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We construct, for any given ` = 1
2 + N0, the second-order, linear partial di↵eren-

tial equations (PDEs) which are invariant under the centrally extended conformal
Galilei algebra. At the given `, two invariant equations in one time and ` + 1

2
space coordinates are obtained. The first equation possesses a continuum spec-
trum and generalizes the free Schrödinger equation (recovered for ` = 1

2 ) in 1 + 1
dimension. The second equation (the “`-oscillator”) possesses a discrete, positive
spectrum. It generalizes the 1 + 1-dimensional harmonic oscillator (recovered for
` = 1

2 ). The spectrum of the `-oscillator, derived from a specific osp(1|2` + 1) h.w.r.,
is explicitly presented. The two sets of invariant PDEs are determined by imposing
(representation-dependent) on-shell invariant conditions both for degree 1 operators
(those with continuum spectrum) and for degree 0 operators (those with discrete
spectrum). The on-shell condition is better understood by enlarging the conformal
Galilei algebras with the addition of certain second-order di↵erential operators. Two
compatible structures (the algebra/superalgebra duality) are defined for the enlarged
set of operators. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4908232]

I. INTRODUCTION

In this paper, four results are presented. At first, we enlarge the one-dimensional, centrally
extended, Conformal Galilei Algebras (CGAs) of the half-integer, ` = 1

2 + N0, series. The sl(2)
subalgebra elements and the central charge have an integer grading with respect to the Cartan
element of sl(2). The remaining generators have a half-integer grading. The enlargement consists
in adding to the set of generators the anticommutators of the generators with half-integer grad-
ing. Two compatible structures are defined on the enlarged set of generators,1 namely, a (finite,
non-semi-simple) Lie algebra of commutators and a Z2-graded Lie algebra of (anti)commutators.
This compatibility is referred to as algebra/superalgebra duality.

The enlarged algebra/superalgebra possesses a di↵erential realization induced by the di↵eren-
tial realization of the original CGA (the di↵erential realizations of the latter have been computed,
e.g., in Refs. 2 and 3). The di↵erential realization suitable to the present work requires one time
and ` + 1

2 space coordinates. The first algebra of the series, obtained at ` = 1
2 , is the Schrödinger

algebra; since it is realized by just one space coordinate, this whole CGA series is referred to as
“one-dimensional.”

The second result consists in imposing, for the given di↵erential realization, separate on-shell
invariant conditions for the operators of grading ±1 (degree ±1 operators) and grading 0 (degree
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0 operators) of the enlarged algebra. By construction, these operators are second-order di↵erential
operators. The operators which solve the on-shell condition induce an invariant partial di↵erential
equation (PDE) for the centrally extended CGA. At degree 1 (or �1), we recover the invariant PDEs
obtained in Ref. 3. The novel feature is the invariant operator at degree 0. The degree 1 invariant
equation, in one time and ` + 1

2 space coordinates, generalizes the free Schrödinger equation (recov-
ered for ` = 1

2 ) in 1 + 1 dimension. Its associated “static” equation possesses a continuum spectrum.
For the degree 0 operator, a transformation (which generalizes the one described in Refs. 4 and 5 for
the Schrödinger case) of the space and time coordinates (our third result) allows to recast the associ-
ated invariant PDE as a second-order di↵erential equation in the new variables. In the new form, it
generalizes the 1 + 1-dimensional harmonic oscillator (recovered for ` = 1

2 ). The associated “static”
equation is given by a Hamiltonian which possesses a positive, discrete spectrum of eigenvalues.
The last and main result of our paper is the presentation of this invariant “`-oscillator” Hamiltonian
and the computation of its spectrum. The latter can be derived from a given highest weight (or
lowest weight, depending on the conventions) representation of osp(1|2` + 1), which plays the role
of the spectrum-generating, o↵-shell symmetry subalgebra of the invariant PDE.

The constructions that we employed are explained at length in the text.
For convenience, we present here the main results. The `-oscillator invariant equation is

i@⌧ (⌧,x j

) = H(`) (⌧,x
j

) (1)

for the Hamiltonian H(`) which, in a canonical form and suitably normalized, is given by

H(`) = � 1
2m

@2
x1
+

m
2

x1
2 +

`� 1
2X

j=1

⇣
(2 j + 1)x

j+1@x j+1 � (2` � 2 j + 1)x
j

@x j+1

⌘

+
1
8
(2` � 1)(2` + 3). (2)

⌧ is the time coordinate (of scaling dimension [⌧] = �1), while the x
j

’s, j = 1, . . . ,` + 1
2 , are

(anisotropic) space coordinates of scaling dimension [x
j

] = � j + 1
2 .

The spectrum of the H(`) Hamiltonian, given by the energy eigenvalues E~n, is

E~n =

`+ 1
2X

j=1

!
j

n
j

+ !0, with !
j

= (2 j � 1), !0 =
1
8
(2` + 1)2. (3)

In the above formula, the n
j

’s are non-negative integers, !
j

is the energy of the jth oscillatorial
mode, and !0 is the vacuum energy. The spectrum coincides with the spectrum of ` + 1

2 decoupled
oscillators of appropriate frequency.

The Hamiltonian is a second-order di↵erential operator with respect to x1 and a first-order
di↵erential operator with respect to the remaining space coordinates. One should note that the space
coordinates are coupled. The Hamiltonian of the harmonic oscillator is recovered not only at ` = 1

2
but also from the consistent set of restrictions @x j (⌧,~x) = 0 for j = 2, . . . ,` + 1

2 .
It should be noted that H(`), despite having a real, positive spectrum, is not, for ` � 3

2 , a
Hermitian operator (a large class of non-Hermitian operators with real spectrum, PT-symmetric
operators,6,7 pseudo-Hermitian operators,8 are currently very actively investigated).

The challenging problem of finding dynamical systems and invariant PDEs for the conformal
Galilei algebras is much studied. In a series of papers,9–13 it was shown that the Pais-Uhlenbeck
oscillators are invariant under the ` = 1

2 + N0 CGAs. These systems, however, unlike `-oscillator
(1), are defined by higher-derivatives equations. The `-oscillator induces a second-order di↵erential
equation.

The scheme of the paper is as follows. In Sec. II, we introduce the one-dimensional centrally
extended CGAs and present the ` = 3

2 di↵erential realization. In Sec. III, we introduce the enlarged
algebras and discuss the algebra/superalgebra duality. In Sec. IV, we introduce the on-shell condi-
tion to derive the invariant PDEs. For ` = 3

2 , we derive the explicit invariant operators at degree 1
and 0. The transformation relating their suitable di↵erential realizations, applied to the ` = 3

2 case,
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is presented in Sec. V. In Sec. VI, we explicitly discuss the spectrum-generating subalgebra for the
` = 3

2 -invariant oscillator. Section VII summarizes the previous constructions for the most general,
` = 1

2 + N0, case. For convenience, a table with the first `-oscillator Hamiltonians up to ` = 9
2 is

given. In the Conclusions, we present some open questions and the lines of future investigations.

II. THE CENTRALLY EXTENDED, ` 2 1
2 + N0, CGAS

We introduce here the CGAs in d = 1 space dimensions.2 In the following we denote them
as “cga`.” They are labelled by a parameter ` which is either a non-negative integer or a positive
half-integer number.

The non-centrally extended CGAs consist of an sl(2) subalgebra with generators z±1, z0 (z0
being the Cartan generator), acting on an abelian subalgebra (2` + 1 generators w

j

, j = �`,�` +
1, . . . ,`, which span a spin-` representation of sl(2)). The generator z0 induces a grading, so that
[z±1] = ±1, [z0] = 0, [w

j

] = j. For ` half-integer (` 2 1
2 + N0), the corresponding CGA admits a cen-

tral extension14 (the centrally extended algebra will be denoted as “Lcga`”). In the presence of the
central extension c, the abelian subalgebra is replaced by ` + 1

2 pairs of Heisenberg subalgebras
given by w± j. The ` = 1

2 case corresponds to the one-dimensional Schrödinger algebra, spanned by
6 generators, including the central charge c. For reasons discussed in Sec. III, we focus here on the
centrally extended CGAs; therefore, ` is a half-integer number.

The Lcga` algebra contains two generators of grading 0 (z0 and c), ` + 3
2 generators in the posi-

tive sector (z+1 and w
j

, with j > 0) and an equal number of generators in the negative sector (z�1 and
w� j, with j > 0).

With standard techniques (see, e.g., Refs. 15–17), one can construct a D-module rep realized by
first-order di↵erential operators induced by a coset construction. The di↵erential operators depend
on the space and time coordinates t, x

j

, which are dual to the positive generators. The time t is
dual to z+1 and has dimension [t] = �1, while the x

j

’s are dual to the w
j

’s. Therefore, [x
j

] = � j.
One should note the anisotropy of the space coordinates, as well as the fact that, for ` > 1

2 and in
presence of the central extension, more than two coordinates are required to realize the conformal
Galilei algebra Lcga`.

The ` = 1
2 Schrödinger algebra has been directly constructed as the symmetry algebra of

the free Schrödinger equation in 1 + 1-dimensions (see, e.g., Ref. 18); its explicit presentation
can be found in that work and several other papers in the literature. The next interesting and
much less studied case corresponds to ` = 3

2 . The algebra Lcga`= 3
2

is spanned by the 8 generators
z0, z±1, w± 1

2
, w± 3

2
,c. Explicitly, its non-vanishing commutators are given by

[z+1, z�1] = 2z0,

[z0, z±1] = ±z±1,

[z0, w± 3
2
] = ±3

2
w± 3

2
,

[z0, w± 1
2
] = ±1

2
w± 1

2
,

[z±1, w± 1
2
] = w± 3

2
,

[z±1, w⌥ 1
2
] = 2w± 1

2
,

[z±1, w⌥ 3
2
] = 3w⌥ 1

2
,

[w+ 1
2
, w� 1

2
] = c,

[w+ 3
2
, w� 3

2
] = �3c. (4)

Its D-module representation, constructed, as explained above, in Ref. 3, is realized by di↵eren-
tial operators depending on t, x 1

2
, x 3

2
. For simplicity, we will denote x 1

2
⌘ x and x 3

2
⌘ y . Their

respective scaling dimensions are [t] = �1, [x] = � 1
2 , [y] = � 3

2 .
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We overline the generators in the D-module rep. They are given by

z+1 = @
t

,

z0 = �t@
t

� 1
2

x@
x

� 3
2
y@y � 1,

z�1 = �t2@
t

� t x@
x

� 3t y@y � 3y@
x

� cx2 � 2t,
w+ 3

2
= @y,

w+ 1
2
= t@y + @

x

,

w� 1
2
= t2@y + 2t@

x

+ cx,

w� 3
2
= t3@y + 3t2@

x

+ 3tcx � 3cy,

c = c. (5)

This construction naturally extends to the Lcga` algebras for ` > 3
2 .

III. ENLARGED ALGEBRAS: ALGEBRA/SUPERALGEBRA DUALITY

For the conformal Galilei algebras in the half-integer series (` = 1
2 + N0), z0 induces an integer

grading on the generators z±1, z0,c and a half-integer grading on the w
j

’s generators (8g 2 Lcga`,
[z0, g] = ngg). It is therefore quite natural to interpret the grading induced by z0 as discriminating
the even sector G0 (generators g s.t. ng 2 Z) from the odd sector G1 (generators g s.t. ng 2 1

2 + Z) of
an associated superalgebra.

By recalling that the w
j

’s generators induce ` + 1
2 pairs of Heisenberg subalgebras, this possi-

bility is made concrete by the existence (see Ref. 19) of an oscillatorial representation of the
B(0,n) = osp(1|2n) superalgebra in terms of n bosonic generators. Here, n = ` + 1

2 .
For consistency, a closed superalgebra structure requires that the anticommutators of the odd

generators belong to the even sector G0. Therefore, we need to add to G0 the (2` + 1)(` + 1)
generators w

i, j = {w
i

, w
j

} of grading i + j (we have w
i, j = w

j, i).
The enlarged superalgebra spanned by z0, z±1,c, wi, j 2 G0 and w

j

2 G1 is a non-semisimple,
finite, closed, Lie superalgebra endowed with graded commutators and satisfying the graded Jacobi
identities. It will be denoted as “sLcga`.” It contains 2`2 + 3` + 5 even generators and 2` + 1 odd
generators. The generators w

i, j close the sp(2` + 1) bosonic subalgebra, while the set of w
i, j, w j

generators close the osp(1|2` + 1) subalgebra. We can therefore write

sLcga` = u(1) � sl(2) �
S

osp(1|2` + 1), (6)

where “�
S

” denotes the semidirect sum.
In the superalgebra framework, the central charge c entering Lcga` is an extra u(1) generator. It is
worth pointing out that the construction of the superalgebra sLcga` is based on a di↵erent viewpoint
and requires a di↵erent procedure from the construction of the supersymmetric extensions of the
CGAs which have been discussed in Refs. 20–30. Indeed, these supersymmetric extensions can be
identified as symmetries of supersymmetric models, while sLcga` is the symmetry superalgebra of a
purely bosonic system.

The D-module representation of Lcga` in terms of first-order di↵erential operators (as given in
(5) for ` = 3

2 ) is naturally extended to a realization of sLcga` in terms of di↵erential operators, with
the operators w

i, j = {w
i

, w
j

} being of second order.
Once constructed the anticommutators w

i, j from the set of w
j

’s generators in Lcga`, we can pose
the question whether the Lcga` algebra, enlarged with the addition of the w

i, j generators, closes as
a non-semisimple finite Lie algebra (the brackets being defined by the ordinary commutators). The
answer is positive. We denote as “eLcga`” the bosonic Lie algebra spanned by z±1, z0,c, w j

, w
i, j. The

algebra eLcga` contains 2`2 + 5` + 6 generators. They are all even. We have, explicitly,

eLcga` = Lcga` �S

sp(2` + 1). (7)
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Both sLcga` and eLcga` are obtained from Lcga` by adding an extra set of generators, expressed as
anticommutators. In terms of the di↵erential realizations given by (5) and its ` > 3

2 counterparts, the
second order di↵erential operators w

i, j entering both sLcga` and eLcga` are identical. Stated otherwise,
on the same set of first and second-order di↵erential operators, two mutually compatible structures
can be defined. The first structure is the Z2-graded superalgebra sLcga`. The second structure is the
ordinary Lie algebra eLcga`. We refer to this property of conformal Galilei algebras with half-integer
` as the algebra/superalgebra duality. It can be schematically expressed by the correspondence

sLcga`, eLcga`. (8)

The symbol “,” denotes this duality relation.

IV. INVARIANT PDES FROM THE ON-SHELL CONDITION

We address here the problem of constructing PDEs admitting the centrally extended conformal
Galilei algebras as their symmetry algebras. One should note that this is an inverse problem with
respect to the derivation of the Schrödinger algebra (Lcga`, for ` = 1

2 ) from the (free) Schrödinger
equation. In that case the invariant equation is assumed and its symmetry algebra, induced by
first-order di↵erential operators, is derived with standard techniques (see Refs. 31 and 32). For
` � 3

2 , a reverse problem has to be solved. The first-order di↵erential operators generating cga` are
known. We have instead to determine the invariant PDEs associated with the given D-module reps.

One possibility is o↵ered by the method, based on Lie symmetries, which produces non-linear
invariant PDEs, see Refs. 33 and 34. Another possibility, leading to linear invariant PDEs, is based
on the construction of singular vectors of the given representation17 (see Ref. 3 for the case ofLcga`). We discuss in this section, a di↵erent approach to determine linear invariant PDEs, based on
imposing an on-shell invariant condition (see Refs. 18 and 35). Applied to the Lcga` algebras, this
approach naturally leads to second-order linear PDEs (invariant PDEs with higher derivatives can,
in principle, also be constructed).

Let us consider, for a given `, the enlarged algebras introduced in Sec. III (either the superal-
gebra sLcga` or its dual bosonic counterpart eLcga`). We can consider the most general generators ⌦

r

of grading r (also called the degree and defined by the commutator [z0,⌦r

] = r⌦
r

), with r = 0,±1.
The⌦

r

’s are even generators entering both sLcga` and eLcga`. For ` = 3
2 , we have, e.g.,

⌦±1 = a1z±1 + a2w ±1
2 , ±1

2
+ a3w ±3

2 , ⌥1
2
, a1,2,3 2 C,

⌦0 = b0c + b1z0 + b2w 1
2 ,
�1
2
+ b3w 3

2 ,
�3
2
, b0,1,2,3 2 C. (9)

By construction, 8g 2 sLcga` , eLcga`, the commutators

[g,⌦
r

] = !g
r

(10)

close on the elements !g
r

2 sLcga` , eLcga`.
In a given di↵erential realization of sLcga` , eLcga`, the generators⌦

r

are expressed as⌦
r

, while
the r.h.s. elements !g

r

are expressed as !g
r

.
We have now all the ingredients to define a cohomological problem. To determine whether

it is possible to choose ⌦
r

in the r-graded sector of sLcga` , eLcga` such that, 8g, the di↵erential
operators !g

r

are expressed as

!g
r

= f g⌦
r

, (11)

where, for a given g, f g is a specific function of the space and time coordinates (for ` = 3
2 ,

f g ⌘ f g(t, x, y)) and f g can also be vanishing.
As shown below, this cohomological problem admits non-trivial solutions in the presence of a

non-vanishing central extension c.
The requirement that Eq. (11) should be satisfied for any g will be called the on-shell condition

for an invariant PDE. Indeed, if (11) is satisfied for a given r , we obtain, applied to the solutions
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 (t,~x) of the partial di↵erential equation

⌦
r

 (t,~x) = 0, (12)

the symmetries of the equation of motion

[g, ⌦
r

] (t,~x) = 0. (13)

We can express this property through the position

[g, ⌦
r

] = f g⌦
r

) [g, ⌦
r

] ⇡ 0. (14)

The existence of the on-shell symmetry implies that explicit solutions (eigenfunctions and eigen-
values) of the invariant PDE can be constructed in terms of the associated spectrum generating
subalgebras (either belonging to eLcga` or to sLcga`).

Let us present now the construction, from the on-shell condition, of the invariant PDE at r = 1
induced by di↵erential realization (5) of the ` = 3

2 case.
For ` = 3/2, we have

sLcga 3
2
= u(1) � sl(2) �

S

osp(1|4) , eLcga` = Lcga 3
2
�
S

sp(4). (15)

A non-trivial solution of (11) on-shell condition is guaranteed if we take the following linear
combinations of generators:

⌦0 = z0 +
1
4c

w 1
2 ,
�1
2
� 1

4c
w 3

2 ,
�3
2
,

⌦1 = z+1 +
1
2c

w 3
2 ,
�1
2
� 1

2c
w 1

2 ,
1
2
. (16)

D-module rep (5) of Lcga 3
2

induces the second order di↵erential operators ⌦0 and ⌦1, explicitly given
by

⌦0 = �t⌦1 , ⌦1 = @
t

+ x@y �
1
c
@
x

2. (17)

In the given di↵erential realization, ⌦1 satisfies on-shell condition (11). Indeed, 8g 2 sLcga 3
2
,

eLcga 3
2
, its only non-vanishing commutators are given by

[z�1,⌦1] = �2⌦0 = 2t⌦1,

[z0,⌦1] = ⌦1. (18)

Therefore, f z�1 = 2t, f z0 = 1, f g = 0 otherwise.
For what concerns the ⌦0 operator, its commutators are vanishing when applied to the solutions

of the

⌦1 (t, x, y) = 0 ⌘  
t

(t, x, y) + x y(t, x, y) �
1
c
 

xx

(t, x, y) = 0 (19)

invariant PDE.
We have, indeed, that its only non-vanishing commutators in the basis expressed by z±1, z0, w j

,
w

i, j,c are given by

[z+1,⌦0] = �⌦1 = t�1⌦0,

[z�1,⌦0] = �t2⌦1 = t⌦0. (20)

We have, furthermore,

[⌦1,⌦0] = �⌦1. (21)

It follows, from the last equations in the r.h.s. of (20), that ⌦0 satisfies the on-shell condition for a
singular choice of space-time functions, namely, f z+1 = t�1, f z�1 = t, and f g = 0 otherwise.

Equation (19) invariant PDE is the counterpart, at ` = 3
2 , of the free Schrödinger equation in

1 + 1 dimensions. The centralizer algebra for the operator ⌦1 (induced by the operators g which
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strictly satisfy [g,⌦1] = 0), will be called the o↵-shell invariant algebra for (19) PDE. This subalge-
bra is obtained by disregarding the sl(2) Borel generators z0, z�1. In the superalgebra framework, the
o↵-shell invariant algebra can be presented as

u(1) � u(1) �
S

osp(1|4) ⇢ Mscga 3
2
, (22)

with the u(1) generator acting on osp(1|4) given by z+1.
PDE (19), derived from the on-shell condition, is identical to the lowest member of the hier-

archy, whose construction is based on singular vectors, given in Ref. 3. The on-shell condition al-
lowed us to identify here another invariant operator (⌦0, at degree 0), whose importance is discussed
in Sec. V.

V. THE INVARIANT PDE OF DEGREE 0

Besides the free case, in 1 + 1 dimensions, the Schrödinger algebra is derived as the symmetry
algebra of the Schrödinger equation for two other choices of the potential, the linear potential, and
the quadratic potential of the harmonic oscillator.4,36,37 The di↵erence between the free case and
the oscillator case lies in the fact that the time-derivative operator is, in the first case, associated
with a positive root of the sl(2) subalgebra, as in formula (5). In the second case, it is associated
with the Cartan generator (for the linear potential, the time-derivative operator is a symmetry gener-
ator which does not coincide with a generator of the sl(2) subalgebra1,37). In the framework of
the on-shell condition, the free Schrödinger equation is the invariant PDE at degree 1, while the
equation of the harmonic oscillator is the invariant PDE at degree 0.1 The appearance of a discrete
spectrum for the harmonic oscillator in contrast to the continuous spectrum of the free particle can
be traced to these di↵erences.

At ` = 1
2 , the D-module rep associated with the harmonic oscillator can be recovered from

the original D-module rep via a transformation (this point has been discussed in Refs. 4 and 5).
This transformation can be extended to other values of ` entering Lgca`. We present it for ` = 3

2 .
Essentially, the transformation requires presenting z0 as the time-derivative operator with respect to
a new time variable (in a related context, see Ref. 38).

We recall that we denoted as g, a g 2 Lgca 3
2

generator in D-module rep (5). We denote as “Hg” the

generator in the new D-module rep. We can write g 2 V , Hg 2 HV , where V ,HV are the corresponding
D-module reps. The transformation ⌧ mapping

⌧ : V ! HV , ⌧ : g 7! Hg, (23)

can be realized in three steps:
(i) at first, any given generator g in (5) is dressed by the similarity transformation g 7! ǧ =

tgt�1;
(ii) next, the ǧ generators are re-expressed as di↵erential operators in the new variables s,u, v ,

related to the previous variables t, x, y through the positions

t = es,
x = e

s
2 u,

y = e
3s
2 v, (24)

(s plays now the role of the new “time” variable);
(iii) finally, the ǧ generators are dressed by a similarity transformation which preserves ž0 as

the time-derivative operator. There is an arbitrariness in the choice of the similarity transformation.

In this and Sec. VII, it is convenient to work with the choice ǧ 7! Hg = e
cu2

2 ǧe�
cu2

2 . A di↵erent
similarity transformation, leading to the “canonical” form of the `-oscillator Hamiltonian given by
(2), is introduced in Sec. VII.

The result of the three combined operations produces a D-module rep of Lcga 3
2
, given by the

first-order di↵erential operators in s,u, v ,
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Hz+1 = e�s(@
s

� 1
2

u@
u

� 3
2
v@v � 1 +

1
2

cu2),Hz0 = �@s,Hz�1 = es(�@
s

� 1
2

u@
u

� 3
2
v@v � 3v@

u

� 1
2

cu2 � 1 + 3cuv),

Hw+ 3
2
= e�

3s
2 @v,Hw+ 1

2
= e�

s
2 (@v + @

u

� cu),

Hw� 1
2
= e

s
2 (@v + 2@

u

� cu),

Hw� 3
2
= e

3s
2 (@v + 3@

u

� 3cv).

Hc = c. (25)

In this di↵erential realization, the generators⌦0,⌦1 introduced in (16) are expressed as

H⌦0 = �@s � u@v �
3
2

u@
u

+
3
2
v@v +

1
c
@
u

2 +
1
2

cu2,

H⌦1 = �e�sD⌦0. (26)

Both H⌦0 (at degree r = 0) and H⌦1 (at degree r = 1) satisfy on-shell condition (11). Indeed, their
respective non-vanishing commutators with the operators in HV are given by

[Hz+1,H⌦0] = e�sH⌦0,

[Hz�1,H⌦0] = esH⌦0, (27)

and

[Hz0,H⌦1] = H⌦1,

[Hz�1,H⌦1] = 2esH⌦1. (28)

We have, furthermore, the relation

[H⌦0,H⌦1] = H⌦1. (29)

One should note that the degree 0 on-shell invariant operator H⌦0, in this D-module rep does not
present an explicit dependence on the time coordinate s. Its associated invariant PDE is given by

H⌦0 (s,u, v) = 0 ⌘ � 
s

� u v �
3
2

u 
u

+
3
2
v v +

1
c
 

uu

+
1
2

cu2 = 0. (30)

It is a second-order partial di↵erential equation, containing a term proportional to u2, which imple-
ments the ` = 3

2 counterpart of the harmonic oscillator in 1 + 1 dimensions. Its o↵-shell invariant
algebra is obtained by disregarding the root generators Hz±1. In the superalgebra framework, it can be
expressed as a subalgebra

u(1) � u(1) �
S

osp(1|4) ⇢ Mscga 3
2
. (31)

It is a di↵erent Mscga 3
2

subalgebra with respect to (22). In that case the u(1) generator acting on
osp(1|4) is the root generator z+1, while here it is the Cartan generator z0.

VI. EIGENFUNCTIONS AND EIGENVALUES FROM THE SPECTRUM GENERATING
SUBALGEBRAS

Both the ` = 3
2 degree 1 (19) and degree 0 (30) invariant PDEs admit the osp(1|4) superalgebra

as a subalgebra of their respective o↵-shell symmetry algebras.
We focus here in the degree 0 case. As already recalled, the superalgebras of the osp(1|2n)

series present a realization in terms of n bosonic oscillators. In our case, we implemented concretely
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this realization with w ±1
2

, w ±3
2

expressed as first-order di↵erential operators, see (25). The super-
algebra osp(1|4) can be used as the spectrum generating algebra to construct eigenfunctions and
eigenvalues of (30) PDE. Based on the algebra/superalgebra duality discussed in Sec. III and in
analogy with the construction for the ordinary harmonic oscillator in (1 + 1) dimensions, see Ref. 1,
two compatible viewpoints can be adopted here. In the bosonic viewpoint, the construction of
eigenfunctions and eigenvalues is derived from the Fock space of two bosonic oscillators. In the
superalgebra viewpoint, the same result is recovered from a highest weight representation of the
osp(1|4) superalgebra.

The operator H⌦0 given in (26) commutes withHz0. If we setH⌦0 = Hz0 + HH ,HH = 1
2c

(Hw� 1
2
Hw+ 1

2
� Hw� 3

2
Hw+ 3

2
) + 1 = �u@v �

3
2

u@
u

+
3
2
v@v +

1
c
@
u

2 +
1
2

cu2, (32)

we have that [Hz0, HH] = 0. Therefore, the equation H⌦0 (s,u, v) = 0 is solved by the common eigen-
functions  

E

(s,u, v) such that

Hz0 E

(s,u, v) = �E 
E

(s,u, v) , HH 
E

(s,u, v) = E 
E

(s,u, v). (33)HH plays the role of an e↵ective Hamiltonian and E is the energy level. Eigenstates and eigenvalues
are obtained from a highest weight representation by applying the creation operators Hw �3

2
,Hw �1

2
on

the vacuum solution  vac(s,u, v), defined by the conditionsHw 1
2
 vac(u, v) = Hw 3

2
 vac(u, v) = 0 (34)

and

�Hz0 vac(s,u, v) = HH vac(s,u, v) = Evac vac(s,u, v). (35)

Due to (25), the unnormalized solution of (34) is

 vac = �(s)e 1
2 cu

2
(36)

for an arbitrary function �(s). The vacuum energy is given by Evac = 1.
The first equation in (35) constraints �(s) to be �(s) / es.
One can easily verify that the solutions of (33) can be expressed as  

E

(s,u, v) / eEs'
E

(u, v).
The ground state function 'vac(u, v) = e

1
2 cu

2
turns out to be independent of v and normalizable in

(�1,1) if the central charge is restricted to c < 0.
The higher energy eigenstates

 
m,n(s,u, v) = esEm,n'

m,n(u, v) (37)

of (33) are given by

 
m,n = (Hw� 3

2
)m(Hw� 1

2
)n vac (38)

(we can therefore also set  vac ⌘  0,0, as well as 'vac ⌘ '0,0).
Due to (34) and to (4) commutators, the associated E

m,n eigenvalues are

E
m,n =

3
2

m +
1
2

n + 1. (39)

One should note that they do not depend on the value of the central charge. Furthermore, the
eigenvalues E

m,n are degenerate for E
m,n � 5

2 .
Since HH does not depend on s, the two-variable functions '

m,n(u, v) are solutions of the “static”
equation HH'

m,n(u, v) = E
m,n'm,n(u, v). (40)

Oscillatorial solutions are recovered if s is assumed to be imaginary. In terms of the new time
variable ⌧, we have

 
m,n(⌧,u, v) = e�i⌧Em,n'

m,n(u, v), (s = �i⌧). (41)
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The first few (unnormalized) eigenstates corresponding to the lowest energy eigenvalues (for
E
m,n  3) are given by

E = 1 :  (0,0) = ese
1
2 cu

2
,

E =
3
2

:  (0,1) = e
3
2 s(cue

1
2 cu

2),

E = 2 :  (0,2) = e2s(c(2 + cu2)e 1
2 cu

2),

E =
5
2

:  (1,0) = e
5
2 s(3c(u � v)e 1

2 cu
2),

E =
5
2

:  (0,3) = e
5
2 s(c2u(6 + cu2)e 1

2 cu
2),

E = 3 :  (1,1) = e3s(3c(1 + cu(u � v))e 1
2 cu

2),

E = 3 :  (0,4) = e3s(c2(12 + 12cu2 + c2u4)e 1
2 cu

2). (42)

By construction, the two-variable functions '
m,n(u, v) which solve static Eq. (40) are expressed as

products of polynomials in u, v which multiply the ground state function '0,0 = e
1
2 cu

2
.

VII. THE `-OSCILLATOR FOR ANY ` = 1
2 + N0

Di↵erential realizations of Lcga` for any half-integer ` have been computed in Ref. 3. In that pa-
per, the second-order di↵erential operators which, in our language, are on-shell invariant operators
of degree 1, were presented. These operators possess a continuum spectrum.

On the other hand, as shown in Secs. V–VI, a discrete spectrum can be obtained if we impose
the on-shell condition for degree 0 operators. We discussed at length the derivation of (39) discrete
spectrum for ` = 3

2 .
We present here the general case of second-order invariant operators with discrete spectrum

(the `-oscillators) for any ` = 1
2 + N0. Since the derivation is a straightforward generalization of the

` = 3
2 case, we can keep the discussion short.
The di↵erential realizations of Lcga` given in Ref. 3 require the di↵erential operators to depend

on t and the ` + 1
2 variables x 1

2
, x 3

2
, . . . , x`. The scaling dimension of the variables is [t] = �1, [x

j

] =
� j. A convenient change of notation, x

j

! y
j+ 1

2
, is here introduced. The new variables are (t, y

a

),
with a = 1,2, . . . ,` + 1

2 . In these new variables, the generators given in Ref. 3 read as follows:

z+1 = @t,

z0 = �t@
t

�
`+ 1

2X

a=1

(a � 1
2
)y

a

@ya � �,

z�1 = 2t z0 + t2@
t

�
`� 1

2X

a=1

(` + a +
1
2
)y

a+1@ya � (` +
1
2
) c
2
y2

1 ,

w
j

=

`� jX

k=0

 
` � j

k

!
t`� j�k@y

`+ 1
2 �k

,

w� j =

`� 1
2X

k=0

 
` + j

k

!
t`+ j�k@y

`+ 1
2 �k
� (` + j)!c
(` � 1

2 )!(` +
1
2 )!

j+ 1
2X

a=1

(�1)a
(` + 1

2 � a)!
( j + 1

2 � a)!
t j+

1
2�ay

a

,

c = c, (43)

where j = 1
2 ,

3
2 , . . . ,` and � = 1

4 (` +
1
2 )

2.
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The on-shell invariant second order operator⌦1 is given by

⌦1 = @
t

+

`� 1
2X

a=1

(` + 1
2
� a)y

a

@ya+1 �
1
2c

(` + 1
2
)@2

y1
. (44)

The corresponding degree 0 operator can be defined by ⌦0 = �t⌦1. It is straightforward to check
that these two operators satisfy the same on-shell relations as (18)–(21).

For any half-integer `, the new di↵erential realization, allowing to conveniently express the
`-oscillator Hamiltonian, is obtained by performing the following three-step transformation on
operators entering (43) and its associated enlarged algebra:

(i) the similarity transformation g 7! ǧ = t� g t�� is applied to any such operator g;
(ii) a change of variables, (t, y

a

) 7! (s,u
a

), is performed on the di↵erential operators ǧ,

t = es, y
a

= e(a�
1
2 )su

a

; (45)

(iii) the similarity transformation ǧ 7! Hg = exp(� �2 u2
1)ǧ exp( �2 u2

1), with � = � c
2` + 1

, is applied
(for this choice of �, one eliminates in the final `-oscillator Hamiltonian a term proportional to
u1@u1).

The combination of these three operations produces the following di↵erential realization ofLcga` for any half-integer `:

Hz+1 = e�s
⇣
@
s

�
`+ 1

2X

a=1

(a � 1
2
)u

a

@
ua +

c
2

1
2` + 1

u2
1 � �

⌘
,

Hz0 = �@s,

Hz�1 = es
⇣
� @

s

�
`+ 1

2X

a=1

(a � 1
2
)u

a

@
ua �

`� 1
2X

a=1

(` + 1
2
+ a)u

a+1@ua +
c
2
( 1
2` + 1

� ` � 1
2
)u2

1

+
c
2

2` + 3
2` + 1

u1u2 � �
⌘
,

Hw
j

= e� j s
`� jX

k=0

 
` � j

k

!
@
u

`+ 1
2 �k
� �

j, 1
2

c
2` + 1

e�
s
2 u1,

Hw� j = e j s

 `� 1
2X

k=0

 
` + j

k

!
@
u

`+ 1
2 �k
� (` + j)!c�

` � 1
2

�
!
�
` + 1

2

�
!

j+ 1
2X

a=1

(�1)a
(` + 1

2 � a)!
( j + 1

2 � a)!
u
a

� c
2` + 1

 
` + j
` � 1

2

!
u1

!
,

Hc = c. (46)

The on-shell invariant operators⌦0,⌦1 are mapped into

H⌦0 = �@s +
`+ 1

2X

j=2

( j � 1
2
)u

j

@
u j �

`� 1
2X

j=1

(` + 1
2
� j)u

j

@
u j+1

+
1
2c

(` + 1
2
)@2

u1
� c

4
1

2` + 1
u2

1 +
1

16
(2` � 1)(2` + 3),

H⌦1 = �e�sH⌦0. (47)

The relations (27)–(29) hold true for any half-integer `.
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We are able to re-express, with the further change of variable s = �2i⌧ and after setting
c = �(2` + 1)m, the on-shell invariant PDE H⌦0 (s,ua

) = 0 as

i@⌧ (⌧,ua

) = H(`) (⌧,u
a

),

H(`) = � 1
2m

@2
u1
+

m
2

u2
1 +

`+ 1
2X

a=2

(2a � 1)u
a

@
ua �

`� 1
2X

a=1

(2` + 1 � 2a)u
a

@
ua+1

+
1
8
(2` � 1)(2` + 3). (48)

It coincides (after setting u
a

= x
a

to improve readability) with the `-oscillator equation that we
introduced in Eqs. (1) and (2).

Since the di↵erential operator H(`) is independent of ⌧, PDE (48) admits solutions of the form

 (⌧,u
a

) = e�iE⌧'(u
a

), H(`)'(u
a

) = E'(u
a

). (49)

The eigenvalue problem for the operator H(`) is solved via an algebraic method. The vacuum
solution 'vac(ua

) is defined to satisfy

Hw
j

'vac(ua

) = 0, j =
1
2
,
3
2
, . . . ,`. (50)

We get, as a consequence,

'vac(ua

) = exp(�m
2

u2
1), H(`)'vac(ua

) = 2�'vac(ua

). (51)

The relations

[H⌦0,Hw± j] = 0, [Hz0,Hw± j] = ± jHw± j, 2H⌦0 = 2Hz0 +H(`), (52)

imply that

[H(`),Hw± j] = ⌥2 jHw± j . (53)

Therefore, the eigenvalues and eigenfunctions are, respectively, given by

E~n =

`+ 1
2X

a=1

(2a � 1)n
a

+
1
2
(` + 1

2
)2,

'~n = Hwn1
� 1

2
Hwn2
� 3

2
· · · Hwn

`+ 1
2

�` 'vac(ua

), (54)

where ~n = (n1,n2, . . . ,n`+ 1
2
) is a (` + 1

2 )-component vector with entries n
a

2 N0.
This concludes the derivation of the discrete spectrum that we introduced in (3).
The table of the first `-oscillator Hamiltonians for `  9

2 is here reported for convenience. With
the same conventions as in the Introduction (namely, u

a

= x
a

), we have

H( 1
2 ) = � 1

2m
@2

x1
+

m
2

x1
2,

H( 3
2 ) = � 1

2m
@2

x1
+

m
2

x1
2 + 3x2@x2 � 2x1@x2 +

3
2
,

H( 5
2 ) = � 1

2m
@2

x1
+

m
2

x1
2 + 3x2@x2 + 5x3@x3 � 4x1@x2 � 2x2@x3 + 4,

H( 7
2 ) = � 1

2m
@2

x1
+

m
2

x1
2 + 3x2@x2 + 5x3@x3 + 7x4@x4 � 6x1@x2 � 4x2@x3 � 2x3@x4 +

15
2
,

H( 9
2 ) = � 1

2m
@2

x1
+

m
2

x1
2 + 3x2@x2 + 5x3@x3 + 7x4@x4 + 9x5@x5

�8x1@x2 � 6x2@x3 � 4x3@x4 � 2x4@x5 + 12. (55)
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VIII. CONCLUSIONS

For ` � 3
2 , the `-oscillator Hamiltonians fit into the class of non-Hermitian operators with real

spectrum (see, e.g., Refs. 6 and 8). Besides being real, their spectrum is positive and discrete. It
coincides with the spectrum of a set of decoupled harmonic oscillators of appropriate (⌫

j

/ 2 j � 1)
frequency. The full quantum theory of the `-oscillators requires the introduction of an inner product,
norm, orthogonality conditions for the polynomials such as those entering (42). It deserves being
fully scrutinized in a separate paper.

The spectrum is recovered from the ` + 1
2 harmonic oscillators realizing the osp(1|2` + 1)

o↵-shell invariant subalgebra. In the ` ! 1 limit, an infinite tower of oscillatorial modes is created.
The connection of the sp(2m) algebras and their orthosymplectic extensions with the higher spin
theories (see, e.g., Refs. 39 and 40) is well-established. It is tempting, in the light of the AdS/CFT
correspondence and non-relativistic holography, to conjecture that `-oscillators could appear in the
dual, CFT side of higher-spin theories (possibly, in some non-relativistic contraction limit). This is
an important point for future investigations.

The Pais-Uhlenbeck oscillators (see, e.g., Ref. 11) are invariant under the CGAs. Moreover, up
to a normalization factor, their frequencies coincide with the `-oscillator spectrum of frequencies.
The two systems on the other hand are quite di↵erent. The Pais-Uhlenbeck oscillators describe
higher-derivatives theories, while the `-oscillators are second-order (no higher derivative) PDEs.
A possible connection can arise from the on-shell condition. We investigated it for the di↵erential
realizations belonging to the enlarged Lcga` algebras. This is the natural setup for second-order
invariant PDEs. One can of course search for solutions of the on-shell condition for di↵erential
realizations of U (Lcga`), the Lcga` universal enveloping algebra. If such solutions are encountered,
then the associated invariant PDEs are of higher order.

Our construction can be straightforwardly extended to more general cases. It can be applied
to d-dimensional CGAs with half-integer `. The first invariant PDEs of the series, at ` = 1

2 , are
either the free Schrödinger or the harmonic oscillator equation in 1 + d-dimensions. For generic
` = 1

2 + N0, one recovers, as o↵-shell invariant subalgebras, both so(d) and osp(1|d(2` + 1)) (real-
ized by d(` + 1

2 ) oscillators). The fact that the oscillatorial modes can be accommodated into
spin representations of so(d) makes quite interesting to investigate the possible arising of Regge
trajectories for `-oscillators with d > 1.

The last comment regards supersymmetry. The supersymmetric extensions of Lcga` possess
a Z2-grading. Their enlarged superalgebras require a second Z2-grading induced by the Cartan
element of the sl(2) subalgebra. The algebra/superalgebra duality of the enlarged bosonic algebra
is replaced, in the supersymmetric case, by the superalgebra/Z2 ⇥ Z2-graded algebra duality of
the enlarged superalgebra. The Z2 ⇥ Z2-graded algebras have been investigated, albeit to a less
extent than superalgebras, in the mathematical literature, see, e.g., Refs. 41 and 42. A work on the
superalgebra/Z2 ⇥ Z2-graded algebra duality is currently under finalization.
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