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Generation of zonal flows by ion-temperature-gradient and related modes
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Generation of zonal flows by primary waves that are more complex than those considered in the
standard drift-wave model is studied. The effects of parallel ion velocity and ion perturbed
temperature and the part of the nonlinear mode interaction proportional to the ion pressure are taken
into account. This generalization of the standard model allows the analysis of generation of zonal
flows by a rather wide variety of primary modes, including ion temperature gradients, ion sound,
electron drift, and drift-sound modes. All the listed effects, which are present in the slab geometry
model, are complemented by effects of neoclassical viscosity inherent to toroidal geometry. We
show that the electrostatic potential of secondary small-scale modes is expressed in terms of a
nonlinear shift of the mode frequency and interpret this shift in terms of the perpendicular and
parallel Doppler, nonlinear Kelvin-Helmholtz �KH�, and nonlinear ion-pressure-gradient effects. A
basic assumption of our model is that the primary modes form a nondispersive monochromatic wave
packet. The analysis of zonal-flow generation is performed following an approach similar to that of
convective-cell theory. Neoclassical zonal-flow instabilities are separated into fast and slow ones,
and these are divided into two varieties. The first of them is independent of the nonlinear KH effect,
while the second one is sensitive to it. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2203235�
I. INTRODUCTION

The ion-temperature-gradient �ITG� instability1 is one of
the main instabilities that contribute to anomalous losses in
tokamaks2 and is taken into account in the ITER program.3 It
is then important to study not only its direct consequences,
i.e., the ITG turbulence,4 but also indirect ones revealed as
generation of secondary modes,5 particularly the possibility
of generation of zonal flows.6 Such an analysis was the sub-
ject of several recent papers, including Refs. 7–9. The main
goal of the present paper is to develop a more complete
theoretical model for this mechanism.

Considerable efforts have been undertaken in the recent
theory of zonal-flow generation for studying the case when

the primary �generating� modes are drift waves in a plasma
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with cold ions, allowing for the perpendicular ion inertia �see
Refs. 6 and 10–12 and works cited therein�. These modes can
be referred to as the standard drift modes. The perpendicular
ion inertia causes their radial dispersion, i.e., dependence of
their mode frequency � on the radial wave vector kx. Such a
dispersion is mathematically described by a term of order
kx

2�s
2 in the dispersion relation, where �s is the ion sound

Larmor radius, i.e., the ion Larmor radius defined by the
electron temperature. As a rule, the terms with finite kx�s

prove to be very important for the zonal-flow theory,6,10–12

although particular results of such a theory can be used for
the limiting transition kx�s→0. As a whole, the approach of
zonal-flow theory developed for the case of standard drift
waves can be called the dispersive one.
In contrast to the standard drift modes, the ITG modes
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can be studied neglecting their radial dispersion. Actually,
this is the approximation made in the original paper on these
modes, Ref. 1. Therefore, it seems reasonable, as a first step,
to develop the theory of zonal flows generated by the ITG
modes in the scope of the nondispersive approach, i.e., ne-
glecting the radial dispersion of both the ITG modes and
generated zonal flows. This approach is used in the present
paper. Such a simplification of the general theory is moti-
vated also by the consideration of the ion temperature being
comparable to the electron temperature, as an approach for
ITG modes. Therefore, assuming the parameter kx

2�s
2 to be

finite, one should also allow for finiteness of the parameter
kx

2�i
2, where �i is the ion Larmor radius, and deal essentially

with ion equations that are more complete than those in the
limit kx

2�i
2→0.

The study of zonal-flow generation by the standard drift
waves was performed mainly by means of the wave kinetic
equation �WKE�, initially formulated for arbitrary types of
waves in Ref. 13. One of the results significant for our topic,
obtained by means of the WKE, is that a nondispersive
monochromatic drift-wave packet can generate nondisper-
sive poloidal zonal flow, as pointed out in Ref. 11 and repro-
duced in Ref. 12.

Actually, this fact should not be considered as unex-
pected if one supposes that the poloidal zonal flows are a
particular case of the convective cells and that, according to
Ref. 14, the convective cells can be generated by a mono-
chromatic drift-wave packet. One can see from that work that
such a generation takes place independently of whether this
wave packet is dispersive or nondispersive. The approach
used in Ref. 14 goes back to the idea of secondary
instabilities.5 It does not use the WKE and can be applied for
the cases of both dispersive and nondispersive primary and
secondary waves. In Ref. 12, it was emphasized that the
above generation of nondispersive zonal flows by the non-
dispersive drift-wave packets is a rather fundamental nonlin-
ear phenomenon and it was called the standard zonal-flow
instability of hydrodynamic type. In addition to the WKE
approach, the dispersion relation for this instability was de-
rived in Ref. 12 also by means of the convective-cell formal-
ism.

Taking the above arguments into consideration, we will
perform our analysis following an approach similar to Ref.
14, i.e., without using the WKE. Our first goal is to elucidate
whether the nondispersive ITG modes can generate the non-
dispersive poloidal zonal flow by the mechanism pointed out
in Ref. 11.

It has been shown in Ref. 12 that, if the neoclassical
viscosity is taken into account, the nondispersive drift-wave
packet can generate not only the poloidal zonal flows but
also the toroidal ones. In this connection, it is of interest to
elucidate whether the toroidal zonal flows can be generated
by ITG modes. This constitutes a further objective of the
present paper.

There is a difficulty in the mathematical formulation of
the current problem, which is related to ITG modes being
essentially a kinetic phenomenon in high-temperature
plasmas.1,15 However, the analytical study of the nonlinear

behavior of the kinetic ITG modes seems to be rather diffi-
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cult. Therefore, we use the hydrodynamic model of nonlinear
ITG modes, referring back to Ref. 16 and then to Ref. 15. In
the scope of this model, we allow for the Reynolds stresses
necessary for analysis of the zonal-flow instabilities. In order
to complement the hydrodynamic equations of those refer-
ences, we include terms corresponding to the neoclassical
viscosity, using the formalism described in Refs. 17 and 18
and works quoted therein.

The equations are given in Sec. II. The main variables
entering these equations are the electrostatic potential, the
parallel plasma velocity, and the ion pressure. In addition, we
explain in this section our approach to treat the variables
describing the primary and secondary modes. In contrast to
the theory of nonlinear generation of convective cells,14,19 we
do not specify the time-spatial dependence of the variables
characterizing the zonal flows. Therefore, we cannot intro-
duce the side-band harmonics of the secondary small-scale
perturbations. Instead of them, we deal with the amplitudes
of these perturbations, which are slow functions of the time
and radial coordinate. It follows from a comparison with Ref.
12 that our approach leads to the same results as the ap-
proach of the theory of convective cells.

According to Ref. 20 �see also Ref. 15�, the hydrody-
namic model of ITG modes16 shows that these modes are
unstable for parallel wave vector k� smaller than the critical
value k�crit, i.e., k� �k�crit. At the same time, since the charac-
teristic growth rates of zonal-flow instabilities are suffi-
ciently small, one needs to consider almost marginally stable
primary modes. Therefore, in order to avoid analyzing a
rather complicated scenario of nonlinear stationary ITG
modes, we consider stable ITG modes, i.e., those for
k� �k�crit. The dispersion relation for them is derived in Sec.
III.

In the scope of the hydrodynamic model, the ITG modes
look as a particular case of a family of nondispersive modes
described by a common dispersion relation derived in Ref.
20 �see Sec. III�. This family includes the ion-sound modes,
electron drift modes �the nondispersive limit of the standard
drift waves�, and the drift-sound modes. In addition to the
ITG modes, we analyze also the generation of zonal flows by
these modes, introducing their dispersion relations in Sec.
III. We derive the equations characterizing the small-scale
secondary modes in the same section and express the ampli-
tudes of the parallel velocity and the ion pressure in terms of
the electrostatic potential. Then we obtain an equation for the
amplitude of the electrostatic potential of these modes in
terms of the electrostatic potential of the primary modes, and
show that the electrostatic potential of the small-scale sec-
ondary modes can be expressed in terms of the nonlinear
shift of the small-scale mode frequency. This nonlinear shift
of the frequency is governed by the nonlinear Doppler shift
of the primary mode frequency, the nonlinear Kelvin-
Helmholtz �KH� effect, as well as the nonlinear ion-pressure-
gradient effect. Introducing the nonlinear shift of the mode
frequency, we thereby span a bridge between our approach
and the WKE formalism10–12 that deals with this frequency
shift.

In Sec. IV we derive equations describing the large-scale

secondary modes, i.e., the zonal flows. The main one is an
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equation for the zonal-flow poloidal velocity, Eq. �58�. This
equation differs from that derived in Ref. 12 as follows.
First, it allows for the effects of finite ion temperature. Sec-
ond, effects of order �k� /��2 are taken into account in Eq.
�58�. Third, the above-mentioned effects of finite kx

2�s
2 are not

allowed for.
In addition to the poloidal zonal-flow velocity, Eq. �58�

includes also the large-scale parts of the ion pressure and the
parallel velocity. The evolution equations for them are also
derived in Sec. IV. From that we prove that the averaged
Reynolds stresses in these equations vanish. Therefore, the
large-scale part of the ion pressure also vanishes, while the
evolution of the large-scale part of the parallel velocity is
governed solely by the neoclassical viscosity. As a result, we
arrive at two coupled evolution equations for the averaged
poloidal and parallel velocities. In Sec. IV we separate the
large-scale perturbations into fast and slow ones. The fast
perturbations do not depend on the averaged parallel veloc-
ity, i.e., they are characterized only by the poloidal velocity.

As a whole, Secs. II–IV describe a mathematical formal-
ism for studying zonal-flow generation by drift-type and
sound-type modes in the nondispersive approximation.
Analysis of such a generation is the goal of Sec. V. Discus-
sions of the results obtained in the paper are given in Sec.
VI.

II. STARTING EQUATIONS AND VARIABLES
DESCRIBING THE PRIMARY AND SECONDARY
MODES

A. Starting equations

One of the main starting equations of our analysis is the
ion continuity equation. We take it in the following dimen-
sionless form:

�N

�t
+ V���N + ��V� + V*e

��

�y
+ ��,N� = I� + INC. �1�

Here N=n /n0 and �=e� /T0e, where n0 and T0e are the equi-
librium number density and the equilibrium electron tem-
perature, e is the ion charge, � is the electrostatic potential,
and n is the perturbed plasma number density. The time de-
rivative is normalized on the ion cyclotron frequency �Bi.
The spatial derivatives are taken in units of the ion sound
Larmor radius �s, defined by �s=cse /�Bi, where cse

= �T0e /Mi�1/2 is the electron part of the sound speed �see in
detail below� and Mi is the ion mass. The parallel gradient ��

is defined by �� =�s
−1h ·�, where h is the unit vector along

the equilibrium magnetic field directed along the Cartesian
coordinate z. The value V� is the perturbed ion parallel ve-
locity normalized on cse. The value V*e is the electron drift
velocity determined by the density gradient and normalized
on cse. The Poisson brackets �a ,b� are defined by

�a,b� =
�a

�x

�b

�y
−

�a

�y

�b

�x
, �2�

where x is the dimensionless radial coordinate and y is the
“drift direction.”

The value I� describes the perpendicular inertia and is

defined by

ownloaded 25 May 2006 to 143.107.134.72. Redistribution subject to 
I� =
�

�x
��1 + 2q2�

�Vp

�t
+ ��,Vp�� . �3�

Here Vp is the perturbed poloidal ion velocity given by

Vp =
�

�x
�� + p� +

�

q
V� , �4�

� is the inverse aspect ratio, q is the safety factor, p is the
normalized perturbed ion pressure given by

p = �N + T , �5�

where �=T0i /T0e, T0i is the equilibrium ion temperature, and
T is the perturbed ion temperature normalized on the equi-
librium electron temperature T0e. Note that Eq. �4� is a con-
sequence of the radial motion equation of the ions �see Refs.
17 and 18 for details�.

The value INC describes the contribution of the neoclas-
sical viscosity. It is defined by

INC = �	

�

�x
	Vp − k

�T

�x

 . �6�

Here �	 is the neoclassical viscosity coefficient and k is a
numerical factor dependent on the collisionality regime.17,18

The parallel velocity V� satisfies the normalized equation
of ion parallel motion

�V�

�t
+ V���V� + ���p + N� + ��,V�� = − 
�	Vp − k

�T

�x

 ,

�7�

where 
� =��	 /q. The right-hand side of this equation allows
for the effect of neoclassical viscosity. The perturbed ion
temperature T is governed by the ion heat-balance equation

�T

�t
+ V���T +

2

3
���V� + ��,T� − V*Ti

��

�y
= 0. �8�

Here V*Ti
is the ion diamagnetic drift velocity determined by

the ion temperature gradient and normalized to cse.
The ion Eqs. �1�, �7�, and �8� are complemented by the

equation for the electron parallel motion, of the form

���� − N� = 0. �9�

Let us relate these equations to the system of equations
derived in Ref. 16. Equation �1�, without the terms I� and
INC, corresponds to the first equation of that system, written
for the ions. Equation �7�, without the contribution of neo-
classical viscosity, is obtained by summing the parallel com-
ponents of the equations of motion for electrons and ions,
multiplied by their respective masses. Equation �8� corre-
sponds to the third equation of the system, taken for the ions.
Finally, Eq. �9� is a particular case of the second equation of
the system, taken for electrons but neglecting their inertia,
the perturbed temperature, and the parallel friction force.

In order to obtain the value I� given by Eq. �3�, one can
turn to Eq. �4.44� of Ref. 15 and to Eq. �19.9� of Ref. 18. The
value INC given by Eq. �6� can be found turning to Eqs.

�19.9�, �19.18�, and �19.19� of Ref. 18 and to series of for-
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mulas of Ref. 17. Finally, for obtaining the term with neo-
classical viscosity in Eq. �7�, it is useful to turn to Eqs.
�19.20�–�19.22� of Ref. 18 and to Ref. 17.

B. Variables describing the primary and secondary
modes

We separate each perturbed value X into

X = X̃ + X̂ + X̄ . �10�

Here X̃ corresponds to the primary small-scale modes, while

X̂ and X̄ characterize the small-scale and large-scale parts of

the secondary modes, respectively. Evidently, the variables X̄
concern the zonal flows.

We describe the primary small-scale modes in terms of

the functions X̃= ��̃ , Ṽ� , p̃ , T̃�, taken in the form

X̃ = X̃0 exp�ikxx + ikyy + ik�z − i�t� + c.c. �11�

In the general case of the ITG modes, the mode fre-
quency � is assumed to be complex, �=�R+ i
, where � is
the radial part of the mode frequency and 
 is the growth
rate. However, as noted in Sec. I, we will consider these
modes at their stability boundary, so that only the case �
=�R, 
=0 will be considered.

The secondary small-scale modes are characterized by

the functions X̂= ��̂ , V̂� , p̂ , T̂� given by

X̂ = X̂1�t,x�exp�ikxx + ikyy + ik�z − i�t� + c.c. �12�

At last, the large-scale perturbations are described by the
functions

X̄�t,x� = ��̄�t,x�,V̄��t,x�, p̄�t,x�,T̄�t,x�� . �13�

One can see that our approach to present the functions X̂

and X̄ differs from that used in the theory of nonlinear gen-
eration of convective cells.14,19 Then, in accordance with
Sec. I, it is reasonable to demand that both these approaches
lead to the same results. This is accomplished in detail in
Ref. 12.

In order to facilitate understanding the correspondence
between our approach and the convective-cell theory, note

that the functions X̄�t ,x� describing the large-scale perturba-
tions are similar to the variables characterizing the convec-
tive cells. In the simplest case of monochromatic large-scale
perturbations, these functions have a time-space dependence
of the form exp�−i�t+ iqxx�, which is physically the same as
a monochromatic convective cell. Also, the functions

X̂1�t ,x�, characterizing the secondary small-scale modes,
with the accuracy of the multiplier exp�−i�t+ iqxx�, play the
role of the sideband amplitudes of the convective-cell theory.

III. ANALYSIS OF SMALL-SCALE MODES

A. Primary modes

Let us consider the primary modes neglecting the per-
pendicular inertia and neoclassical viscosity. Then Eqs. �1�,

�7�, and �8� reduce to

ownloaded 25 May 2006 to 143.107.134.72. Redistribution subject to 
�� − �*e��̃0 − k�Ṽ�0 = 0, �14�

�Ṽ�0 − k��p̃0 + �̃0� = 0, �15�

�p̃0 + �*pi�̃0 − �5/3��k�Ṽ�0 = 0, �16�

where �*e=kyV*e, �*pi=kyV*pi, and V*pi=V*Ti−�V*e is the
ion diamagnetic drift velocity determined by the pressure
gradient. We find from Eqs. �15� and �16� that the amplitudes

Ṽ�0 and p̃0 are related to �̃0 by

Ṽ�0 = k��� − �*pi��̃0/f � , �17�

p̃0 = �− ��*pi + �5/3��k�
2��̃0/f � , �18�

where

f � � �2 − �5/3��k�
2. �19�

Substituting Eqs. �17� and �18� into Eq. �16�, we arrive at the
dispersion relation

D0��� � �2�� − �*e� − k�
2���1 + �5/3��� − �*pi

− �5/3���*e = 0. �20�

This rather complicated dispersion relation describes a
family of simple modes. Let us consider several of the rel-
evant particular cases.

1. ITG modes

Let us assume for simplicity �=1 and introduce the pa-
rameter �T by

�T �  − 2/3, �21�

where �� ln T0i /� ln n0. Then Eq. �20� reduces to

1 −
�*e

�
−

�s
2

�2	1 +
3

8

�*e

�
�T
 = 0, �22�

where �s is the sound frequency introduced by �s
2= �8/3�k�

2.
It is known20 that, for �T�0, Eq. �22� describes the ITG
instability. If �T�1, the root of this dispersion relation, cor-
responding to the unstable mode, has 
��R. In order to
exclude such a situation, we take �T�1 and consider the
modes with

� � �*e. �23�

In addition, we assume the ratio ��s /�*e�2 to be a small
parameter of the same order of magnitude as the parameter
�T,

��s/�*e�2 � �T. �24�

Then Eq. �22� reduces to

�2 + �s
2�/�*e + �3/8��s

2�T = 0. �25�

It hence follows that, for

�T � �T
0 � �2/3���s/�*e�2, �26�

the ITG modes are characterized by

�R = − �2/�2�*e� , �27�
s
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 =
��s�
2
�3

2
�T − 	 �s

�*e

2�1/2

. �28�

For

�T � �T
0 , �29�

Eq. �25� yields 
=0, while

�R = −
�s

2

2�*e
±

��s�
2
�	 �s

�*e

2

−
3

2
�T�1/2

. �30�

Only such a case of ITG modes will be considered in the
sequel.

2. Ion-sound modes

Neglecting the drift terms in Eq. �20�, we arrive at the
dispersion relation

�2 = k�
2�1 + �5/3��� , �31�

which describes the ion-sound modes in a homogeneous
plasma. For �=1 one has from Eq. �31�

�2 = �s
2. �32�

The correspondence between the ion-sound modes and the
ITG modes can be seen from Eq. �22�.

3. Nondispersive electron drift modes

For k�→0, Eq. �20� reduces to

� = �*e. �33�

The modes described by this dispersion relation can be called
nondispersive electron drift modes. They are the limiting
case of the standard �dispersive� drift modes for kx

2�s
2→0,

studied in Refs. 10–12 as the primary modes generating the
zonal flows.

4. Drift-sound modes for cold ions

Assuming �→0, Eq. �20� yields

��� − �*e� − k�
2 = 0. �34�

Hence we find

� =
�*e

2
± 	�*e

2

4
+ k�

2
1/2

. �35�

These frequencies characterize the drift-sound modes in an
inhomogeneous plasma with cold ions. According to Ref. 15,
they are one of the fundamental types of waves in a weakly
inhomogeneous plasma.

B. Small-scale secondary modes

Using Eqs. �1�, �7�, and �8�, and neglecting the perpen-
dicular inertia and the neoclassical viscosity, we obtain the
following system of equations for the secondary modes:

��/�t − i�� − �*e���̂1 + ik�V̂�1 + i�kyV̄0 + k�V̄���̃0 = 0,
�36�

ownloaded 25 May 2006 to 143.107.134.72. Redistribution subject to 
	 �

�t
− i�
V̂�1 + ik��p̂1 + �̂1� + i�kyV̄0 + k�V̄��Ṽ�0

− ikyV̄���̃0 = 0, �37�

and

��/�t − i��p̂1 + i�5/3��k�V̂�1 − i�*pi�̂1 + i�kyV̄0 + k�V̄��p̃0

− ikyp̄��̃0 = 0, �38�

where V̄0=�̄� is the averaged cross-field drift velocity and
the prime denotes the x derivative. Similarly to Eqs. �17� and
�18�, it follows from Eqs. �37� and �38� that

V̂�1 =
k�

f �

��� − �*pi��̂1 −
i

f �
���� − 2�*pi�

+
5

3
�k�

2� ��̂1

�t
� +

�̃0

f �
� k�

f �
���� − 2�*pi� +

5

3
�k�

2�
��kyV̄0 + k�V̄�� − ky��V̄�� + k�p̄��� �39�

and

p̂1 =
1

f �

�	− ��*pi +
5

3
�k�

2
�̂1 −
i

f �

��− �2�*pi +
5

3
�k�

2�2� − �*pi�� ��̂1

�t
�

+
�̃0

f �
� 1

f �
�− �2�*pi +

5

3
�k�

2�2� − �*pi���kyV̄0 + k�V̄��

− ky	�p̄� +
5

3
�k�V̄��
� . �40�

Substituting Eq. �39� into Eq. �36�, we find

��̂1/�t = − i�̃0��NL. �41�

Here ��NL is given by

��NL = kyV̄0 + k�V̄� −
k�ky

�D0/��
��V̄�� + k�p̄�� . �42�

In accordance with Eq. �20�,

�D0/�� = 3�2 − 2��*e − k�
2�1 + �5/3��� . �43�

The value ��NL can be interpreted as the nonlinear shift of
the small-scale mode frequency. Such an interpretation is
substantiated in Sec. III C.

Note that we have neglected the terms with � /�t in the
right-hand side of Eq. �41�, because they are important only
for extremely large amplitudes of the primary modes �see
also discussion after Eq. �76��.

C. Nonlinear small-scale mode frequency

In contrast to Eq. �10�, let us separate the variable X in

the form
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X = X� + X̄ , �44�

where, in accordance with Eq. �10�, X�= X̃+ X̂. The time de-
pendence of X� is taken in the form exp�−i�NLt�, where �NL

is the nonlinear small-scale mode frequency. Turning to Eqs.
�1�, �7�, and �8�, we arrive at the system of equations for
X�= ��� ,V�

� , p�� �cf. Eqs. �14�–�16� and �36�–�38��,

��̃ − �*e��� − k�V�
� = 0,

�̃V�
� − �k� − ky�V̄�/�x��� − k�p� = 0, �45�

and

�̃p� + ��*pi + ky�p̄/�x��� − �5/3��k�V�
� = 0,

where

�̃ = �NL − kyV̄0 − k�V̄� . �46�

This system leads to the nonlinear dispersion relation for the
small-scale modes of the form

D0��̃� + kyk�	�̃
�V̄�

�x
+ k�

�p̄

�x

 = 0, �47�

where the function D0��̃� is defined by Eq. �20� with the
substitution �→ �̃.

Allowing for the zero-order dispersion relation, Eq. �20�,
Eq. �47� reduces to

��̃ − ��
�D0

��
+ kyk�	�

�V̄�

�x
+ k�

�p̄

�x

 = 0. �48�

It hence follows that

�̃ − � = −
kyk�

�D0/��
	�

�V̄�

�x
+ k�

�p̄

�x

 . �49�

Substituting here Eq. �46�, we arrive at

�NL = � + ��NL, �50�

where ��NL is given by Eq. �42�.
If one considers the linear modes in a plasma flowing

with an equilibrium parallel velocity V�0, one arrives at Eqs.

�45� with the substitution V̄�→V�0 and without the term pro-
portional to �p̄ /�x. Then, for sufficiently large �V�0 /�x, the
electrostatic Kelvin-Helmholtz �KH� instability appears �see
in detail Sec. 3.5 of Ref. 15�. Therefore, the effect related to

the term with �V̄� /�x can be called the nonlinear KH effect.
On the other hand, according to the last Eq. �45�, the term
with �p̄ /�x describes the nonlinear shift of the ion-pressure-
gradient drift frequency �*pi.

Thus, the first two terms on the right-hand side of Eq.
�42� represent the Doppler shifts of the mode frequency due
to the averaged cross-field drift and the averaged parallel

velocity. The term with V̄�� describes the nonlinear KH effect,
while the term with p̄� corresponds to the nonlinear ion-
pressure-gradient effect similar to that leading to the linear

ITG instability.
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IV. DERIVATION OF EQUATIONS FOR LARGE-SCALE
PERTURBATIONS

A. Transformation of the averaged ion continuity
equation

Averaging Eq. �1� over the small-scale oscillations, we
obtain

�I�� + �INC� = 0, �51�

where �¼� denotes average. By means of Eqs. �3�, �6�, and
�10�–�13�, we find

�I�� = �1 + 2q2�
�2V̄p

�x�t
+ ky

�2

�x2 �i�̃0
*V̂p1 − i�̂1Ṽp0

* + c.c.� ,

�52�

�INC� = �	

�

�x
	V̄p − k

�T̄

�x

 . �53�

Using Eqs. �4�, �17�, �18�, �39�, and �40�, we express in Eq.

�52� the amplitudes Ṽp0 and V̂p1 in terms of �̄0 and �̂1:

Ṽp0 = c��̃0	ikx +
�

q

k�

�

 , �54�

V̂p1 = c�	ikx +
�

�x
+

�

q

k�

�

�̂1, �55�

where

c� = ��� − �*pi�/f � . �56�

On the right-hand side of Eq. �55�, we have neglected terms

with �̃�0�; this is motivated by the same reason for neglecting
the terms with � /�t on the right-hand side of Eq. �41�. Then
we arrive at

�I�� = �1 + 2q2�
�2V̄p

�x�t
+ c�ky

�2

�x2

��i�̃0
*	2ikx +

�

�x

�̂1 + c.c.� . �57�

We act on Eq. �51� with the operator � /�t and allow for

Eqs. �57� and �53� for �I�� and �INC� and Eq. �41� for �̂1.
Then, integrating over x, we obtain

�1 + 2q2�
�2V̄p

�t2 + c�ky
2Ik

��V̄0� +
k�

ky
V̄�� −

k�

�D0/��
�k�p̄� + �V̄����

+ �	

�

�t
	V̄p − k

�T̄

�x

 = 0, �58�
where
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Ik = 2�̃0
*�̃0. �59�

The terms in the square brackets of Eq. �58� can be inter-
preted in the same manner as the terms on the right-hand side
of Eq. �41� �see also Eq. �42��.

B. Excluding the zonal-flow parts of ion pressure
and ion temperature

Allowing for Eqs. �5� and �1�, we find from Eq. �8�

�p̄

�t
+

�

�x
��

�p

�y
� = 0. �60�

By means of Eqs. �10�–�12�, this equation reduces to

�p̄

�t
+

�

�x
�iky��̃0

*p̂1 + �̂1
*p̃0� + c.c.� = 0. �61�

Using Eqs. �18� and �40�, we express here the amplitudes of
oscillatory pressure in terms of the amplitude of electrostatic
potential arriving at

�p̄/�t = 0. �62�

Therefore, we can consider p̄=0 in the following. In addi-

tion, it follows from Eq. �1� that, approximately, N̄=0. Then,

in accordance with Eq. �5�, T̄=0. As a result, Eq. �58� re-
duces to

�1 + 2q2�
�2V̄p

�t2 + c�ky
2Ik	V̄0� +

k�

ky
V̄�� −

k��V̄��

�D0/��

 + �	

�V̄p

�t
= 0,

�63�

where, in accordance with Eq. �4�,

V̄p = V̄0 + ��/q�V̄� . �64�

Equation �63� governs the evolution of the averaged po-

loidal velocity V̄p due to the Reynolds stress and the neoclas-
sical viscosity. Since the Reynolds stress is defined by the

averaged cross-field drift velocity V̄0 and �for k��0� the av-

eraged parallel velocity V̄�, allowing for Eq. �64�, one can see
that the parallel velocity, which is close to the averaged tor-

oidal velocity V̄t �V̄t� V̄� for ��1� also can evolve. As a
whole, Eq. �63� can be called the main evolution equation.

The term with V̄0 in Eq. �63� characterizes the standard

part of the Reynolds stress, i.e., the V̄�-independent part of
the Reynolds stress. It is related to the standard Doppler shift
of the nonlinear mode frequency given by the first term on
the right-hand side of Eq. �42�. In contrast to this, the terms

with V̄� represent the V̄�-dependent part of the Reynolds

stress. In accordance with Eq. �42�, the term with V̄�� is due to
the parallel Doppler shift of the nonlinear mode frequency,

while the term with V̄�� is due to the nonlinear KH effect.

C. Transformation of the averaged ion parallel
equation of motion
Similarly to Eqs. �60� and �51�, we find from Eq. �7�
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�V̄�

�t
+

�

�x
��

�V�

�y
� = − 
�V̄p. �65�

By analogy with Eq. �61�, it hence follows that

�V̄�

�t
+

�

�x
�iky��̃0

*V̂�1 + �̂1
*Ṽ�0� + c.c.� = − 
�V̄p. �66�

The terms in the square brackets do not contribute to this
equation, cf. Eq. �62�. Then, Eq. �66� reduces to

�V̄�/�t = − 
�V̄p. �67�

Thus, the evolution of the mean parallel velocity takes place
only in the presence of the neoclassical viscosity.

D. Separation of large-scale perturbations into fast
and slow ones

It is clear from Eqs. �63� and �67� that, similarly to Ref.
12, the large-scale perturbations can be separated into the
fast and slow ones. In the case of fast perturbations, one can
take V� =0 in Eq. �63�. Then this equation reduces to

�1 + 2q2�
�2V̄0

�t2 + c�ky
2IkV̄0� + �	

�V̄0

�t
= 0. �68�

It describes evolution of the averaged cross-field drift veloc-
ity.

In the case of slow perturbations, one can neglect the
perpendicular inertia in Eq. �63�, i.e., the term with �2 /�t2.
Then we have

c�ky
2Ik	V̄0� +

k�

ky
V̄�� −

k��

�D0/��
V̄��
 + �	

�V̄p

�t
= 0. �69�

This equation is complemented by Eqs. �67� and �64�. These
equations describe an evolution process in which all three

velocities, V̄0, V̄p, and V̄�, take part.

V. ANALYSIS OF ZONAL-FLOW INSTABILITIES

A. Fast zonal-flow instabilities neglecting neoclassical
viscosity „ideal nondispersive instabilities…

In this subsection, we analyze perturbations described by
Eq. �68� neglecting the neoclassical viscosity. Then Eq. �68�
reduces to

�1 + 2q2��2V̄0/�t2 + c�ky
2IkV̄0� = 0. �70�

The only difference with the evolution of various pri-
mary modes considered in Sec. III is related to the factor c�.
Therefore, the analysis of Eq. �70� consists mathematically
in elucidation of the role of this factor in particular cases of
these modes. As a whole, the instabilities described by Eq.
�70� can be called the ideal nondispersive ones.

1. The standard drift modes

Let us take k�→0 and �→0. In this case we deal with
the standard drift modes described by Eq. �33�. At the same

time, according to Eqs. �19� and �56�, we have
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c� = 1. �71�

Using Eq. �71�, Eq. �70� becomes

�1 + 2q2��2V̄0/�t2 + ky
2IkV̄0� = 0. �72�

We take

V̄0 = V0
�0� exp�iqxx − i�t� + c.c. �73�

and obtain from Eq. �72� the zonal-flow dispersion relation
in the form

�2 = − �2, �74�

where

�2 = �0
2/�1 + 2q2� �75�

and

�0
2 = qx

2ky
2Ik. �76�

One can see that �2�0, i.e., the roots of Eq. �74� are
imaginary, Re �=0. One of them, Im ��0, corresponds to
unstable perturbations. This result is in agreement with that
obtained in Refs. 11 and 12.

We have used the approximation ���. Taking for esti-
mations ��kyV*e and ���0 and using Eq. �59�, one finds

that this estimation means ṼEy �V*e, where ṼEy �kx�̃ is the
cross drift velocity caused by the primary modes. This ap-

proximation is violated for ṼEy �V*e, which corresponds to
the case of extremely large amplitudes of the primary modes
mentioned at the end of Sec. III B.

2. Drift modes for arbitrary ion temperature

Taking k� =0 and � to be arbitrary, the dispersion relation
for the primary modes, Eq. �33�, remains valid. This shows
the known fact that the ion dynamics does not affect the
linear electron drift modes. However, the expression for c� is
now modified as follows:

c� = 1 + ��1 + � . �77�

For V̄0 given by Eq. �73�, we find, instead of Eq. �74�,

�2 = − c��2. �78�

Assuming

 � − �1 + 1/�� , �79�

it hence follows that the zonal-flow instability is generated
not only for �=0 but also for arbitrary ion temperature.

3. Drift-sound modes for cold ions

Now we consider the case k��0 and �→0, correspond-
ing to the drift-sound modes for cold ions described by the
dispersion relation given by Eq. �35�. In this case, Eq. �71�
for c� remains in force. Then we arrive again at Eqs.
�72�–�76�. Thereby, we have shown that the fast zonal-flow
instability, inherent to the standard drift modes, takes place
also in the case of the drift-sound modes and is characterized

by the same zonal-flow dispersion relation, Eq. �74�.
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4. Ion-sound modes for finite ion temperature

Now we turn to the ion-sound modes for finite ion tem-
perature described by Eq. �31�. In this case, according to Eqs.
�19� and �56�,

c� = 1 + �5/3�� . �80�

Then one arrives at the roots for the zonal-flow dispersion
relation given by Eq. �78� with c� defined by Eq. �80�.

5. ITG modes

In the case of ITG modes described by Eqs. �27� and
�30�, similarly to Eqs. �71�, �77�, and �80�, we find

c� = 4/3. �81�

It can be seen from Eqs. �78� and �81� that the ITG modes do
generate the fast zonal-flow perturbations.

B. Nondispersive fast dissipative neoclassical
zonal-flow instabilities

Starting from Eq. �68� and keeping the term with neo-
classical viscosity, we arrive at the neoclassical zonal-flow
dispersion relation

�2 + i
p� + c��0
2 = 0. �82�

Here 
p��	 / �1+2q2� is the poloidal decay rate.17,18 The
roots of this dispersion relation are

� = �± � −
i
p

2
� i	
p

2

4
+ c��2
1/2

. �83�

One can see that, if c��0, for arbitrary ratio between � and

p, the root �=�+ describes the damping perturbations,
while the root �=�− describes the growing ones.

For 
p�2� it hence follows that

� = �− = ic��0
2/�	 = i�d, �84�

where

�d = c��0
2/�	, �85�

and the subscript “d” denotes “dissipative.” This root as well
as the root �=�− given by Eq. �83� corresponds to the non-
dispersive fast dissipative neoclassical zonal-flow instabili-
ties. One sees that these instabilities take place not only in
the case of standard drift waves considered in Ref. 12, but
also in all the cases discussed in Sec. V A, including the case
of ITG modes, when the ideal zonal-flow instabilities are
driven.

C. Nondispersive slow neoclassical zonal-flow
instabilities

1. The approximation of vanishing V̄¸-independent
part of Reynolds stress

Let us neglect the terms with V̄� in the expression for the
Reynolds stress, i.e., the terms with k� in Eq. �63�. Then,
allowing for Eq. �64�, Eq. �69� reduces to

c�ky
2Ik�V̄p� − ��/q�V̄��� + �	�V̄p/�t = 0. �86�
Combining Eq. �86� with Eq. �67�, we arrive at
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�2V̄�

�t2 + c�ky
2Ik	 1

�	

�V̄��

�t
+

�2

q2 V̄��
 = 0. �87�

Neglecting the term with �� /q�2, Eq. �87� reduces to

�V̄�

�t
+

c�ky
2Ik

�	

V̄�� = 0. �88�

Taking V̄� in the form similar to Eq. �73�, one can see that
Eq. �88� describes the dissipative instability characterized by
the growth rate given by Eq. �85�. Then we find that neglect-
ing the term with �� /q�2 in Eq. �87� is reasonable for

�d � �
�/q . �89�

In the opposite case of sufficiently small �d,

�d � �
�/q , �90�

Eq. �87� reduces to

�2V̄�/�t2 + ��/q�2c�ky
2IkV̄�� = 0. �91�

Mathematically, this equation coincides with Eq. �70� if
one substitutes

1 + 2q2 → �q/��2. �92�

This is the neoclassical inertia renormalization discussed in
Ref. 12. Physically, Eq. �91� describes the toroidal flow gen-
eration with growth rate

Im � � ��/q��0. �93�

It follows from Eq. �67� that, for the process with the
growth rate given by Eq. �93�, the averaged poloidal velocity
is sufficiently small, so that Eq. �64� can be approximated by

V̄0 = − ��/q�V̄� . �94�

It then can be seen that Eq. �91� describes also generation of
the averaged cross-field drift velocity with the growth rate
given by Eq. �93�.

2. The role of the V̄¸-dependent part of the Reynolds
stress

Allowing for the V̄�-dependent part of the Reynolds
stress, instead of Eq. �91�, we obtain

�2V̄�

�t2 + 	 �

q

2

c�ky
2Ik�	1 +

q

�

k�

ky

V̄�� −

q

�

k��

�D0/��
V̄��� = 0.

�95�

Let us now estimate the terms with k� in this equation. For
the drift-wave range of the primary mode frequency, �
��*e, we have the estimate

k�/ky � �s/Ln, �96�

where Ln= �� ln n0 /�r�−1 is the characteristic scale length of
the equilibrium density gradient. Then, for �s /Ln�� /q the

term k�V̄��, related to the parallel nonlinear Doppler shift of
the mode frequency, can be neglected in Eq. �95�. As a result,

Eq. �95� reduces to
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�2V̄�

�t2 + 	 �

q

2

c�ky
2Ik�V̄�� −

q

�

k��

�D0/��
V̄��� = 0. �97�

Now we turn to the estimate of the term with k�V̄�� in Eq.
�97�, related to the nonlinear KH effect. According to Eq.
�42�, the estimation for �D0 /�� is �2, so that � / ��D0 /���
�1/�. Then we arrive at the estimates

�kyqx

�D0/��
� q̂xLn, �98�

where q̂x��sqx is the dimensional zonal-flow radial wave
vector, and

�k�qx

�D0/��
� q̂x�s. �99�

One can see that neglecting the terms with k� in Eq. �97� is
reasonable for

�sq̂x � �/q . �100�

In this case, Eq. �97� reduces to Eq. �91�. In the opposite
case,

�sq̂x � �/q , �101�

Eq. �97� reduces to

�2V̄�

�t2 −
�

q
c�ky

2Ik
k��

�D0/��
V̄�� = 0. �102�

Taking V̄� in the form of Eq. �73�, Eq. �102� yields

�2 + ic�

�

q
�0

2 �k�qx

�D0/��
= 0. �103�

One of the roots of Eq. �103� describes an instability with the
growth rate of the order of

Im � � Re � � �0	 �

q

1/2

�q̂x�s�1/2. �104�

Comparing Eq. �104� with Eq. �93�, we conclude that the
nonlinear KH effect, for the condition given by Eq. �101�,
results in increasing the growth rate of the toroidal-flow in-
stability.

VI. DISCUSSIONS AND CONCLUSIONS

We have studied generation of zonal flows by the pri-
mary waves more complex than those used in the standard
drift-wave model,10,11 allowing for the effects of the parallel
ion motion and the ion perturbed temperature �Eqs. �1�, �7�,
and �8��. In addition, we have allowed for the part of the
nonlinear mode interaction proportional to the ion pressure
�Eqs. �3� and �4��. Such a generalization of the standard
model allows one to analyze generation of zonal flows by a
rather wide variety of primary modes, including ITG modes
as well as the ion-sound modes, electron drift modes, and the
drift-sound modes. All the listed effects inherent to the slab
geometry have been complemented by the effects of neoclas-
sical viscosity inherent to the toroidal geometry; see Eq. �6�

for INC and the term with 
� in Eq. �7�.
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One of our significant results is Eq. �41� for the electro-
static potential of the secondary small-scale modes. It is re-
markable that this potential is expressed in terms of the non-
linear shift of the small-scale mode frequency. We have
shown that this shift is defined not only by the well-known
perpendicular Doppler effect due to the mean cross-field drift
velocity entering the standard drift-wave theory,10 but also by
the following three effects. The first is the parallel Doppler
effect due to the mean parallel velocity, the second is defined
by the nonlinear Kelvin-Helmholtz effect, and the third is
caused by the nonlinear ion-pressure-gradient effect �see in
detail Eq. �42� and following explanations�.

We have restricted ourselves to the case of the mono-
chromatic wave packet of the primary modes. This has al-
lowed us to derive evolution equations for the large-scale
perturbations by an approach close to that of the theory of
nonlinear generation of a convective cell �the direct ap-
proach�.

We have followed the nondispersive approximation, i.e.,
neglected the radial dispersion of both the primary modes
and zonal flows. In this approximation, the zonal part of the
ion pressure vanishes, while the zonal part of the parallel
velocity evolves only in the presence of neoclassical viscos-
ity coupling this velocity with the poloidal flow one �Eq.
�67��. At the same time, the neoclassical viscosity and the
perpendicular inertia couple the poloidal velocity with the
mean cross-field drift velocity, which enters the Reynolds
stress. Such a coupling is given by Eq. �63�, which is called
the main evolution equation. In addition, all the three veloci-
ties are interrelated by the radial equation of motion for the
ions �Eq. �64��. The above-mentioned equation system is a
basis for our analysis of zonal-flow instabilities.

Before currying out the analysis, we have simplified the
above-mentioned system of equations separating the zonal-
flow perturbations into the fast and slow ones. It has been
assumed that in the case of fast perturbations, the parallel
velocity is negligible. Then, instead of the three intercoupled
equations, we have turned to a single one, Eq. �66�, describ-
ing evolution of the mean cross-field drift velocity. In the
case of slow perturbations, we have neglected the perpen-
dicular inertia in the main evolution equation, Eq. �63�, sub-
stituting it by Eq. �69�. Thereby, as in the general problem, in
this case we have dealt with all three velocities intercoupled
by three evolution equations.

Our first problem in analyzing the fast zonal-flow insta-
bilities was to find out the picture of these instabilities driven
by the above-listed primary modes in the absence of the neo-
classical viscosity. We have shown that this picture is similar
to that obtained in Refs. 11 and 12 with the only difference
that the squared growth rate of generated zonal flows is
modified by the factor c� given by Eq. �56�, describing the
renormalization of nonlinear interaction due to finite ion
temperature. For all the listed primary modes, this factor
turns out to be positive besides the case of strong inverse ion
temperature gradient, only, when Eq. �79� is violated. As a
whole, the fast zonal-flow instabilities in the absence of neo-
classical viscosity can be called the ideal ones. Here, as in
Ref. 18, we emphasize their analogy with the linear ideal

magnetohydrodynamic �MHD� instabilities.
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According to our analysis, the effect of neoclassical vis-
cosity on the fast zonal-flow instabilities leads to their tran-
sition to a new family of instabilities, which are called the
dissipative ones. As was noted in Ref. 18, they are similar to
the linear ideal-viscous instabilities. Their difference from
the dissipative instability, studied in Ref. 12 for the case of
the standard drift waves, consists in their dependence on the
nonlinear renormalization coefficient c�, see Eqs. �82�–�85�.

Turning to the slow neoclassical zonal-flow instabilities,
we have considered two of their cases. In the first case, the
Reynolds stress can be calculated neglecting its V�-dependent
part. This case is realized for the sufficiently small radial
wave vector of the zonal flows. The picture of corresponding
zonal-flow instabilities proves to be similar to that found in
Ref. 12. The second case is realized for the not too small
zonal-flow radial wave vector. In this case, the Reynolds
stress should be calculated allowing for the nonlinear KH
effect. This effect leads to increasing the growth rate of the
slow zonal-flow instabilities.
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