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1. INTRODUCTION AND GENERAL REVIEW
OF THE PROBLEM

Among the plasma physics problems actively dis-
cussed over the past decade is the problem of the sec-
ondary instabilities [1] that give rise to zonal flows [2]
(in what follows, we will use the term “instability of
zonal flows”). Interest in these instabilities stems pri-
marily from the fact that zonal flows reduce anomalous
transport in a magnetized plasma [2].

There are two main lines of research in the theory of
the generation of zonal flows. The first is a detailed
investigation of the flow instabilities whose existence
has already been proved and is now generally accepted.
The second is to reveal new types of instability of zonal
flows. The best example of fairly well studied instabil-
ities is the instability of zonal flows generated by elec-
trostatic drift waves (for more detail, see [2] and the lit-
erature cited therein and also recent papers [3, 4]). The
present work is devoted to the second line of research.
We analyze whether zonal flows can be generated by
the so-called kinetic Alfvén waves (KAWs).

KAWs are one of the main wave types in a magne-
tized plasma. They are described by the dispersion rela-
tion
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 are the masses of an electron and of an ion,
respectively. The term “kinetic Alfvén waves” was
introduced by Hasegawa and Chen [5], but it should be
noted that, within the framework of the original papers
on drift-Alfvén instabilities (see [6, 7]), dispersion rela-
tion (1.1) can be derived by ignoring drift effects and
without expanding the Bessel functions in powers of

.

The question then naturally arises of whether “pure”
Alfvén modes (i.e., those described by dispersion rela-

tion (1.1) in which the dispersion term with  is dis-
carded) can generate zonal flows. This question was
discussed in [8] (see also [9]), where it was noted, in
particular, that, in the case of pure Alfvén modes, the
Reynolds stress, which gives rise to zonal flows in the
case of electrostatic drift modes, is completely counter-
balanced by the Maxwell stress, so the resulting driving
force for a zonal flow is zero. Hence, the dispersion
term in dispersion relation (1.1) plays the role of an
unbalancing factor and as such describes a nonzero
driving force.
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—The generation of zonal flows by kinetic Alfvén waves is analyzed. It is noted that the basic
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are analogous to two-stream instabilities in linear theory. The main types of such instabilities are investigated.
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This stage of research faces the question of whether
the driving force is stabilizing or destabilizing. Previ-
ous investigations gave contradictory answers to this
question. The essence of the contradiction can be
explained as follows.

Note, first of all, that the bulk of papers on KAWs
deal with a particular case of cold ions, i.e., use not dis-
persion relation (1.1) but the dispersion relation

 

(1.2)

 

There are a number of papers aimed at studying the
generation of zonal flows by Alfvén modes coupled to
electron drift modes [10–12]. If, in those papers, the
drift effects were ignored, the primary modes would be
described by dispersion relation (1.2). It then follows
from [12] that KAWs are stable against the generation
of zonal flows. As for papers [10, 11], they give quite an
uncertain answer to this question (see below for
details). On the other hand, in a more recent paper by
Shukla [13], it was asserted that KAWs can be unstable
against the generation of zonal flows. The cited papers
refer to the general and fusion plasma theories. How-
ever, there also is a work by Pokhotelov et al. [14], car-
ried out within astrophysical research. This work,
which is a continuation of the original paper by
Sagdeev [15], was devoted to considering the genera-
tion of zonal flows by a particular type of KAWs
described by dispersion relation (1.2). It was shown
there that such KAWs are stable against the generation
of zonal flows. Hence, from [10–12], as well as from
[14], it follows that the primary modes described by
dispersion relation (1.2) cannot generate zonal flows; in
contrast, according to [13], such a generation should
occur. This is the essence of the contradiction at hand.

Unlike in papers dealing with a particular type of
KAWs described by dispersion relation (1.2), Onish-
chenko et al. [16] considered the generation of KAWs by
the primary modes described by dispersion relation (1.1),
i.e., they accounted for the ion dispersion in KAWs.
The result they obtained was rather intriguing: zonal
flows can be generated if the ion dispersion predomi-
nates over the electron dispersion, 
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. In the
context of what was said above, it seems, however,
important to reexamine this results of [16].

We also make some comments on the investigation
of finite ion temperature effects that was carried out by
Guzdar et al. [17]. They considered the primary modes
to be drift-Alfvén modes, so, in the limiting case in
which drift effects are ignored, their problem reduces to
that of the generation of zonal flows by KAWs. How-
ever, just like in the above-cited papers [10, 11], pass-
ing over to this limiting case yields a fairly contradic-
tory answer to the question of whether zonal flows can
be generated by KAWs. This is why it seems expedient
to check the validity of the results obtained in [10, 11],
as well as in [17].
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of the wave vector. Our interest stems from the fact that
such KAWs are most important for magnetic confine-
ment systems, whereas KAWs with a very small ratio of
the radial to the transverse wave vector components,
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, cannot occur there because of the magnetic shear
effects (see [7] for details). For the KAWs of interest to
us, dispersion relation (1.1) reads
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Analogously, the version of dispersion relation (1.2)
that is most important for fusion applications has the
form
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Note that the aforementioned result of [12], which

dealt with dispersion relation (1.4), is expressed in
terms of the radial derivative of the group velocity of
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. According to [12], the criterion
for stability of KAWs against the generation of zonal
flows becomes
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On the other hand, from [18] we can see that the second
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 enters into the Lighthill stability
criterion, which characterizes the self-modulation of
waves and has the form
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where 
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 is a factor dependent on the type of primary
modes. We then can assume that, for the KAWs
described by dispersion relation (1.4), this factor is pos-
itive, α > 0.

At this point, it is helpful to take a brief look at the
problem about the generation of zonal flows by weakly
dispersive electrostatic drift waves [2, 19] from the
standpoint of the Lighthill criterion. In the case of cold
ions and KAWs with kx � ky, we are dealing not with
dispersion relation (1.2) but with the dispersion relation

(1.7)

where V∗e is the electron diamagnetic drift velocity in
terms of the density gradient and it is assumed that

 � 1. In contrast to criterion (1.5), we find from
dispersion relation (1.7) that, for ω > 0, the following
criterion should be satisfied:
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ity for one or another type of primary modes to generate
zonal flows is directly related to the sign of the second

derivative ∂2ω/  calculated for the corresponding
modes.

In contrast to dispersion relation (1.1), weakly dis-
persive Alfvén waves at β < Me/Mi are described by the
dispersion relation (see, e.g., [7], Eq. (3.14), and [20],
Eq. (14.87) with no drift terms taken into account)

(1.9)

where ωpe is the electron plasma frequency and c is the

speed of light. For such waves, the derivative ∂2ω/
satisfies criterion (1.8) (for simplicity, we set kx � ky).
On the other hand, in [21, 22], it was shown that these
modes, which were there called inertial Alfvén waves,
are unstable against the generation of zonal flows (con-
vective cells). This example also demonstrates the
aforementioned direct relationship between the sign of

the quantity ∂2ω/  and the possibility for primary
modes to generate zonal flows.

The objective of the present paper is to investigate
the generation of zonal flows by the KAWs described
by dispersion relation (1.1). In the analysis to follow,
we resolve the above contradiction, which concerns
dispersion relation (1.2), and confirm the conclusion of
[16] about the role of ion dispersion. We also discuss
some results of [10, 11, 17].

All the aforementioned results of the cited papers
were obtained for monochromatic packets of primary
modes. This raises the question of how completely
these results describe the problem of the generation of
zonal flows by wave packets of arbitrary shapes.

According to [23], the dispersion relation for zonal
flows generated by weakly dispersive nonmonochro-
matic drift wave packets can be represented as

(1.10)

Here, Ω and qx are the oscillation frequency and radial
wave vector of a zonal flow, F(k) is a positive definite
function, and Vg(k) is the radial group velocity of the
primary modes (see above). For a monochromatic wave
packet, we have F(k) ~ δ(k – k0), where k0 is the wave
vector of the packet. Dispersion relation (1.10) then
becomes

(1.11)

where  is a positive constant. This relation has a root
with ImΩ > 0, which corresponds to an unstable zonal
flow. On the other hand, according to Section 4.1 of
[24] (see also [25]), which is devoted to studying the
negative-mass instability of a slightly relativistic
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plasma with a δ-shaped velocity distribution, the insta-
bility of a zonal flow is described by the dispersion rela-
tion

(1.12)

where  > 0 is the effective plasma frequency squared
and ωB is the electron gyrofrequency. A comparison
between dispersion relations (1.11) and (1.12) shows
that the instability of a zonal flow that is driven by a
weakly dispersive monochromatic drift wave packet is
analogous to the negative-mass instability. On the other
hand, this instability of a zonal flow is consistent with
criterion (1.8). On the whole, we can conclude that the
results obtained in the monochromatic wave packet
approximation are sufficiently representative for pri-
mary modes satisfying criterion (1.8).

Our analysis implies that, for KAWs described by
dispersion relation (1.3), we are dealing not with dis-
persion relation (1.10) but with the relation

(1.13)

Here, as in dispersion relation (1.10), F(k) is a positive
definite function, but unlike in dispersion relation (1.10),
the integral has a plus, rather than minus, sign. For a
monochromatic wave packet, we then have not disper-
sion relation (1.11) but the relation

(1.14)

Let us consider dispersion relations (1.13) and
(1.14) in the context of the theory of two-stream instabil-
ities. According to Sections 1–3 of [26], dispersion rela-
tion (1.14) is an analogue of the dispersion relation for an
individual cold beam and dispersion relation (1.13) for-
mally coincides with that in the case of an arbitrary par-
ticle velocity distribution. We thus can conclude that
KAWs having a double-peak spectrum can generate a
zonal flow by an instability mechanism analogous to
that for a two-stream instability. In particular, in the
simplest case of two monochromatic packets of KAWs,
dispersion relation (1.13) is reduced to

(1.15)

Formally, this is the dispersion relation in the case of
two cold beams. It is well known [26] that one of the
roots of this dispersion relation is such that ImΩ > 0,
which corresponds to the simplest case of a two-stream
instability.

Hence, the situation described by criterion (1.5) is
analogous to that with the negative-mass instability,
while the situation described by criterion (1.8) should
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be analyzed in analogy with the theory of two-stream
instabilities. It is thus clear that the results obtained in
the monochromatic wave packet approximation are
unrepresentative for dispersion relation (1.13) (see also
criterion (1.8)). In order for criterion (1.8) to provide an
adequate description of the generation of zonal flows, it
is necessary to consider primary modes having a dou-
ble-peak spectrum, or two pump waves in the simplest
formulation of the problem. From a recent paper by
Erokhin et al. [27], which predicted the decay of an
individual KAW into two KAWs (see also recent papers
[28–30] and the literature cited therein), we can infer
that KAWs with a double-peak spectrum are of great
practical interest.

It follows from the aforesaid that, in order to give an
adequate description of the generation of zonal flows
by KAWs, a theory of this phenomenon should be
developed for KAWs having an arbitrary spectrum.
Most previous investigations of different types of pri-
mary modes were carried out based on the wave kinetic
equation—an approach that was originally developed
by Vedenov et al. [31] (see, e.g., [2] and the references
cited therein). In an earlier paper [32], devoted to the
generation of zonal flows by small-scale drift-Alfvén
modes, it was shown that an approach based on the
notion of convective cells [15, 19] (which usually deals
with monochromatic wave packets) can be fairly sim-
ply generalized to wave packets having arbitrary spec-
tra (see also [22]). The generalization is done by sum-
ming (or integrating) the contributions of each primary
mode in the wave spectrum to the evolutionary equation
for zonal flows. We perform this generalization and
obtain a dispersion relation for zonal flows generated
by KAWs with an arbitrary spectrum that are described
by dispersion relation (1.1).

Our paper is organized as follows. In Section 2, we
present the basic plasmodynamic equations, namely,
the nonlinear equations that were derived in [33–36] in
the theory of Alfvén vortices. By analogy with [32], in
Section 2, we also carry out preliminary transforma-
tions of these plasmodynamic equations; introduce the
functions characterizing zonal flows, as well as primary
modes and their satellites; and write out the basic evo-
lutionary equations for the flows and the satellites. In
Section 3, we describe the procedure for deriving the
dispersion relation for zonal flows. The procedure
mostly consists in calculating the satellites. The details
of the calculations are given in the Appendix. In Sec-
tion 4, we analyze the dispersion relation relationship
for zonal flows. In the conclusion, we discuss the
results obtained.

2. BASIC EQUATIONS 
AND THEIR PRELIMINARY 

TRANSFORMATIONS

2.1. Basic Plasmodynamic Equations

From [33–36], we have the equations

(2.1)

(2.2)

(2.3)

Equation (2.1) is the vorticity equation, Eq. (2.2) is the
longitudinal Ohm’s law (the equation of longitudinal
electron motion), and Eq. (2.3) is the electron continu-
ity equation. The function φ is the electrostatic poten-
tial, defined by the equality E⊥ = –∇⊥φ, where ∇⊥ is the
transverse gradient operator, E⊥ is the transverse elec-
tric field, B0 is the equilibrium magnetic field, and ez is
a unit vector directed along B0. The rest of the notation
is as follows: the function A is the transverse vector
potential, which is related to the perturbed magnetic
field B⊥ by the formula

(2.4)

n is the perturbed plasma density; n0 is the equilibrium
density; and e is the charge of an ion.

2.2. Transformation of the Basic Plasmodynamic 
Equations

2.2.1. Separation of variables. By analogy with
[32], we represent each of the perturbed quantities X =
(φ, A, n) as

(2.5)

where , , and  describe the primary modes, the
secondary small-scale modes, and the zonal flows,

respectively. The functions  are chosen to have the
form
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We represent the functions  = ( , , ), which
characterize the primary modes, as

(2.7)

assuming that (k) = (k), where the asterisk
denotes the complex conjugate. The sum in representa-
tion (2.7) is taken over all the primary modes.

The functions  ≡ ( , , ) are represented as

(2.8)

where ω± = Ω ± ωk, k± = (qx ± kx, ±ky, ±kz), and (k)
are the amplitudes of the satellites.

We restrict our analysis to very large-scale zonal
flows assuming that qx � kx, which is analogous to the
corresponding assumption in the standard theory of the
generation of zonal flows by electrostatic drift waves
(see, e.g., [2, 32]).

2.2.2. Evolutionary equations for zonal flows.
Under the above assumptions, we see from Eqs. (2.1)–
(2.3) that the functions , , and  satisfy the evo-
lutionary equations
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In expressions (2.15) and (2.17), we have omitted the

terms with , which are unimportant for our calcula-
tions because they are small quantities on the order of

.

2.2.3. Primary modes. From Eqs. (2.2) and (2.3),

we see that the amplitudes  and  are expressed in

terms of  through the relationships
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The parameter δi accounts for ion dispersion and is
defined as

(2.24)

Analogously, expressions (2.16) and (2.17) become

(2.25)

(2.26)

In expression (2.26), as in expression (2.17), the terms

with  are ignored.

2.2.5. Equations for the amplitudes of the satel-
lites. From Eqs. (2.1)–(2.3) we have

(2.27)

(2.28)

(2.29)

where

(2.30)

(2.31)

(2.32)

The amplitudes  and  are expressed in terms of 
through relationships (2.18) and (2.19).

3. DERIVATION OF THE DISPERSION RELATION 
FOR ZONAL FLOWS

3.1. General Expressions for the Amplitudes 
of the Satellites

From Eqs. (2.27)–(2.29) we find
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(3.1)

(3.2)

(3.3)

where

(3.4)

Substituting expressions (2.30)–(2.32) into expres-
sions (3.1)–(3.3) yields

(3.5)

(3.6)

(3.7)

The expressions for  (i, k = φ, A, n) are presented in
the Appendix.

3.2. Expansions of the Amplitudes of the Satellites 
in Power Series in Ω and qx

Using relationship (3.4), we obtain the following
expansion for D±:

(3.8)

where

(3.9)

(3.10)

Taking into account expansions (3.8), (3.9), and
(A.13)–(A.15), we find that the leading-order ampli-
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tudes of the satellites in expressions (3.5)–(3.7) have
the form

(3.11)

(3.12)

(3.13)

3.3. Elimination of the Zonal Flow Variables  
and 

The driving forces R|| and Rn, defined by the expres-
sions (2.25) and (2.26), can be calculated to zero order

in the amplitudes of the satellites, , , and ,
given by expressions (3.11)–(3.13). Discarding the

terms that are as small as , we obtain

(3.14)

(3.15)

As a result, Eqs. (2.10) and (2.11) give

(3.16)

(3.17)

We can see that, in the approximation at hand, the zonal
components of the vector potential and plasma density

are not produced, so expressions (3.5) and (3.6) for 

and  become
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3.4. Calculation of the Force R⊥ and Derivation 
of the Dispersion Relation for Zonal Flows

In order to calculate the force R⊥, it is necessary to
incorporate first-order corrections to the amplitudes of

the satellites  and , i.e., to set

(3.20)

(3.21)

Expressions (2.22) and (2.23) then are reduced to

(3.22)
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and expressions (3.18) and (3.19) yield

(3.24)
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Inserting expressions (3.11), (3.12), (3.24), and (3.25)
into expressions (3.22) and (3.23), we obtain
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where
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With relationships (3.26) and (3.27), expression (2.21)
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where

(3.30)

For kx � ky, relationship (3.30) becomes

(3.31)

Substituting expressions (3.29) and (3.31) into
Eq. (2.9), we arrive at dispersion relation (1.13) for
zonal flows.

From expression (3.30) we see that, for finite values

of , the rigid relationship between the type of lin-
ear dispersion and the sign of the function F(k) fails
when

(3.32)

In accordance with what was said in the Introduc-
tion, from dispersion relations (1.10) and (1.13) we find
that, under inequality (3.32), we are dealing with nega-
tive-mass instabilities rather than with two-stream
instabilities of a zonal flow.

For kx  0, inequality (3.32) is reduced to the con-
dition

(3.33)

which is a refined version of the condition Ti > (4/3)Te,
obtained in [17]. On the whole, the onset of the insta-
bilities that are analogous to negative-mass instabilities
and occur under condition (3.32) can be called the
Onishchenko–Pokhotelov–Sagdeev (OPS) effect.

4. ANALYSIS OF THE DISPERSION RELATION 
FOR ZONAL FLOWS

4.1. The Case of a Single-Peak Wave Packet

4.1.1. Monochromatic wave packet. For a single-
peak (monochromatic) packet of KAWs with kx � ky,
we are dealing with dispersion relation (1.14) for a
zonal flow. A remarkable property of this dispersion
relation is that it describes zonal oscillating branches

(4.1)

By analogy with the linear oscillating branches of
plasma waves [26], the interaction between these
branches with other zonal branches can give rise to
two-stream instabilities.

4.1.2. Nonmonochromaticity effects. In analogy
with [32], we consider an individual nonmonochro-
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matic packet of KAWs with a Gaussian intensity spec-
trum Ik,

(4.2)

where kx0 is the centering wave vector component kx of
the wave packet and ∆kx is its characteristic width. In
this case, the radial group velocity Vg can be approxi-
mated by the expression

(4.3)

where the prime denotes the derivative with respect to
kx and the subscript 0 stands for the values calculated at
kx = kx0. It follows from dispersion relation (1.13) that,

for small values of the ratio  (where  ≡
Ω – qxVg0), zonal flows are described not by dispersion
relation (1.14) but by the relation

(4.4)

from which we find

(4.5)

We thus can conclude that sufficiently weak nonmono-
chromaticity effects do not suppress the oscillating
branches defined by expression (4.1).

4.1.3. General dispersion relation for zonal flows
in the case of a Gaussian wave packet. In analogy
with [32], in the case of an arbitrarily nonmonochro-
matic wave packet of KAWs, dispersion relation (4.4)
becomes

(4.6)

where Z(x) is the plasma dispersion function given by
the expression [37]

(4.7)

4.1.4. Landau damping of zonal flows generated
by an individual nonmonochromatic wave packet.

Setting  � ( )2 and taking into account the
exponentially small term in expression (4.7), we reduce
dispersion relation (4.4) to

(4.8)
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where x ≡ / . We can see that, because of
the nonmonochromatic nature of the wave packet,
zonal modes described by expression (4.5) are subject
to a sort of Landau damping at the rate

(4.9)

4.2. The Case of Two Monochromatic Wave Packets

This case is described by dispersion relation (1.15).
It is convenient to consider this dispersion relation in

the following two limits:  = , by analogy with a

system of two beams of the same density, and  =

 (where αb � 1), by analogy with the interaction
of a low-density beam with a high-density plasma (the
parameter αb is an equivalent of the beam-to-plasma
density ratio).

4.2.1. Two wave packets of equal intensity. For

 = , dispersion relation (1.15) becomes

(4.10)

According to Section 1.5.1 of [26], one of the roots of
dispersion relation (4.10), namely, the root determined
by the expression

(4.11)

corresponds to instability, ImΩ > 0. The instability
growth rate is maximum at

(4.12)

which is equivalent to

(4.13)

4.2.2. A system of two wave packets of high and

low intensity. For  =  with αb � 1, dispersion
relation (1.15) is reduced to

(4.14)

where  = Ω – qxVg1 and ∆Vg = Vg2 – Vg1. An analysis
of dispersion relation (4.14) in accordance with Sec-
tion 1.5.2 of [26] shows that it describes a sort of two-
stream instability. The maximum instability growth rate
is achieved at

(4.15)
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4.3. High-Intensity Monochromatic Packet 
and Low-Intensity Fuzzy Packet

Using dispersion relation (4.6), we can show that,
for a low-intensity wave packet having a large width,
dispersion relation (4.14) should be replaced by the
relation

(4.17)

From Section 3.2 of [26], we see that, for the qx value
determined by expression (4.15), there is an instability
with the growth rate

(4.18)

This expression for the growth rate is valid for low-
intensity wave packets whose width is not too small,

(4.19)

For packets with narrower spectra, we must use expres-
sion (4.16) rather than expression (4.18).

4.4. Low-Intensity Monochromatic Packet
and High-Intensity Packet with a Large Width

In this case, in place of dispersion relation (4.17),
we have

(4.20)

An analysis of this dispersion relation in accordance
with Section 3.3 of [26] shows that it formally coin-
cides with dispersion relation (3.19) of that paper. As a
result, we can conclude that dispersion relation (4.20)
describes an instability whose maximum growth rate is
achieved at
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and is equal to
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4.5. Effect of Nonmonochromaticity on Instabilities
of Zonal Flows Like the Negative-Mass Instability

4.5.1. Decrease in the growth rate of a hydrody-
namic instability for relatively weak nonmonochro-
maticity. For an instability like the negative-mass one,
we obtain from dispersion relation (1.10) not expres-
sion (4.5) but the expression

(4.23)

In analogy with [32], we can see that nonmonochroma-
ticity substantially reduces the growth rate when

(4.24)

4.5.2. Kinetic instability and its suppression by
increasing nonmonochromaticity. Under condition
(4.24), expression (4.23) should be replaced by the
expression

(4.25)

which describes the kinetic instability of zonal flows.
This instability is suppressed when

(4.26)

5. DISCUSSION OF THE RESULTS

Our analysis shows that the basic approach underly-
ing the existing theory of the generation of zonal flows
by KAWs is too simplified because the results obtained
for a monochromatic packet of KAWs are considered as
covering the entire pattern of the generation of the
flows. The main question discussed in the existing the-
ory was that of whether such a wave packet can gener-
ate zonal flows. In the context of our analysis, this ques-
tion is certainly important. Nevertheless, when a mono-
chromatic wave packet is stable, it is necessary to
examine a more complicated situation with a double-
peak packet, the simplest case of which is a system of
two pump waves. Hence, investigation can be carried
out in two directions. If a monochromatic wave packet
is found to be unstable, then the investigation should be
terminated (or continued with examining the role of the
nonmonochromaticity, see below for details). If a
monochromatic wave packet is found to be stable, then
the investigation should be continued with examining
double-peak wave packets.

The investigation performed in [16] and our analysis
both demonstrate that the possibility for a monochro-
matic packet of KAWs to generate zonal flows depends
on the ion-to-electron temperature ratio Ti/Te. We have
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shown that, for small Ti/Te values, a monochromatic
packet of KAWs is stable for arbitrary ky/kx values and
that, for small ky/kx values, such a packet is stable for
arbitrary Ti/Te values. Nevertheless, if the ratio ky/kx

exceeds a critical value determined by inequality (3.32),
then the wave packet at hand is unstable at finite Ti/Te

values satisfying condition (3.33). We have called the
onset of the corresponding instabilities the OPS effect.

Let us compare the results of our work with the
results obtained in earlier papers on the subject. The
results obtained in the present paper can be seen to
agree with the results of [12], which were obtained for
Ti = 0 and for small ky/kx values, and with the results of
[14], obtained for Ti = 0 and ky � kx. Our results also
agree qualitatively with [17], in which the ratio Ti/Te

was arbitrary and it was assumed that ky � kx. At the
same time, our results differ from those of [10, 11, 13,
17]. Let us discuss the reasons for this disagreement.

In [10, 11, 17], consideration was given to the case
kx = 0. It follows from Section 3 that, in this case, as
well as for an arbitrary ratio between kx and ky, the zonal

component of the vector potential, , is not generated,

provided that the small terms on the order of  are
ignored (see Eq. (3.16)). For the case ky � kx, the same
result was obtained in [14, 16] (see [14], Eqs. (25) and
(26), and [16], Eqs. (27) and (28)). The point of dis-
agreement with [10, 11, 17] in that some equations in
those papers contradict Eq. (3.16). At the same time, if,
in [10, 11], the effects associated with  (the term
with MB in those papers) were ignored, then monochro-
matic KAWs would be seen to be stable in accordance
with the conclusion that was reached in our study and
in [14].

In [13], an analysis was carried out for Ti = 0 and for
an arbitrary ratio between kx and ky. Taking the limit

  0 in Eq. (2.1), we can see that the basic equa-
tions of [13] coincide with Eqs. (2.1)–(2.3) in the par-
ticular case Ti = 0. The expression for the amplitudes of

the satellites  (see [13], expression (13)) coincides
with expression (3.18) with Ti = 0. Paper [13] contains
neither expression for the amplitudes of the satellites of

the vector potential, , nor expression analogous to
(3.19), but at the same time, makes use of an approxi-
mate relationship between the total vector and electro-
static potentials, A and φ (see [13], relationship (10)).

We can see that the expression for  that follows from
relationships (10) and (13) of [13] differs from expres-
sion (3.19) with Ti = 0. This is why we think that our
disagreement with [13] stems from the fact that the
expression for A used in that paper (see [13], expres-
sion (10)) was too simplified.

A0

qx
2
/k⊥

2

A0

ρi
2

φ̂±

Â±

Â±
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In considering KAWs with a double-peak spectrum,
we have revealed a new class of instabilities of zonal
flows that are analogous to linear two-stream instability
(see Section 4). These instabilities can be called two-
stream instabilities of zonal flows. They can also be
revealed in problems concerning other types of primary
modes, such as highly dispersive electrostatic waves
and Rossby waves.

Let us now consider the problem of how to choose
the basic equations with which to describe nonlinear
KAWs. The most nontrivial aspect of this problem is
how to describe ion dispersion, both linear and nonlin-

ear (see the term with  in Eq. (2.1)). In [34], it was
shown that this effect can be described correctly by the
Grad hydrodynamics [38], whereas the Braginskii
hydrodynamics [39] yields the numerical factor 1 in
place of the factor 3/4 in Eq. (2.1) (see also [40]). It
should be noted that the replacement 3/4  1, which
corresponds to the Braginskii hydrodynamics, trans-
forms the basic vorticity equation (2) from [17] to
Eq. (2.1). This is why dispersion relation (16) for pri-
mary modes from [17] differs from the standard rela-
tion, i.e., dispersion relation (1.1).

There are at least two approaches that provide a cor-
rect description of ion dispersion in the vorticity equa-
tion. One of them is the so-called dispersive ion-drift
hydrodynamics, which was developed in [36]. The
other is the heuristic approach of [41, 42], which was
developed based on the idea of expressing the perturbed
ion density n through the electrostatic potential φ by
means of the Boltzmann kinetic equation in the linear
approximation and substituting the result into the ion
continuity equation. This heuristic approach was used

in [16]. It was shown in [34] that, for  � 1, this
approach yields the same vorticity equation as in the
Grad hydrodynamics, namely, Eq. (2.1).

In accordance with what was said in the Introduc-
tion, the above approaches to describing nonlinear
KAWs at a finite ion temperature were originally for-
mulated mainly in connection with the problem of
Alfvén vortices (the approach used in [41, 42] was
developed in connection with the anomalous heat trans-
port problem). At the same time, the aforementioned
problem of the decay of an individual KAW into two
KAWs at Ti ≠ 0 should be solved with allowance for ion
dispersion, both linear and nonlinear. In [28], one more
approach to deriving nonlinear equations for KAWs
was developed in order to study the same problem, spe-
cifically, the approach based on direct solution of the
nonlinear Boltzmann kinetic equation. With this
approach, it is a fairly complicated matter to obtain the
term having the numerical factor 3/4 in Eq. (2.1). On
the other hand, it may well be that, with Eqs. (2.1)–
(2.3), the analysis by Voitenko [28] of the aforemen-
tioned decay of an individual KAW into two KAWs at
Ti ≠ 0 would be greatly simplified. The construction of

ρi
2

k⊥
2 ρi

2

a simplified scheme for analyzing this decay process
may be the subject of ongoing investigations.

The idea of [40, 41] to use the linear relationship
between the perturbed ion density n and the electro-
static potential φ was exploited in [14] for the case Ti = 0.
This is why, in [14, 16], there are only two basic equa-
tions relating the functions φ and A, rather than three
equations (2.1)–(2.3). Our analysis shows that this idea
is legitimate.

Our expressions (3.18) and (3.19) for the amplitudes

of the satellites  and  differ from the correspond-
ing expressions in [14, 16] (see [14], expressions (14)–
(17), and [16], expressions (16)–(19)). Note also that

the expressions for  in [14, 16] differ from the corre-
sponding expressions in [13] (see, e.g., the aforemen-
tioned expression (14) from that paper). We think that
the results of [14, 16] are not quite correct and, accord-
ingly, the OPS effect in [16] was calculated inexactly
(see Section 3 for details).

We have shown that zonal flows with kx � ky are
described by dispersion relation (1.13) with the func-
tion F(k) given by expression (3.31) and that zonal

flows with an arbitrary ratio  are described by the
same dispersion relation but with the function given by
more general expression (3.30). The function F(k)
given by expression (3.31) is positive definite for an
arbitrary ratio Ti/Te, but the general expression (3.30)

for this function is negative for the values of  sat-
isfying inequality (3.32). This inequality can hold only
for finite Ti/Te values determined by condition (3.33).
Physically, condition (3.32) describes the onset of
instabilities of zonal flows that are analogous to the
negative-mass instability rather than to the two-stream
instabilities, which occur at ky  0. In Section 3, this
phenomenon has been called the OPS effect.
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APPENDIX

Auxiliary Relationships for Calculating the Amplitudes 
of the Satellites

The quantities  (i, k = φ, A, n) in expressions (3.5)–
(3.7) are given by the relationships

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)
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Te

en0
--------ñ±–⎝ ⎠
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⎛ ⎞±
⎩
⎨
⎧

–=

+
v A

2

c
-------kzk⊥

2 1

k⊥±
2

-------- ρs
2

1
3
4
---ρi

2
k⊥±

2
–⎝ ⎠

⎛ ⎞+ Ã±
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(A.9)

The general expressions for the leading-order
amplitudes of the satellites (3.5)–(3.7) have the form

(A.10)

(A.11)

(A.12)

Relationships (A.1)–(A.9) yield

(A.13)

(A.14)

(A.15)

Here, we have ignored the small quantity , which
is unimportant for our calculations.

Substituting relationships (A.13)–(A.15) into relation-
ships (A.10)–(A.12), we arrive at expressions (3.11)–
(3.13).
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⎛ ⎞ Ã±±=

– ω±
2

1
3
4
---ρi

2
k⊥±

2
–⎝ ⎠

⎛ ⎞ kz
2
v A

2
– φ̃±.

φ̂±
0( ) icqxky

2B0ω2
D

0( )-------------------------- Z±
φφ 0( )φ0(±=

+ Z±
φA 0( )

A0 Z±
φn 0( )

n0+ ),

Â±
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