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Bekenstein and Mayo proposed a generalized bound for the entropy, which implies some inequalities
between the charge, energy, angular momentum, and size of the macroscopic system. Dain has shown that
Maxwell’s electrodynamics satisfies all three inequalities. We investigate the validity of these relations in
the context of nonlinear electrodynamics and show that Born-Infeld electrodynamics satisfies all of them.
However, contrary to the linear theory, there is no rigidity statement in Born-Infeld. We study the physical
meaning and the relationship between these inequalities, and in particular, we analyze the connection
between the energy-angular momentum inequality and causality.
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I. INTRODUCTION

Bekenstein bounds and inequalities constitute a set of
universal relations between physical quantities and funda-
mental constants of nature [1,2]. They were initially
formulated from gedanken experiments within the scope
of black hole thermodynamics (BHT), which is a formal
analogy between gravitational compact systems and the
three laws of thermodynamics [3–6]. This formalism is a
sound effort to reconcile thermodynamics and black hole
physics, an example of which is the generalized second law
(GSL) [1,7,8]. The Bekenstein bounds and inequalities can
be seen as necessary conditions in order to guarantee GSL
and the consistency of general relativity with the laws of
thermodynamics.
However, since its first proposal, there have been

numerous generalizations of Bekenstein inequalities
[9,10]. General arguments seem to point to a consensus
of the existence, but there are still controversies on their
precise formulation. The most general inequality was
obtained by Bekenstein and Mayo in Ref. [11], which
relates the entropy of a system with domain Σ with the size,
energy, angular momentum, and charge as

ℏc
2πκB

S ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðERÞ2 − c2J2

q
−
Q2

8π
: ð1Þ

In the relation above, R is defined as the radius of the
minimum sphere, BR, that circumscribes the domain Σ.
It can be shown that inequality (1) is saturated for the case
of a Kerr-Newman black hole [11]. This result comes as no
surprise as long as the inequalities were constructed within
BHT. Notwithstanding, it also shows that one should
expect equality to always be reached in the most symmetric
configuration. In addition, since the entropy of a system is
always non-negative, Eq. (1) also implies

E2 ≥
Q4

64π2R2
þ c2J2

R2
; ð2Þ

where equality happens if S ¼ 0. Contrary to the first
inequality, the only fundamental constant appearing in (2)
is the speed of light, which makes theories of electrody-
namics particularly appropriate to test it. Along this line,
Dain [12] has proven that the above inequality holds for any
field configuration of Maxwell electrodynamics.
We can still decompose (2) in two particular cases: one

for vanishing angular momentum and the other for neutral
objects. For vanishing angular momentum, J ¼ 0, the
energy and charge of a system have to satisfy the inequality

E ≥
Q2

8πR
: ð3Þ

The equality in this case states that the total energy of the
system equals the electrostatic energy of a spherical thin
shell of radius R and constant surface charge density in
Maxwell’s theory. Thus, the equality is associated with the
most symmetric case in the linear electrodynamics theory.
For neutral objects, Q ¼ 0, we obtain a quasilocal

inequality that relates the energy of the electromagnetic
field and its angular momentum for the region Σ as

EðΣÞ ≥ cjJðΣÞj
R

: ð4Þ

For Maxwell electrodynamics, the total energy E is
always greater than EðΣÞ, and hence inequality (4) implies
(2) with Q ¼ 0. However, there is no such guarantee for
nonlinear electrodynamics. Besides, there seems to have no
straightforward interpretation for inequality (4). We can
gain some insight by looking again to the case of a rigid
slowly rotating spherical thin shell in Maxwell electrody-
namics. Within this approximation, it can be shown that
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EðΣÞ ≥ 2

3

J2

2Is
; ð5Þ

where Is is the moment of inertia of a thin shell. Thus, in the
linear theory, the quasilocal energy of a thin spherical shell
EðΣÞ is bounded from below by two-thirds of its minimum
rotational energy. This result suggests that the inequality (4)
could be strengthened. However, the fact that the complete
inequality holds for the Kerr-Newman black hole is a strong
constraint to any attempt to modify it. In addition, Dain has
proven [12] that the inequality between energy and angular
momentum is a direct consequence of the dominant energy
condition (DEC) and, moreover, that the equality in (4) is
reached in Maxwell electrodynamics only for radiation
fields, i.e., EαEα ¼ BαBα ¼ BαEα ¼ 0.
There are many examples of nonlinear electrodynamics

(NLED) in the literature [13–18]. Up to now, Maxwell
electrodynamics has never been seriously challenged by
any experiment. Nevertheless, there are interesting theo-
retical arguments [19–25] that prompt us to investigate
NLED. In addition, NLED naturally appears as the effec-
tive action for quantum electrodynamics if we consider
vacuum polarization effects [26,27].
Bekenstein bounds and inequalities are supposed to have

universal validity. Therefore, it is reasonable to use these
inequalities as a possible test for NLED candidates. This
criterion can be understood as complementary to already
known theoretical [28–30] and experimental [31–34] cri-
teria in the literature. The minimum requirement for a
NLED is to recover Maxwell electrodynamics in the
appropriate regime. However, there are physical arguments
based on causality that restrict the form of NLED
Lagrangians. In this paper, we shall use inequalities (2),
(3), and (4) as a physical argument to test NLED.
The paper is organised as follows. In the next section, in

order to fix notation, we briefly review the covariant
formalism of linear and nonlinear electrodynamics. In
Sec. III A, we explicitly show that Born-Infeld electrody-
namics, similarly to Maxwell electrodynamics, also sat-
isfies all three inequalities. In addition, in Sec. III B, we
present counterexamples showing that NLED in general
does not satisfy Bekenstein inequalities. In Sec. IV, we
investigate the relation of the angular momentum inequality
(4) with causality and show that, even though it is a
consequence of the DEC, this inequality cannot be strictly
associated with causality. Finally, in Sec. V, we conclude
with some general remarks.

II. ELECTRODYNAMICS

In this short review, we shall define some relevant objects
and fix our notation. Throughout our development, we shall
use Heaviside-Lorentz units with κB ¼ ℏ ¼ c ¼ 1. Let us
start by fixing spacetime as the flat Minkowski metric that
in Cartesian coordinates reads ημν ¼ diagð1;−1;−1;−1Þ.

Electromagnetism is understood as the vector gauge
theory with symmetry group Uð1Þ and is hence described
by the Faraday tensor Fμν ¼ ∂μAν − ∂νAμ. This automati-
cally guarantees, for any electromagnetic theory, the
validity of the second pair of Maxwell’s equations given
by ∂ ½αFμν� ¼ 0 where brackets mean total antisymmetry in
the indices.
The electric and magnetic fields are defined as the

projection of the Faraday tensor and its dual along the
observer’s worldline. The dual of the Faraday tensor is
given by ~Fμν ¼ 1

2
ημναβFαβ where ημναβ is the totally anti-

symmetric Levi-Cività tensor. Thus, consider an observer
with normalized velocity vμ, i.e., vμvμ ¼ 1. The electric and
magnetic fields are defined, respectively, as

Eμ ¼ Fμ
νvν; Bμ ¼ ~Fμ

νvν: ð6Þ

Both electromagnetic vectors are spacelike with negative
norms, i.e., EμEμ ¼ −E2 and BμBμ ¼ −B2. Furthermore,
by definition, they are perpendicular to the velocity field
Eμvμ ¼ Bμvμ ¼ 0. We can construct two Lorentz-invariant
quantities with the Faraday tensor and its dual, namely,

F≡ 1

2
FμνFμν ¼ EαEα − BαBα ð7Þ

G≡ 1

4
~FμνFμν ¼ BαEα: ð8Þ

These Lorentz invariants constitute the only linearly
independent scalars that can be constructed from Fμν and
its dual [35]. Indeed, a direct calculation shows the
following algebraic relations:

~Fμα ~Fαν − FμαFαν ¼ Fδμν ð9Þ

~FμαFαν ¼ −Gδμν ð10Þ

Fμ
αFα

βFβ
ν ¼ −G ~Fμ

ν − FFμ
ν ð11Þ

Fμ
αFα

βFβ
λFλ

ν ¼ G2δμν − FFμ
αFα

ν: ð12Þ

Therefore, one can construct rank-2 objects only up to the
second power of the Faraday tensor; i.e., any power of the
electromagnetic tensor and its dual is a combination of
the identity δμν; Fμ

ν, ~Fμ
ν, and Fμ

αFα
ν.

The source of electrodynamics is charged particles. We
shall denote Σ as the region that contains all charges.
Definition 1.—The size of the region Σ can be charac-

terized by the radiusR, which we define as the radius of the
smallest sphere BR that encloses Σ. Additionally, we shall
designate the center of this sphere by x0.
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The total electric charge contained in Σ is given by

QðΣÞ ¼
Z
Σ
ρ:

Two other important quantities for our analysis are the
energy and angular momentum of the distribution of
charges. These quantities are defined as the integral of
combinations of the energy-momentum tensor components.
We shall define our energy-momentum tensor through the
variation of the matter action with respect to the metric
tensor. Thus, we have

Tμν ¼
2ffiffiffiffiffiffi−gp δ

δgμν
ð ffiffiffiffiffiffi

−g
p

LmatÞ ¼ 2
δLmat

δgμν
− Lmatgμν: ð13Þ

A. Maxwell electrodynamics

Maxwell’s electrodynamics is described by a set of four
differential equations. The two source-free equations allow
us to define the Faraday tensor as the exterior derivative of
the vector potential 1-form, i.e., F ¼ dA. The other two
equations are associated with the source terms. Defining the
current vector jμ ¼ ðρ; jÞ, the second set of Maxwell’s
equations reads

∂μFμν ¼ jν: ð14Þ
These equations can be derived from a variational prin-

ciple for the vector potential Aμ in which the appropriate
action is defined with the Larmor Lagrangian, i.e.,
L ¼ − 1

2
F. The invariant G represents a total divergence

and hence does not contribute to the dynamics equations.
Thus, up to amultiplicative constant, the Larmor Lagrangian
is the unique linear electromagnetic Lagrangian.
As usual, the energy-momentum tensor is defined as the

variation of the matter action with respect to the spacetime
metric, which for Maxwell’s theory gives

Tμ
ν ¼ FμαFαν þ

F
2
δμν: ð15Þ

In particular, the Maxwellian electromagnetic energy
density uM is the time-time components of the energy-
momentum tensor, i.e., uM ¼ − 1

2
ðEαEα þ BαBαÞ, and the

total energy reads

EM ¼ −
1

2

Z
R3

ðEαEα þ BαBαÞ: ð16Þ

Similarly, the angular momentum of a region Σ with
respect to a point x0 projected along the direction k is
defined as

JðΣÞ ¼
Z
Σ
ϵijkϵ

iabEaBbkjxk: ð17Þ

B. Nonlinear electrodynamics

The most general Lorentz-invariant electromagnetic
Lagrangian is a function of the two scalar invariants F
and G, i.e., L ¼ LðF;GÞ. Given an arbitrary Lagrangian,
its energy-momentum tensor reads

Tμ
ν ¼ −FμαEαν − Lδμν; ð18Þ

where the excitation tensor is defined as Eμν ≡ ∂L
∂Fμν ¼

2ðLFFμν þ LG
~FμνÞ and Lx stands for the partial derivative

of the Lagrangian with respect to x. The field equations can
be written in terms of Eμν as

∂μEμν ¼ −Jν: ð19Þ

In the same way as before, the energy density reads

u ¼ 2ðLFEαEα þ LGGÞ − L; ð20Þ

and the angular momentum is

JðΣÞ ¼ −2
Z
Σ
LFϵijkϵ

iabEaBbkjxk: ð21Þ

It is worth noting that, contrary to the energy density, the
angular momentum depends only on the first derivative of
the Lagrangian with respect to the invariant F. Evidently,
both expressions recover the linear case for L ¼ − 1

2
F.

III. BEKENSTEIN BOUNDS AND
INEQUALITIES WITHIN NLED

There are two possible ways to approach the interplay of
NLED and Bekenstein bounds and inequalities. From one
point of view, since the latter is supposed to be valid for an
arbitrary physical system, they can be used to test possible
NLED candidates. On the other hand, NLED is a fertile
framework that allows us to investigate different theoretical
situations, which can provide us with deeper insight into
the physical meaning of the Bekenstein inequalities.
In this section, we begin by proving that Born-Infeld

electrodynamics satisfies all three inequalities. Our devel-
opment follows closely the analysis done by Dain in
Ref. [12] for Maxwell’s electrodynamics. Next, we show
a concrete example of NLED that violates the inequality
between energy and charge but still respects the inequality
between energy and angular momentum.

A. Born-Infeld electrodynamics

Maxwell’s electrodynamics is a classical theory that
suffers from divergences such as the value of the electro-
magnetic energy as one approaches a charged particle.
This, and other similar problems, motivated finite-size
models for the electron, which would give an upper bound
for its self-energy as one probes the radius goes to zero limit.
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An alternative context is to modify the electrodynamics to
include nonlinear effects. The first attempt along these lines,
due to Mie [36], was to introduce a model in which there
is an upper limit for the value of the electric field, but this
formulation was not Lorentz covariant.
Following Mie, in 1933, Born and Infeld proposed a

nonlinear modification of Maxwell electrodynamics
[19,20,37] that also has an upper limit for the electromag-
netic fields. Born-Infeld electrodynamics is a special non-
linear theory due to its theoretical features. By construction,
it is a gauge-invariant theory with finite electromagnetic
mass pointlike sources. The energy is positive definite, and
the Poynting vector is everywhere nonspacelike. In addi-
tion, it has no birefringence phenomena.
In general, photon propagation in nonlinear theories

depends on the value of the electromagnetic fields. As a
consequence, different polarization states propagate along
different light cones [38–42]. Notwithstanding, Boillat
[43,44] showed that Born-Infeld is unique in the sense
that it is the only NLED without birefringence phenomena
and shock waves can occur only across characteristic
surfaces of the field equations as is the case for the linear
theory.
Besides trying to eliminate the classical divergences, the

proposal by Born and Infeld was inspired by the theory of
general relativity. They argued that the diffeomorphism
invariance of the action can be obtained by taking the
square root of the determinant of a tensor field jaμνj. In
particular, they identified its symmetric part with the metric
tensor and its antisymmetric part with the Faraday tensor,
i.e., aμν ¼ gμν þ Fμν. To recover Maxwell electrodynamics
in the weak field limit, the desired combination is

S ¼
Z

dτβ2
� ffiffiffiffiffiffiffiffiffiffiffiffi

−jgμνj
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμν þ β−1Fμνj

q �
; ð22Þ

where β constitutes a maximum field parameter. Assuming
Cartesian coordinates in a flat spacetime, the above action
reads

S ¼
Z

dτβ2ð1 −
ffiffiffiffi
U

p
Þ; ð23Þ

where U ¼ 1þ F=β2 −G2=β4.
The Born-Infeld field equations read

∂μ

�
1ffiffiffiffi
U

p
�
−Fμν þ G

β2
~Fμν

��
¼ −jν; ð24Þ

which constitutes the generalization for the Ampère-
Maxwell and Gauss equations. These equations can be
recast in vector notation as

∇ ·D ¼ ρ ð25aÞ

∇ ×H −
∂D
∂t ¼ j ð25bÞ

with

D≡ 1ffiffiffiffi
U

p
�
Eþ ðE · BÞ

β2
B

�
;

H≡ 1ffiffiffiffi
U

p
�
B −

ðE ·BÞ
β2

B

�
; ð26Þ

which resemble Maxwell’s equations inside matter with
nonlinear permittivity and permeability. For the electro-
static case, Eq. (25a) allows us to calculate the electric field
for a pointlike charged particle. The value of the electric
field in the limit r → 0 gives the maximum electrostatic
field β. Figure 1 shows the difference between the Born-
Infeld and Maxwell electrostatic fields.
Using the Born-Infeld Lagrangian equation (23) in the

definition of equation (18), we obtain the energy-
momentum tensor

Tμν ¼
1ffiffiffiffi
U

p
�
FμαFα

ν þ
G2

β2
gμν

�
þ gμνβ2ð

ffiffiffiffi
U

p
− 1Þ: ð27Þ

A similar calculation gives the angular momentum of
the distribution of charged particles in the region Σ as

JBIðΣÞ ¼
Z
Σ

1ffiffiffiffi
U

p ϵijkϵ
iabEaBbkjxk; ð28Þ

and its energy density is

uBI ¼
β2ffiffiffiffi
U

p
�
1 −

ffiffiffiffi
U

p
−
BαBα

β2

�
: ð29Þ

Born-Infeld electrodynamics has a maximum value for
both fields given by the parameter β. Thus, for future
analysis, it is convenient to normalize the electric and
magnetic fields; i.e., we define the two parameters α≡
β−1jEj and γ ≡ β−1jBj that give, respectively, the normal-
ized strength of the electric and magnetic fields and such

FIG. 1. The electrostatic field of a pointlike charged particle as
a function of x ¼ r

ffiffiffiffiffiffiffiffi
β=e

p
for Born-Infeld (solid line) and

Maxwell (dashed line) electromagnetism.
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that ðα; γÞ ∈ ½0; 1�. In terms of these parameters, the Born-
Infeld function reads

U ¼ 1þ γ2 − α2 − γ2α2cos2θ; ð30Þ

with cos θ≡E:B=ðjEjjBjÞ. Note thatU ∈ ½0; 2� but can be
divided in two distinct domains. As a fact, U ∈ ½0; 1Þ
implies α > γ, and U ∈ ½1; 2� implies γ ≥ α.

1. Inequality between charge and energy

We will begin by examining the inequality between
charge and energy (3) in Born-Infeld electrodynamics.
We shall prove the following theorem.
Theorem 1.—Assume that the charge density ρ has

compact support contained in the region Σ and Born-
Infeld electrodynamics holds. Then, the total charge Q
contained in Σ and the total electromagnetic energy EBI of
the system satisfy the inequality

EBI >
Q2

8πR
; ð31Þ

where R is defined as in Definition 1.
Proof.—In Theorem 2.2 of Ref. [12], Dain has shown1

that Maxwell’s electrodynamics satisfies a similar inequal-
ity, namely, that

EMs ≥
Q2

8πR
; ð32Þ

where EMs is the Maxwell electrostatic energy of the
system and Q and R have the same meaning as here.
Furthermore, there is a rigidity condition. Equality in (32)
holds if and only if the electric field is the one produced by
a spherical thin shell of constant surface charge density and
radiusR. As a consequence, for the equality to hold in (32),
the electric field has to vanish inside Σ.
To prove the inequality (31), it is sufficient to show that

the Born-Infeld energy is always greater than its electro-
static counterpart and then show that the Born-Infeld
electrostatic energy is always greater than the Maxwell
electrostatic energy.
In Maxwell’s linear theory, the electromagnetic energy is

always greater than or equal to the electrostatic case, but
this is no longer the case for a generic NLED. The Born-
Infeld theory is a special case in which this property is
indeed valid. Note that, since 1 − α2 cos2 θ ≥ 0, Born-
Infeld energy density is an increasing function of the
parameter γ, and hence

uBIðα; γÞ ≥ uBIðα; 0Þ: ð33Þ

As a consequence the Born-Infeld energy is always
greater than its electrostatic version. Thus, it suffices to
show that Born-Infeld electrostatic energy density is always
greater than Maxwell electrostatic energy density. Their
difference reads

uBIðα; 0Þ − uMs ¼
β2ffiffiffiffi
U

p
�
1 −

�
1þ α2

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p �
ð34Þ

≥
β2ffiffiffiffi
U

p ½1 − ð1þ α2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
� ð35Þ

¼ β2ffiffiffiffi
U

p
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α4

1þ α2

s �
≥ 0: ð36Þ

The equality above holds only when the electric field
vanishes everywhere. Therefore, the Born-Infeld electro-
static energy is always greater than the Maxwell electro-
static energy. ▪
There is no rigidity statement for Born-Infled electro-

dynamics because its energy density is always greater
than Maxwell. As we have mentioned before, in NLED,
the nonlinearity of the theory allows for a nontrivial
dependence of its energy density with the strength of the
electromagnetic fields. Thus, it is possible to have NLED
with energy density lower than the Maxwell energy density.
We will explore this scenario later on.

2. Inequality between energy and angular momentum

Our next step is to prove the inequality between the
energy and angular momentum. The main difference to
Theorem 1 is that inequality (4) relates two quasilocal
quantities. In addition, in this section, we shall consider the
case in whichQ ¼ 0 and J ≠ 0 but with otherwise arbitrary
electromagnetic field’s configurations. We want to prove
the following theorem.
Theorem 2.—Consider a distribution of charged particles

in the region σ with no net charge, i.e., Q ¼ 0. Let the
radius R be defined as in 1 and x0 be the center of the
corresponding sphere. If Born-Infeld electrodynamics
equations hold, then

EBIðΣÞR ≥ jJBIðΣÞj; ð37Þ

where JBIðΣÞ is the angular momentum of the electromag-
netic field given by Eq. (28) with respect to the point x0.
Furthermore, the equality in Eq. (37) holds if and only if the
electromagnetic fields vanish in Σ.
Proof.—To prove the above theorem, we shall calculate

the difference between the energy and angular momentum
in the region Σ. Using the definitions (28) and (29), we have

1There is a factor 4π of difference due to our choice of units.
Namely, Eq. (4) in Ref. [12] has a factor 4π that does not appear
in our Eq. (25).
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EBIðΣÞ −
1

R
jJBIðΣÞj

¼
Z
Σ

β2ffiffiffiffi
U

p ð1þ γ2 −
ffiffiffiffi
U

p
Þ

þ −
1

R

				
Z
Σ

�
1ffiffiffiffi
U

p ϵijkϵ
iabEaBbkjxk

�				
≥
Z
Σ

β2ffiffiffiffi
U

p
�
1þ γ2 −

ffiffiffiffi
U

p
−

x
R

αγ

�
: ð38Þ

In the last line, we have used the inequality jR fðxÞj ≤R jfðxÞj and the fact that jðx × ðE ×BÞÞ · k̂j ≤ jx×
ðE ×BÞj ≤ jxjjEjjBj. Recalling Eq. (30), we can rearrange
the above expression as

EBIðΣÞ −
1

R
jJBIðΣÞj

≥
Z
Σ

β2

2
ffiffiffiffi
U

p
�
ð1 −

ffiffiffiffi
U

p
Þ2 þ

�
γ −

x
R

α

�
2

þ α2γ2cos2θ þ α2
�
1 −

x2

R2

��
: ð39Þ

It is obvious that all the integrands in the above equation are
non-negative and hence the integral is greater than or equal
to zero. Thus, we have proven inequality (37). In the above
form, it can also be seen that the equality can only be
achieved when the integrand in (39) is zero; hence, every
term in the integrand has to identically vanish. Thus,
equality holds if and only if the electric and magnetic
fields vanish in Σ, proving the rigidity condition. ▪

3. Inequality between charge, energy,
and angular momentum

Finally, we shall prove the full inequality (2) involving the
charge, angular momentum, and total energy of the system.
Theorem 3.—Assume that the charge density ρðx; t0Þ, for

some time t0, has compact support contained in the region
Σ. Consider a solution of Born-Infeld dynamics equations
that decays at infinity. Then, at t0, the total charge Q
contained in Σ, the total electromagnetic energy EBI, and
the angular momentum JBIðΣÞ with respect to x0 satisfy the
inequality

EBI >
Q2

8πR
þ jJBIðΣÞj

R
; ð40Þ

where R and x0 are defined as in Definition 1.
Proof.—Let us express the electric and magnetic fields in

the Coulomb gauge,

B ¼ ∇ ×A; E ¼ −∇Φ − ∂tA; ð41Þ

where the vector potential satisfies the Coulomb gauge
condition

∇ ·A ¼ 0: ð42Þ
It is convenient to decompose the scalar potential using an
auxiliary potential Φ1. Thus, we define

Φ ¼ Φ0 þΦ1; ð43Þ
where

Φ0 ¼


Q=4πr; if r ≥ R;

Q=4πR; if r ≤ R
ð44Þ

is the potential of a spherical shell of radiusR and the same
total charge Q as contained in Σ. Note that ∇Φ0 ¼ 0 inside
BR and by construction we have

ΔΦ1 ¼


0 if r > R

−ρ if r < R
ð45Þ

and I
∂BR

∂rΦ1 ¼ 0: ð46Þ

Before calculating the total energy EBI, let us consider
the integral over all space of the modulus squared of the
electric field,Z

R3

E2 ¼
Z
R3

fj∇Φj2 þ j∂tAj2 þ 2∇Φ · ∂tAg: ð47Þ

The last term gives no contribution since it can be recast
as a surface term. Indeed, we can rewrite it asZ
R3

∇Φ · ∂tA ¼
Z
R3

½∇ · ðΦ∂tAÞ −Φ∂tð∇ ·AÞ� ¼ 0;

ð48Þ

where the first term on the right is zero due to Gauss’s
theorem and the falloff condition of Φ, and the last term
vanishes since the vector potential satisfies the Coulomb
gauge condition.
Now, we shall use the auxiliary scalar potential to rewrite

the first term of Eq. (47),Z
R3

j∇Φj2 ¼
Z
R3

j∇Φ0j2 þ j∇Φ1j2 þ 2∇Φ0 ·∇Φ1: ð49Þ

Again, the last term does not contribute. We can decompose
the integral in two regions: inside and outside of the sphere
BR. Inside the sphere,Z

BR

∇Φ0 ·∇Φ1 ¼ 0; ð50Þ

since the potential Φ0 is constant and hence ∇Φ0 ¼ 0.
Outside the sphere, we have

M. L. PEÑAFIEL and F. T. FALCIANO PHYSICAL REVIEW D 96, 125011 (2017)

125011-6



Z
R3nBR

∇Φ0 ·∇Φ1 ¼
Z
R3nBR

½∇ · ðΦ0∇Φ1Þ −Φ0ΔΦ1�

¼
Z
R3nBR

∇ · ðΦ0∇Φ1Þ; ð51Þ

where we have used Eq. (45). Gauss’s theorem now givesZ
R3nBR

∇ · ðΦ0∇Φ1Þ ¼ lim
r→∞

I
∂Br

Φ0∂rΦ1 −
I
∂BR

Φ0∂rΦ1

¼ −
I
∂BR

Φ0∂rΦ1

¼ −Φ0

I
∂BR

∂rΦ1 ¼ 0: ð52Þ

From the first to the second lines, we have used the falloff
condition of the potential. From the second to the third
lines, we have used the fact that Φ0 is constant on the
sphere BR, and finally in the last line, Eq. (46) shows that
the cross-term does not contribute to Eq. (49).
Our last step is to combine j∇Φ1j2 with j∂tAj2,Z

R3

j∇Φ1j2 þ j∂tAj2 ¼
Z
R3

j∇Φ1 þ ∂tAj2 − 2∇Φ1 · ∂tA

¼
Z
R3

j∇Φ1 þ ∂tAj2; ð53Þ

where we have discarded the cross-term with the same
arguments as used in Eq. (48). Combining all these results,
the integral of the modulus squared of the electric fields
yields Z

R3

E2 ¼
Z
R3

j∇Φ0j2 þ j∇Φ1 þ ∂tAj2

¼ Q2

4πR
þ
Z
R3

j∇Φ1 þ ∂tAj2: ð54Þ

The Born-Infled total energy reads

EBI ¼
Z
R3

β2ffiffiffiffi
U

p ð1þ γ2 −
ffiffiffiffi
U

p
Þ: ð55Þ

We can sum and subtract the integral (47) to obtain

EBI ¼
Z
R3

E2

2
þ
Z
R3

β2ffiffiffiffi
U

p
�
1þ γ2 −

ffiffiffiffi
U

p �
1þ α2

2

��

¼ Q2

8πR
þ
Z
R3

β2ffiffiffiffi
U

p
�
1þ γ2 −

ffiffiffiffi
U

p �
1þ α2

2

��

þ 1

2

Z
R3

j∇Φ1 þ ∂tAj2: ð56Þ

Now, we can split the limits of integration to separate the
space in inside and outside Σ. Thus, we have

EBI ¼
Q2

8πR
þ EBIðΣÞ þ

Z
R3nΣ

�
fðα; γÞ þ j∇Φ1 þ ∂tAj2

2

�
;

ð57Þ

where

fðα; γÞ≡ β2ffiffiffiffi
U

p
�
1þ γ2 −

ffiffiffiffi
U

p �
1þ α2

2

��
: ð58Þ

Theorem 2 allows us to write

EBI −
Q2

8πR
−
jJðΣÞj
R

≥
Z
R3nΣ

�
fðα; γÞ þ j∇Φ1 þ ∂tAj2

2

�
:

ð59Þ

Note that the function fðα; γÞ is non-negative.
Rearranging the terms, we have

1þ γ2 −
ffiffiffiffi
U

p �
1þ α2

2

�
¼ 1

2

�
ð1 −

ffiffiffiffi
U

p
Þ2 þ α2γ2cos2θ

þ α2
�
1 −

ffiffiffiffi
U

p
þ γ2

α2

��
: ð60Þ

The only term that is not explicitly non-negative on the
right-hand side of the above equation is the last one.
This comes from the fact that 0 ≤ U ≤ 2. However, one
can check that U > 1 only if γ > α. Thus, we have
1 −

ffiffiffiffi
U

p þ γ2=α2 > 0, which in turn implies fðα; γÞ > 0.
Therefore, the integrand on the right-hand side of inequality
(59) is non-negative. Furthermore, the integral has to be
greater than zero since in order to have ∇Φ1 ¼ 0 we need
a nonzero electric. Indeed, either α ¼ 0 and ∇Φ1 ¼ −∇Φ0

or ∇Φ1 ¼ 0 and α ≠ 0. ▪
Born-Infeld electrodynamics is an important example of

NLED. This theory, besides respecting the Maxwell limit,
has many unique features. We have proven that Born-Infeld
electrodynamics satisfies all three Bekenstein inequalities.
Assuming the universal validity of these inequalities,
Born-Infeld can include this extra feature in its theoretical
motivations.

B. Breaking Bekenstein’s inequality

In this section, we want to show a specific NLED that
violates the simplest of the three inequalities, namely, the
one relating the total energy and total charge of the system.
In Maxwell’s theory, this inequality can be interpreted as

showing that the total energy is always greater than the
minimum electrostatic energy given by a thin spherical
shell charge distribution. Thus, it might seem that any
NLED would also satisfy this inequality. Indeed, many
NLED do satisfy it [13,15,37]. To violate inequality (3), we
need a NLED that has a minimum electrostatic energy
lower than the minimum Maxwellian electrostatic energy.
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Thus, consider the NLED LðFÞ given by the logarithmic
function

L ¼ β2 ln

�
1 −

F
2β2

�
; ð61Þ

which is a modification of the logarithmic Lagrangian
introduced by Gaete and Helayël-Neto in Ref. [13]. This
NLED has the correct Maxwellian limit for weak fields and
hence can be considered as a physically reasonable theory.
Its energy-momentum tensor reads

Tμν ¼
FμαFα

ν

1 − F
2β2

− gμνβ2 ln

�
1 −

F
2β2

�
; ð62Þ

and its electrostatic energy density is

ulog ¼ β2
�

2α2

2þ α2
− ln

�
1þ α2

2

��
: ð63Þ

Contrary to the Born-Infeld case, in logarithmic electro-
dynamics, there is no upper limit for the electric field, i.e.,
α ∈ ½0;∞Þ. However, this NLED is well defined only if we
assume that charged particles have finite size. This is due to
the fact that there is a minimum allowed radius in order to
guarantee the reality of the electric field. In the electrostatic
regime, the electric displacement D is related with the
electric field by

D ¼ E
1þ jEj2=2β2 : ð64Þ

For a static spherically symmetric distribution with total
charge Q, Gauss’s theorem shows that D ¼ Q=4πr2r̂.
We can invert Eq. (64) and write

jEj ¼
ffiffiffi
2

p
β

r0

�
r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 − r40

q �
; ð65Þ

where r20 ≡
ffiffiffi
2

p
Q=4πβ is the minimum size of charged

particles. A comparison between the logarithmic and
Maxwell energy density is plotted in Fig. 2.
The binding energy for a spherical shell of radius r0 and

total charge Q within Maxwell electrodynamics is

EM ¼ Q2

8πr0
∼ 0.1186

ffiffiffiffiffiffiffiffiffi
Q3β

q
: ð66Þ

The binding energy for the same charge distribution in
the logarithmic electrodynamics can be calculated by the
integral of the energy density

Elog ¼ 4π

Z
∞

r0

r2dr



E2

1þ E2

2β2

− β2 ln

�
1þ E2

2β2

��

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Q3β

8π
ffiffiffi
2

p
s Z

∞ffiffi
2

p dyy2



2

1þ y4
− ln

�
1þ 1

y4

��

∼ 0.1108
ffiffiffiffiffiffiffiffiffi
Q3β

q
: ð67Þ

Note that Maxwell’s binding energy is greater than the
logarithmic binding energy

EM > Elog: ð68Þ

Since the equality in (3) is reached only by EM, we can
conclude that the electrostatic configuration Elog violates
the inequality between energy and charge. Furthermore,
following the same reasoning used in Sec. III A 2, one can
show that the logarithmic electrodynamics does satisfy the
inequality between energy and angular momentum. This
result proves that the validities of each partial inequality are
independent of each other.

IV. CAUSALITY AND THE ANGULAR-
MOMENTUM INEQUALITY

There is an interesting connection between Theorem 2
and the spacetime causal structure. Dain has shown [12],
andwe reproduce the argument inAppendixA, that theDEC
is a sufficient condition for inequality (37). The DEC is a
physically motivated condition on the energy-momentum
tensor, which prohibits superluminal propagation [45,46].
On the other hand, inequality (37) relates the quasilocal

total energy of the system with the quasilocal angular
momentum with respect to the origin of the minimum
sphere that surrounds the system. In a sense, this inequality
shows that the total energy has to be greater than or equal to
the angular kinetic energy of the system. Furthermore, their

FIG. 2. The electrostatic energy density for logarithmic electro-
dynamics and the electrostatic energy density for Maxwell
electrodynamics.
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ratio is proportional to a mean angular velocity of the
system, and hence inequality (37) can also be interpreted as
saying that this angular velocity has to be smaller than unit
(or that the mean velocity is smaller than c). Thus, it indeed
seems reasonable to associate this inequality with the
causal structure of the theory.
To study the connection between causality and inequality

(37), we shall analyze if the DEC is not only a sufficient
but also a necessary condition. In fact, we want to show the
opposite, namely, that a noncausal NLED can satisfy
inequality (37). In particular, we examine an example of
LðFÞ NLED, in which case causality can be expressed as
the condition [28,29]

LF ≤ 0; ð69Þ

which together with unitarity is equivalent to imposing
the DEC. Thus, consider the Lagrangian introduced by
Kruglov in Ref. [17] as a modification of exponential
electrodynamics,

L ¼ −
F
2
e
− F
2β2 : ð70Þ

Then, the causality condition reads

B2 ≤ 2β2 þ E2; ð71Þ

which can be seen as an upper bound for the magnetic field
with respect to the electric field. Since the DEC guarantees
the validity of inequality (37), we shall focus only on the
noncausal configurations, i.e., LF > 0. The difference
between the energy and angular momentum reads

EðΣÞ− jJðΣÞj
R

¼
Z
Σ
e
− F
2β2

�
E2þB2

2
−

F
2β2

E2

�

−
1

R

				
Z
Σ
e
− F
2β2

�
F
2β2

− 1

�
ϵijkϵ

iabBaEbkjxk
				:

ð72Þ

Following the same approach used in Sec. III A, the
right-hand side of the above expression can be majored as

EðΣÞ − jJðΣÞj
R

≥
Z
Σ
e
− F
2β2



E2 þ B2

2
þ x
R

EBj sin θj

−
F
2β2

�
E2 þ x

R
EBj sin θj

��
: ð73Þ

It is straightforward to check that certain fields’ con-
figurations can, indeed, satisfy the inequality between the
energy and angular momentum. The crucial point is to
check if certain field’s configurations that violate the
causal condition can simultaneously satisfy the inequality.

Figure 3 shows that, indeed, there are field configurations
that violate the causal condition (71) but satisfy inequality
(37). Therefore, the DEC is only a sufficient and not a
necessary condition. In fact, one should be very careful to
regard inequality (37) as a causal condition.

V. CONCLUSION AND PERSPECTIVES

In the present work, we investigated some physically
motivated inequalities relating the charge, energy, and
angular momentum in the context of NLED. These inequal-
ities are a direct consequence of the generalized
Bekenstein-Mayo inequality (1). We have proven that,
similarly to Maxwell’s theory, Born-Infeld electrodynamics
satisfies all three inequalities, but there is no rigidity
statement inasmuch as Born-Infeld total energy is always
greater than Maxwell electromagnetic energy.
We have also shown that the inequality between the

charge and energy is independent of the quasilocal inequal-
ity relating energy and angular momentum by presenting a
counterexample in which only one of these inequalities is
violated. Furthermore, this result suggest that these inequal-
ities can be used, apart from the obvious Maxwell limit
condition for weak fields, as a physically motivated criteria
to select between NLED.
The fact that the DEC is a sufficient condition to prove

Theorem 2 indicates a possible relationship between the
inequality between the energy and angular momentum and
causality. Notwithstanding, we have shown that the DEC is
only a sufficient and not a necessary condition to this
inequality, hence obscuring its physical content. It would
be interesting to find a modified inequality that is a
necessary and sufficient condition of the DEC.
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(a) (b)

FIG. 3. The values for which the integrand in (73) is positive for
x ¼ R (blue region) compared to the values for which the
causality condition (71) holds (orange region) for (a) θ ¼ 0
and (b) θ ¼ π=2.
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APPENDIX: DEC AND THE INEQUALITY
BETWEEN ENERGY AND ANGULAR

MOMENTUM

In this Appendix, we shall reproduce the argument of
Dain [12], showing that the dominant energy condition is a
sufficient condition to prove quasilocal inequality (37)
between the energy and angular momentum.
Consider an arbitrary energy-momentum tensor Tμν

associated with some field theory. Given a timelike con-
gruence vμ, the three-dimensional hypersurface V orthogo-
nal to the congruence defines its rest space. The energy
associated with the observer’s worldline is defined as

E ¼
Z
V
Tμνvμvν: ðA1Þ

If ωμ is a Killing vector field associated to space
rotations, the angular momentum can be defined as

JðVÞ ¼ 1

c

Z
V
Tμνvμων: ðA2Þ

Since the background is a flat Minkowski spacetime, we
can choose Cartesian coordinates in which xi expand V and
vμ ¼ ð1; 0; 0; 0Þ. In these coordinates, the rotation vector
defined with respect to the direction n̂ reads

ωi ¼ ϵijknjxk: ðA3Þ

The norm of the rotation vector reads ω≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ωμωμ

p ¼ffiffiffiffiffiffiffiffiffiffi
ωiω

i
p

, and hence we can define a spacelike unitary vector
as ω̂μ ¼ ωμ=ω.
The dominant energy condition implies that for all

future-directed timelike ξμ or null kμ vectors the energy-
momentum tensor satisfies

Tμνξ
μkν ≥ 0: ðA4Þ

To prove inequality (37), we can choose a timelike vector
ξμ ¼ vμ and a null vector kμ ¼ vμ − ω̂μ. From Eq. (A4), we
have

Tμνvμvν ≥ Tμνvμω̂ν: ðA5Þ

The radius R of the minimum sphere BR (Definition 1)
encloses all region Σ, and hence by definition, we have
ω ≤ R. Therefore, we have

EðΣÞ ¼
Z
Σ
Tμνvμvν

≥
Z
Σ
Tμνvμω̂ν

≥
1

R

Z
Σ
Tμνvμων ¼ cJðΣÞ

R
: ðA6Þ
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