φ0

is a sufficient condition for the scalar field to be always
positive. Thus, the system moves down the coupling
function. A necessary condition for a BR is that Hφ → ∞,
see Eq. (50). However, the KGL equation shows that for a
ω > 0 and a → ∞, we have Hφ → 0, which contradicts the

assumption of a BR. Thus, even though we have a complete
freedom in choosing the coupling function, there is also no
BR for this case.

C. Summary for cosmological dynamics

We considered all possible cases for a FLRW universe
with an arbitrary coupling function. As before, we divided
our analysis in four cases that are summarized in table
below. None of the four cases have BR type singularities.
Case I-d has a very fine-tuned possibility that it is
physically discarded. In terms of dynamics, both cases
I-c and II-c have GR as an asymptotic future attractor.

Summary for Cosmology

Branch _φ changes sign Asymptotic GR BR Singularity

I-c No Yes No
I-d Possible Possible Fine-tuned
II-c No Yes No
II-d No No No

VI. CONCLUSIONS

Generalized Brans-Dicke theories are natural extensions
to Brans-Dicke original proposal that maintains the same
non-minimal coupling between the curvature and the scalar
field while introducing a new coupling function to its
kinetic term. The main motivation is to allow the Brans-
Dicke parameter to vary in different gravity scenarios, such
as, between primordial universe and solar system dynam-
ics. In the present work we have studied the formation of
classical singularities in GBD. Given the arbitrariness of
the coupling function, one could argue that with an
adequate choice of ωðφÞ, in principle, it would be possible
to dynamically avoid classical singularities. The simplest
scenarios are homogeneous and isotropic spatial section
described by the family of FLRW metrics.
Our analysis depends only on two physically motivated

hypotheses. Solar system experiments and cosmological
observations show that GR is in good agreement with
experimental data [8,79,80]. Thus, we assume initial con-
ditions that mimic a GR regime, namely, small scalar field
velocities ðjHφj ≪ 1Þ and large coupling function (ω ≫ 1).
We impose boundary conditions for the coupling function
such that the effective gravitation strength, Geff ∼ φ, is non-
negative and satisfies the conditions given by Fig. 1.
We have shown that spherically symmetric and homo-

geneous collapsing objects generically form singularities.
Case I-b can avoid the singularity but the solution is
fine-tuned and not physically realizable. Indeed, it seems
reasonable that less symmetric solutions might relax
this fine-tuned condition for singularity avoidance; we
shall analyze carefully this possibility in a future work.
Contracting FLRW cosmological solutions are formally
identical to the collapsing cases. Thus, the cosmological
singularities that plague GR are also present in GBD.
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On the other hand, expanding cosmological scenarios are
completely free of big rip-type singularities. We have
shown that in an expanding universe the scalar field
behaves at most as a stiff matter type fluid, which makes
the system asymptotically approach GR.

ACKNOWLEDGMENTS

The authors are grateful to Nelson Pinto Neto and
Santiago Perez Bergliaffa for useful comments. We would
like to thank CNPq of Brazil for financial support.

[1] S. Alexander, J. D. Barrow, and J. Magueijo, Classical
Quantum Gravity 33, 14LT01 (2016).

[2] C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).
[3] O. Hrycyna, M. Szydłowski, and M. Kamionka, Phys. Rev.

D 90, 124040 (2014).
[4] O. Hrycyna and M. Szydłowski, Phys. Rev. D 88, 064018

(2013).
[5] G. Papagiannopoulos, J. D. Barrow, S. Basilakos, A.

Giacomini, and A. Paliathanasis, Phys. Rev. D 95,
024021 (2017).

[6] D. Alonso, E. Bellini, P. G. Ferreira, and M. Zumalacrregui,
Phys. Rev. D 95, 063502 (2017).

[7] N. Roy and N. Banerjee, Phys. Rev. D 95, 064048 (2017).
[8] C. M.Will, Theory and Experiment in Gravitational Physics

(Cambridge University Press, Cambridge, England, 1993).
[9] K. A. Bronnikov, Acta Phys. Pol. B 4, 251 (1973).

[10] K. A. Bronnikov, C. P. Constantinidis, R. L. Evangelista,
and J. C. Fabris, Int. J. Mod. Phys. D 08, 481 (1999).

[11] M. A. Scheel, S. L. Shapiro, and S. A. Teukolsky, Phys. Rev.
D 51, 4236 (1995).

[12] M. Campanelli and C. O. Lousto, Int. J. Mod. Phys. D 02,
451 (1993).

[13] V. Faraoni, F. Hammad, A. M. Cardini, and T. Gobeil, Phys.
Rev. D 97, 084033 (2018).

[14] K. Nordtvedt, Astrophys. J. 161, 1059 (1970).
[15] R. V. Wagoner, Phys. Rev. D 1, 3209 (1970).
[16] D. La and P. J. Steinhardt, Phys. Rev. Lett. 62, 376 (1989).
[17] M. Yoshimura, Phys. Rev. Lett. 66, 1559 (1991).
[18] A. H. Guth and B. Jain, Phys. Rev. D 45, 426 (1992).
[19] E.W. Kolb, D. S. Salopek, and M. S. Turner, Phys. Rev. D

42, 3925 (1990).
[20] R. Holman, E. W. Kolb, S. L. Vadas, and Y. Wang, Phys.

Rev. D 43, 3833 (1991).
[21] P. J. Steinhardt and F. S. Accetta, Phys. Rev. Lett. 64, 2740

(1990).
[22] J. D. Barrow and K. Maeda, Nucl. Phys. B341, 294 (1990).
[23] A. M. Laycock and A. R. Liddle, Phys. Rev. D 49, 1827

(1994).
[24] E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewart, and

D. Wands, Phys. Rev. D 49, 6410 (1994).
[25] D. Wands, Lect. Notes Phys. 455, 159 (1995).
[26] J. P. Mimoso and D. Wands, Phys. Rev. D 51, 477 (1995).
[27] D. Roberts, A. R. Liddle, and D. H. Lyth, Phys. Rev. D 51,

4122 (1995).
[28] J. D. Barrow, Phys. Rev. D 47, 5329 (1993).
[29] J. D. Barrow, Phys. Rev. D 48, 3592 (1993).
[30] V. Faraoni, Cosmology in Scalar Tensor Gravity (Springer,

New York, 2004).

[31] V. Faraoni and S. Capozziello, Beyond Einstein Gravity
(Springer, New York, 2011).

[32] I. D. Saltas and M. Hindmarsh, Classical Quantum Gravity
28, 035002 (2011).

[33] A. Yu. Kamenshchik, E. O. Pozdeeva, S. Yu. Vernov, A.
Tronconi, and G. Venturi, Phys. Rev. D 94, 063510 (2016).

[34] V. Faraoni and E. Gunzig, Int. J. Theor. Phys. 38, 217 (1999).
[35] V. Faraoni and S. Nadeau, Phys. Rev. D 75, 023501 (2007).
[36] V. Faraoni, Phys. Rev. D 59, 084021 (1999).
[37] K. Bhattacharya and B. R. Majhi, Phys. Rev. D 95, 064026

(2017).
[38] D. Christodoulou, Ann. Math. 140, 607 (1994).
[39] M.W. Choptuik, Phys. Rev. Lett. 70, 9 (1993).
[40] A. Wang and H. P. de Oliveira, Phys. Rev. D 56, 753 (1997).
[41] A. Wang, J. F. Villas da Rocha, and N. O. Santos, Phys. Rev.

D 56, 7692 (1997).
[42] N. Banerjee and S. Chakrabarti, Phys. Rev. D 95, 024015

(2017).
[43] S. Chakrabarti, Gen. Relativ. Gravit. 49, 24 (2017).
[44] X. Zhang and H. Lu H, Phys. Rev. D 91, 044046 (2015).
[45] J. M. Torres and M. Alcubierre, Gen. Relativ. Gravit. 46,

1773 (2014).
[46] K. Ganguly and N. Banerjee, Gen. Relativ. Gravit. 43, 2141

(2011).
[47] S. Bhattacharya, R. Goswami, and P. S. Joshi, Int. J. Mod.

Phys. D 20, 1123 (2011).
[48] R. D. Reasenberg et al., Astrophys. J. Lett. 234, L219 (1973).
[49] S. Weinberg, Gravitation and Cosmology (John Wiley &

Sons, New York, 1972).
[50] L. A. Anchordoqui, S. E. Perez-Bergliaffa, M. L. Trobo, and

G. S. Birman, Phys. Rev. D 57, 829 (1998).
[51] H. Nariai, Prog. Theor. Phys. 40, 49 (1968).
[52] A. Banerjee, N. Banerjee, and N. O. Santos, J. Math. Phys.

(N.Y.) 26, 3125 (1985).
[53] N. Banerjee, Acta Phys. Pol. B 17, 131 (1986).
[54] N. Banerjee and S. Sen, Phys. Rev. D 56, 1334 (1997).
[55] J. O’Hanlon and B. O. J. Tupper, Nuovo Cimento Soc. Ital.

Fis. 7A, 305 (1972).
[56] T. Matsuda, Prog. Theor. Phys. 47, 738 (1972).
[57] C. Romero and A. Barros, Phys. Lett. A 173A, 243 (1993).
[58] C. Romero and A. Barros, Phys. Lett. A 245, 31 (1998).
[59] C. Romero and A. Barros, Gen. Relativ. Gravit. 25, 491

(1993).
[60] F. M. Paiva, M. Reboucas, and M. MacCallum, Classical

Quantum Gravity 10, 1165 (1993).
[61] F. M. Paiva and C. Romero, Gen. Relativ. Gravit. 25, 1305

(1993).
[62] V. Faraoni, Phys. Rev. D 59, 084021 (1999).

BRANDO, FALCIANO, and GUIMARÃES PHYS. REV. D 98, 044027 (2018)

044027-10

https://doi.org/10.1088/0264-9381/33/14/14LT01
https://doi.org/10.1088/0264-9381/33/14/14LT01
https://doi.org/10.1103/PhysRev.124.925
https://doi.org/10.1103/PhysRevD.90.124040
https://doi.org/10.1103/PhysRevD.90.124040
https://doi.org/10.1103/PhysRevD.88.064018
https://doi.org/10.1103/PhysRevD.88.064018
https://doi.org/10.1103/PhysRevD.95.024021
https://doi.org/10.1103/PhysRevD.95.024021
https://doi.org/10.1103/PhysRevD.95.063502
https://doi.org/10.1103/PhysRevD.95.064048
https://doi.org/10.1142/S0218271899000341
https://doi.org/10.1103/PhysRevD.51.4236
https://doi.org/10.1103/PhysRevD.51.4236
https://doi.org/10.1142/S0218271893000325
https://doi.org/10.1142/S0218271893000325
https://doi.org/10.1103/PhysRevD.97.084033
https://doi.org/10.1103/PhysRevD.97.084033
https://doi.org/10.1086/150607
https://doi.org/10.1103/PhysRevD.1.3209
https://doi.org/10.1103/PhysRevLett.62.376
https://doi.org/10.1103/PhysRevLett.66.1559
https://doi.org/10.1103/PhysRevD.45.426
https://doi.org/10.1103/PhysRevD.42.3925
https://doi.org/10.1103/PhysRevD.42.3925
https://doi.org/10.1103/PhysRevD.43.3833
https://doi.org/10.1103/PhysRevD.43.3833
https://doi.org/10.1103/PhysRevLett.64.2740
https://doi.org/10.1103/PhysRevLett.64.2740
https://doi.org/10.1016/0550-3213(90)90272-F
https://doi.org/10.1103/PhysRevD.49.1827
https://doi.org/10.1103/PhysRevD.49.1827
https://doi.org/10.1103/PhysRevD.49.6410
https://doi.org/10.1007/3-540-60024-8
https://doi.org/10.1103/PhysRevD.51.477
https://doi.org/10.1103/PhysRevD.51.4122
https://doi.org/10.1103/PhysRevD.51.4122
https://doi.org/10.1103/PhysRevD.47.5329
https://doi.org/10.1103/PhysRevD.48.3592
https://doi.org/10.1088/0264-9381/28/3/035002
https://doi.org/10.1088/0264-9381/28/3/035002
https://doi.org/10.1103/PhysRevD.94.063510
https://doi.org/10.1023/A:1026645510351
https://doi.org/10.1103/PhysRevD.75.023501
https://doi.org/10.1103/PhysRevD.59.084021
https://doi.org/10.1103/PhysRevD.95.064026
https://doi.org/10.1103/PhysRevD.95.064026
https://doi.org/10.2307/2118619
https://doi.org/10.1103/PhysRevLett.70.9
https://doi.org/10.1103/PhysRevD.56.753
https://doi.org/10.1103/PhysRevD.56.7692
https://doi.org/10.1103/PhysRevD.56.7692
https://doi.org/10.1103/PhysRevD.95.024015
https://doi.org/10.1103/PhysRevD.95.024015
https://doi.org/10.1007/s10714-017-2186-y
https://doi.org/10.1103/PhysRevD.91.044046
https://doi.org/10.1007/s10714-014-1773-4
https://doi.org/10.1007/s10714-014-1773-4
https://doi.org/10.1007/s10714-011-1177-7
https://doi.org/10.1007/s10714-011-1177-7
https://doi.org/10.1142/S021827181101930X
https://doi.org/10.1142/S021827181101930X
https://doi.org/10.1103/PhysRevD.57.829
https://doi.org/10.1143/PTP.40.49
https://doi.org/10.1063/1.526692
https://doi.org/10.1063/1.526692
https://doi.org/10.1103/PhysRevD.56.1334
https://doi.org/10.1007/BF02743602
https://doi.org/10.1007/BF02743602
https://doi.org/10.1143/PTP.47.738
https://doi.org/10.1016/0375-9601(93)90271-Z
https://doi.org/10.1016/S0375-9601(98)00382-X
https://doi.org/10.1007/BF00756968
https://doi.org/10.1007/BF00756968
https://doi.org/10.1088/0264-9381/10/6/013
https://doi.org/10.1088/0264-9381/10/6/013
https://doi.org/10.1007/BF00759035
https://doi.org/10.1007/BF00759035
https://doi.org/10.1103/PhysRevD.59.084021


[63] R. Penrose, Phys. Rev. Lett. 14, 57 (1965).
[64] R. Penrose, Nuovo Cim. B1, 252 (1969).
[65] S. Hawking, Phys. Rev. Lett. 17, 444 (1966).
[66] S. Hawking and R. Penrose, Proc. R. Soc. A 314, 529

(1970).
[67] S. Hawking and G. F. R. Ellis, The Large Scale Structure

of Space-Time (Cambridge University Press, Cambridge,
England, 1973).

[68] S. W. Hawking and G. F. R. Ellis, Nuovo Cim. B44S10, 1
(1966).

[69] W. Israel, Nuovo Cim. B44S10, 1 (1966).
[70] G. Darmois, Memorial de Sciences Mathematiques,

Fascicule XXV, Les equations de la gravitation einsteini-
enne, Chapitre V (V. Gauthier-Villars et Cie, Paris, 1927).

[71] J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455
(1939).

[72] W. Anzhong and W. Yumei, Gen. Relativ. Gravit. 31, 107
(1999).

[73] P. S. Joshi and I. H. Dwivedi, Classical Quantum Gravity 16,
41 (1999).

[74] M. Bojowald, R. Goswami, R. Maartens, and P. Singh,
Phys. Rev. Lett. 95, 091302 (2005).

[75] M. Bojowald, Canonical Gravity and Applications Cosmol-
ogy, Black Holes, and Quantum Gravity (Cambridge
University Press, Cambridge, England, 2010).

[76] S. Nojiri, S. D. Odintsov, and S. Tsujikawa, Phys. Rev. D
71, 063004 (2005).

[77] L. P. Chimento and R. Lazkoz, Mod. Phys. Lett. A 19, 2479
(2004).

[78] R. R. Caldwell, M. Kamionkowski, and N. P. Weinberg,
Phys. Rev. Lett. 91, 071301 (2003).

[79] P. A. R. Ade et al. (Planck Collaboration), Astron.
Astrophys. 594, A14 (2016).

[80] P. A. R. Ade et al. (Planck Collaboration), Astron.
Astrophys. 594, A18 (2016).

SPACETIME SINGULARITIES IN GENERALIZED BRANS- … PHYS. REV. D 98, 044027 (2018)

044027-11

https://doi.org/10.1103/PhysRevLett.14.57
https://doi.org/10.1103/PhysRevLett.17.444
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1098/rspa.1970.0021
https://doi.org/10.1103/PhysRev.56.455
https://doi.org/10.1103/PhysRev.56.455
https://doi.org/10.1023/A:1018819521971
https://doi.org/10.1023/A:1018819521971
https://doi.org/10.1088/0264-9381/16/1/003
https://doi.org/10.1088/0264-9381/16/1/003
https://doi.org/10.1103/PhysRevLett.95.091302
https://doi.org/10.1103/PhysRevD.71.063004
https://doi.org/10.1103/PhysRevD.71.063004
https://doi.org/10.1142/S0217732304015646
https://doi.org/10.1142/S0217732304015646
https://doi.org/10.1103/PhysRevLett.91.071301
https://doi.org/10.1051/0004-6361/201525814
https://doi.org/10.1051/0004-6361/201525814
https://doi.org/10.1051/0004-6361/201525829
https://doi.org/10.1051/0004-6361/201525829

