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a b s t r a c t

We consider chiral fermions interacting minimally with abelian
and non-abelian gauge fields. Using a path integral approach
and exploring the consequences of a mechanism of symmetry
restoration, we show that the gauge anomaly has null expectation
value in the vacuum for both cases (abelian and non-abelian).
We argue that the same mechanism has no possibility to cancel
the chiral anomaly, what eliminates competition between chiral
and gauge symmetry at full quantum level. We also show that
the insertion of the gauge anomaly in arbitrary gauge invariant
correlators gives a null result, which points towards anomaly
cancellation in the subspace of physical state vectors.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A gauge anomaly is the quantum breakdown of gauge invariance [1–3]. It manifests itself through
a non-null expectation value of the divergence of the gauge current. It appears in a great variety
of contexts, from superstrings [4], passing through quantum gravity [5] to the description of the
fractional quantum Hall effect [6]. In this work we will consider the important example of gauge
theories of Weyl fermions minimally coupled to gauge fields. In this situation, the appearance of a
gauge anomaly is viewed as unavoidable due to the necessarily simultaneous occurrence of chiral
and gauge symmetry at classical level and their quantum competition [7–10]. It is usually said that
the gauge anomaly destroys Slavnov–Taylor identities, crucial for renormalization, and turns unitarity
uncertain. This is enough to discard theories where gauge anomalies appear, when it is not possible
to cancel them through any other means [11].
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In the discussions mentioned above, it must be noticed that while the anomaly is a quantum
phenomenon, it is usually computed as a functional of the gauge fields, which are then considered
as classical. This means, in a path integral context, that one does not usually integrate over them.
However, during the 80’s, some works considered the full quantum nature of the theory (integrating
also over the gauge fields) and gave support to the idea that anomalous gauge theories are not
necessarily inconsistent. The pioneering work was that of Jackiw and Rajaraman [12] in which it
was shown that a two-dimensional gauge anomalous theory was unitary and had massive photons
in its spectrum. It was soon followed by the one of Faddeev and Shatashvili [13] who noticed that
the gauge anomaly could be dealt with by the introduction of new quantum degrees of freedom,
that transformed second class constraints (correlated to the gauge anomaly) into first class ones.
Integrating over these extra fields and over the chiral fermions, one was led to an effective action, a
functional of the gauge field, whichwas a gauge invariant one. Then, it was understood independently
by Harada and Tsutsui [14] and Babelon, Schaposnik and Viallet [15] that the application of
Faddeev–Popov’smethod to an anomalous theory introduced these newdegrees of freedomnaturally,
associated to the non-factorization of the integration over the gauge group. These last argumentswere
no longer restricted to two dimensions.

In the context of abelian theories in two dimensions, one could see more recently [16] that
important issues such as renormalizability and unitarity could be achieved in gauge anomalous
models, both in the vector (Dirac fermions) and in the chiral case (Weyl fermions), when the gauge
field is also quantized. The fact that the anomaly was a trivial (in the vector case) or a non-trivial
cocycle (in the chiral case) did not seem to matter for the consistency of the model.

It would be natural to consider what happens to the gauge anomaly in this new context, of gauge
invariant effective actions, in an arbitrary number of dimensions d. One would expect, on the basis
of the results obtained in the 80’s, that the gauge anomaly should vanish after considering the gauge
field as a quantum field. Following this line of reasoning, in this work we briefly review the approach
mentioned above to the gauge anomaly through the use of functional methods, that incorporate in
a natural way the extra degrees of freedom. Then, using this formalism, we show the vanishing of
the vacuum expectation value (v.e.v.) of the gauge anomaly and of its insertions in arbitrary gauge
invariant correlators for chiral gauge theories in d dimensions.

We organize the discussion as follows: in the second section, we review the arguments contained
in [14] to obtain gauge invariant effective actions for anomalous gauge theories, fixing our conventions
and definitions in the process. This is a review section, intended to recall the methods and procedures
used to show symmetry restoration. The third section is devoted to the consideration of the abelian
case in an arbitrary number of dimensions: we derive an expression for the gauge transform of the
gauge anomaly and we show that the v.e.v. of the gauge anomaly has to vanish as a consequence of it.
In the fourth section, we show that the same argument cannot be used for the non-abelian case, again
in ddimensions. By employing a different line of reasoningwe consider the covariant divergence of the
gauge current (in termsof thematter fields) in the fifth section andwe show that its v.e.v. has to vanish.
Consistence of our results is checked by indicating how to show independently that the expression of
the v.e.v. of the gauge anomaly in terms of the effective action (that is, as a functional of the gauge field)
also vanishes. Arbitrary gauge invariant correlators with insertions of the gauge anomaly are shown
to be zero in the sixth section. We discuss the fate of the chiral anomaly in the seventh section, where
we indicate that it remains possibly different from zero. We present our conclusions in the eighth
section. A small Appendix is dedicated to reviewing the proof that the v.e.v. of an abelian gauge field
vanishes.

2. Quantum restoration of gauge symmetry

In this section, we briefly review the appearance of a gauge anomaly and we show the way to
restore gauge invariance on an anomalous chiral gauge theory, along the lines of the work of Harada
and Tsutsui [14]. This will fix our definitions and conventions, which will be used along the body of
our work.
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We consider theories described by an action I[ψ, ψ̄, Aµ], given by

I[ψ, ψ̄, Aµ] = IG[Aµ] + IF [ψ, ψ̄, Aµ] =


dx

1
2
trFµνFµν +


dx ψ̄Dψ, (1)

where dx indicates integration over a d-dimensionalMinkowski space. The fieldsψ areWeyl fermions
carrying the fundamental representation of SU(N). As usual,Aµ takes values in the Lie algebra of SU(N)
such that

Aµ = Aa
µTa, Fµν = ∂µAν − ∂νAµ + ie[Aµ, Aν], (2)

and the generators Ta satisfy

[Ta, Tb] = ifabcTc, tr(TaTb) = −
1
2
δab. (3)

The operator D is the covariant derivative, and is called the Dirac operator of the theory. It is given by

D = iγ µ(∂µ1 + ieAµ) ≡ iγ µDµ. (4)

Under gauge transformations,

g = exp(iθ a(x)Ta), (5)

and simultaneous changes of the fields ψ and Aµ as

Ag
µ = gAµg−1

+
i
e
(∂µg)g−1,

ψg
= gψ,

ψ̄g
= ψ̄g−1, (6)

the action I is classically gauge invariant

I[ψg , ψ̄g , Ag
µ] = I[ψ, ψ̄, Aµ]. (7)

Invariance of the action under gauge transformations leads to the classical covariant conservation of
the gauge current

(Dµ)abJ
µ

b = 0, (8)

with

Jµa ≡ ψ̄γ µTaψ (9)

and

(Dµ)ab = δab∂µ + efabcAc
µ. (10)

The quantum theory is defined by the generating functional, which is

Z[η, η, jµa ] =


dψdψ̄dAµ exp


iI[ψ, ψ̄, Aµ] + i


dx[ηψ + ψ̄η + jµa A

a
µ]


. (11)

Non-invariance of the fermion measure under gauge transformations leads to a potential quantum
violation of the classical conservation law (8). To see this, we perform the following infinitesimal
change of variables

ψg
= gψ ≈ (1 + iδθ aTa)ψ,

ψ̄g
= ψ̄g−1

≈ ψ̄(1 − iδθ aTa). (12)
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In this way

Zg =


dψgdψ̄gdAµ exp


iI[ψg , ψ̄g , Aµ] + i


dx[ηψg

+ ψ̄gη + jµa A
a
µ]


=


dψdψ̄dAµJ[Aµ, g] exp


iI[ψ, ψ̄, Aµ] + i


dx[ηψ + ψ̄η + jµa A

a
µ]

+ i


dx(iδθ a[i(Dµ)abJ
µ

b + ηTaψ − ψ̄Taη])

. (13)

We notice the appearance of a Jacobian J[Aµ, g] = J[Aµ, δθ] ≡ exp(iα1[Aµ, δθ]). Given the
infinitesimal character of the transformation, it can be functionally expanded to first order in δθ

J[Aµ, δθ] = 1 +


dx δθ aAa(Aµ)+ · · · , (14)

or, in terms of α1

α1[Aµ, δθ] = −i


dx δθ aAa(Aµ)+ · · · .

Imposing that the result of the integral should be the same for both variables, we have

Z = Zg , (15)

which means that
dψdψ̄dAµdx exp


iI[ψ, ψ̄, Aµ] + i


dx[ηψ + ηψ̄ + jµa A

a
µ]


× iδθ a[i(Dµ)abJ

µ

b − iAa(Aµ)+ ηTaψ − ψ̄Taη] = 0. (16)

Then, setting the external sources to zero, we see that
dψdψ̄dAµ{(Dµ)abJ

µ

b } exp(iI[ψ, ψ̄, Aµ])

=


dψdψ̄dAµ{Aa(Aµ)} exp(iI[ψ, ψ̄, Aµ]), (17)

or, in terms of v.e.v.s,

⟨0|(Dµ)abJ
µ

b |0⟩ = ⟨0|Aa(Aµ)|0⟩. (18)

So, from the functional integral point of view, it has long been clear that a possible anomaly in gauge
symmetry is intrinsically related to the non-invariance of the fermionic measure [17]. However, we
notice that there is still an expectation value to be taken, before we definitely say that current conservation
is violated.

Before computing ⟨0|Aa(Aµ)|0⟩ it is instructive to look closely at the symmetry structure of
the theory in the absence of gauge invariance of the fermionic measure. It is well known [18],
in the context of a non-anomalous theory, that integration over the field Aµ has to be restricted
to configurations that are not physically equivalent, due to the gauge symmetry of the action.
The Faddeev–Popov technique exposes the factorization of the gauge group volume and restricts
integration over non-equivalent representatives of gauge orbits. Coming back to (11) we notice that,
if we proceed applying Faddeev–Popov’s method, the gauge volume does not factor out, since there
is an additional dependence on the group elements coming from the Jacobian,

dψdψ̄ = exp(iα1[Aµ, g−1
])dψgdψ̄g . (19)

Introducing the famous ‘‘1’’ of Faddeev–Popov,

1 = ∆FP[Aµ]


dg δ(f [Ag
µ]) (20)



Author's personal copy

G.L.S. Lima et al. / Annals of Physics 327 (2012) 1435–1449 1439

in the vacuum amplitude Z[0] (with ∆FP[Aµ] being the Faddeev–Popov determinant and f (Aµ) = 0
being the gauge fixing condition) we see that

Z[0] =


dψdψ̄dAµdg ∆FP[Aµ]δ(f [Ag

µ]) exp(iI[ψ, ψ̄, Aµ])

=


dψdψ̄dAg−1

µ dg ∆FP[Ag−1

µ ]δ(f [(Ag−1

µ )g ]) exp(iI[ψ, ψ̄, Ag−1

µ ])

=


dψdψ̄dAµdg ∆FP[Aµ]δ(f [Aµ]) exp(iI[ψg , ψ̄g , Aµ])

=


dψdψ̄dAµdg ∆FP[Aµ]δ(f [Aµ]) exp(iI[ψ, ψ̄, Aµ] + iα1[Aµ, g−1

])

=


dψdψ̄DAµdg exp(iI[ψ, ψ̄, Aµ] + iα1[Aµ, g−1

]), (21)

where we defined

DAµ = dAµ∆FP[Aµ]δ(f [Aµ]).

The non-factorization of the gauge volume naturally generates new degrees of freedom, the
Wess–Zumino fields θ a(x), that come from the integration over the local group element g(x)

dg =


a

dθa(x). (22)

Following the spirit of Ref. [14], we show below that these degrees of freedom produce a new gauge
invariant action. To see this, we define

exp(iW [Aµ]) :=


dψdψ̄ exp(iI[ψ, ψ̄, Aµ]). (23)

The Jacobian can be related toW [Aµ] in the following way:

exp(iW [Ag
µ]) =


dψdψ̄ exp


i


dx ψ̄D(Ag
µ)ψ


=


dψdψ̄ exp


i


dx ψ̄g−1
D(Aµ)ψg−1


= J[Aµ, g] exp(iW [Aµ])

→ J[Aµ, g] = exp(i[W [Ag
µ] − W [Aµ]]). (24)

So, we see that α1 is given by

α1[Aµ, g] = W [Ag
µ] − W [Aµ], (25)

and exhibits clearly its behaviour under gauge transformations (cocycle property) [19]

α1[Ah
µ, g] = W [Ahg

µ ] − W [Ah
µ]

= α1[Aµ, hg] − α1[Aµ, h]. (26)

In particular, we find a familiar expression [3] for the anomaly in terms ofW [Aµ]:

Aa(x) = i
δα1[Aµ, g]
δθa(x)


θ=0

= i
δW [Ag

µ]

δθa(x)


θ=0

= i


dz
δW [Ag

µ]

δAg
µ,b(z)

δAg
µ.b(z)

δθa(x)


θ=0

= i


dz
δW [Aµ]
δAµ,b(z)


δAg

µ,b(z)

δθa(x)


θ=0


. (27)
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Using that

δAg
µ,b(z)

δθa(x)


θ=0

= −
1
e
(Dµ)abδ(z − x) (28)

we obtain1

Aa(x) =
i
e


Dµ
δW [Aµ]
δAµ(z)


a
. (29)

Now we define an effective action integrating only over the fermions and Wess–Zumino fields:

exp(iIeff[Aµ]) :=


dψdψ̄dg exp(iI[ψ, ψ̄, Aµ] + iα1[Aµ, g−1

])

=


dψdψ̄dg exp(iI[ψ, ψ̄, Aµ] + iW [Ag−1

µ ] − iW [Aµ])

=


dg exp(iW [Ag−1

µ ]). (30)

The original vacuum amplitude is written in terms of it as

Z[0] =


DAµ exp(iIeff[Aµ]). (31)

This new effective action is gauge invariant, as is shown below:

exp(iIeff[Ah
µ]) =


dg exp(iW [(Ah

µ)
g−1

]) =


dg exp(iW [A(gh

−1)−1

µ ])

=


d(gh−1) exp(iW [A(gh

−1)−1

µ ]) = exp(iIeff[Aµ]). (32)

Expression (31) is the usual one that corresponds to a gauge theory in which one chooses a gauge
fixing condition. Gauge invariance of the effective action strongly indicates the cancellation of the
anomaly, as long as gauge symmetry is restored at quantum level, through the introduction of the
Wess–Zumino fields. We will verify that this is possibly true in the next sections.

3. Weyl fermions interacting with an abelian gauge field in d dimensions

Now we will focus in the v.e.v. of the anomaly. We restrict ourselves to the abelian case (gauge
group U(1), only one generator T = 1, one parameter θ(x), g = exp(iθ(x)), fabc = 0) in an arbitrary
number of dimensions in this section. The v.e.v. of the anomaly can be written as

⟨0|A(Aµ)|0⟩ =


dψdψ̄dAµ(A(Aµ)) exp(iI[ψ, ψ̄, Aµ])

=


dψdψ̄dAµdθ∆FP[Aµ]δ(f (Ag

µ))(A(Aµ)) exp(iI[ψ, ψ̄, Aµ])

=


dψdψ̄DAµdθ(A(Ag−1

µ )) exp(iI[ψ, ψ̄, Aµ] + iα1[Aµ, g−1
]), (33)

1 This expression of the gauge anomaly in terms of the effective actionmeans that we are considering the consistent anomaly,
as defined, for example, in Section 14.2 of [20].
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where we performed the usual steps of the Faddeev–Popov method but took into consideration
that the fermionic measure is not invariant under a gauge transformation. We notice that the gauge
transform of the anomaly can be written as a functional derivative

A(Ag−1

µ ) =
i
e
∂µ
δW [Ag−1

µ ]

δAg−1
µ (x)

= −
i
e


dz
δW [Ag−1

µ ]

δAg−1
µ (z)

∂µδ(z − x)

= i


dz
δW [Ag−1

µ ]

δAg−1
µ (z)

δAg−1
µ (z)

δθ(x)
= i

δW [Ag−1
µ ]

δθ(x)
= i

δα1[Aµ, g−1
]

δθ(x)
. (34)

Now we can proceed, using the result just derived

⟨0|A(Aµ)|0⟩ = i


dψdψ̄DAµdθ

i
δ

δθ(x)
α1[Aµ, g−1

]


× exp(iI[ψ, ψ̄, Aµ] + iα1[Aµ, g−1

])

=


dψdψ̄DAµdθ

δ

δθ(x)
[exp(iI[ψ, ψ̄, Aµ] + iα1[Aµ, g−1

])]

=


dθ

δ

δθ(x)
F [θ ] = 0. (35)

which shows that the anomaly vanishes because of the translational invariance of the functional
measure [21].

We would like to briefly comment on the special case d = 2, where the gauge anomaly is [12]

A(Aµ) = −
e
4π

{(a − 1)∂µAµ + εµν∂µAν}. (36)

It is a linear function of the gauge field and so it is obvious that its v.e.v. vanishes, as a consequence of
Poincaré invariance of the vacuum:

⟨0|Aµ(x)|0⟩ = 0. (37)

In fact, again considering the 2-dimensional case, this is true also for the non-abelian case, because
the anomaly is given by

Aa(Aµ) = −
e
4π

{(a − 1)∂µAµa + εµν∂µAa,ν}. (38)

For completeness of the argument, wewill briefly present a demonstration of Eq. (37) in an Appendix.

4. The non-abelian case

Inspired by the mechanism of anomaly cancellation in the abelian case, we investigate if it is
possible to generalize it for the non-abelian situation [22]. Again, the focus is the v.e.v. of the anomaly,
which is given, as before, by the expression

⟨0|A(Aµ)|0⟩ =


dψdψ̄dAµ(A(Aµ)) exp(iI[ψ, ψ̄, Aµ])

=


dψdψ̄dAµdθ∆FP[Aµ]δ(f (Aµ))(A(Ag−1

µ )) exp(iI[ψ, ψ̄, Aµ]

+ iα1[Aµ, g−1
]). (39)

Starting again from the expression

Aa(x) =
i
e


Dµ
δW [Aµ]
δAµ(z)


a
. (40)
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it is easy to write

Aa(Ag−1

µ ) =
i
e


Dg−1

µ

δW [Ag−1
µ ]

δAg−1
µ (x)


a

= −
i
e


dz
δW [Ag−1

µ ]

δAg−1

µ,b (z)
(Dg−1

µ )baδ(z − x). (41)

In order to proceed along the same lines, we have to investigate if the following equation is true or
not

−
i
e
(Dg−1

µ )baδ(z − x) = λ
δAg−1

µ,b (z)

δθ a(x)
, (42)

with λ being a constant (independent of θ a, to be determined). If it is true, then the v.e.v. of the non-
abelian anomaly cancels with an argument which is parallel to that of the abelian case. This is not
an easy question to be answered, in the general case (SU(N)). We will analyse the case in which the
gauge group is SU(2). In the fundamental representation, the generators Ta are given by

T1 =
1
2


0 1
1 0


, T2 =

1
2


0 −i
i 0


, T3 =

1
2


1 0
0 −1


. (43)

The gauge group element has the well known closed form

g(θ) = exp

iθ aTa


= cos


θ

2


+ 2inaTa sin


θ

2


,

with

θ =


(θ1)2 + (θ2)2 + (θ3)2, (44)

na
=
θ a

θ
.

Eq. (42) is valid only for θ ≠ 0. This is an important observation and we will return to it in the end of
the calculation. Some auxiliary results will be useful during this computation:

∂µθ = na∂µθ
a,

∂µna
=

1
θ
(δab − nanb)∂µθ

b,

(naTa)(∂µnbTb) =
1
2θ
(n⃗ × ∂µθ⃗ )

cTc,

δθ(z)
δθ a(x)

= na(z)δ(z − x),

δnb(z)
δθ a(x)

=
1
θ
(δba − nbna)(z)δ(z − x),

The gauge transform of the gauge field can be put into a completely analytical form. It is not difficult
to obtain the two contributions for the gauge transform of the gauge field:

Ag−1

µ = g−1Aµg +
i
e
(∂µg−1)g, (45)

g−1Aµg = Aµ + (n⃗ × A⃗µ)a sin θTa − 2 ((n⃗ × A⃗µ)× n⃗)a sin2

θ

2


Ta, (46)

i
e
(∂µg−1)g =

1
e
na(∂µθ)Ta −

1
eθ
(∂µn⃗ × n⃗)a

+
1
e
(∂µna) sin θTa +

1
eθ
(∂µn⃗ × n⃗)a cos θTa. (47)
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To proceed, we should functionally differentiate the expression above with respect to θ a(x) and
compare the result with (Dg−1

µ )baδ(z − x). This is a long and tedious task. We can circumvent this
calculation if we perform a consistency check. By computing

δAg−1

µ,b (z)

δθ a(x)
=

δ

δθ a(x)


(g−1Ac

µTcg)
b
+

i
e
((∂µg−1)g)b


one should be able to obtain, among other terms, something proportional to the first term of the
covariant derivative

δba∂µδ(z − x).

So, we can investigate the possible contributions to a term like this in the functional derivative. The
term g−1Aµg clearly cannot contribute as it contains no derivatives of θ a. The last two terms in the
expression of (∂µg−1)g will always contain sin θ and cos θ and so they are not candidates. All that
remains is to compute the contributions of the first two terms:

δ

δθ a(x)


1
e
nb(∂µθ)(z)


=

1
e
nb(z)


∂µ
δθ(z)
δθ a(x)


+ · · ·

=
1
e
(nanb)(z)∂µδ(z − x)+ · · · ,

δ

δθ a(x)


−
εbcd

eθ
(∂µnc)nd(z)


= −

εbcd

eθ


∂µ
δnc(z)
δθ a(x)


nd(z)+ · · ·

= −
εbcd

eθ
∂µ


1
θ
(δca − ncna)(z)δ(z − x)


nd(z)+ · · ·

= −
εbcd

eθ2
(ndδca − ncnand)(z)∂µδ(z − x)+ · · ·

This reasoning proves that δba∂µδ(z − x) is not contained in the expression for δAg−1

µ,b (z)/δθ
a(x), so

it cannot be proportional to (Dg−1
µ )baδ(z − x). This means that the v.e.v. of the gauge anomaly, in the

non-abelian case, does not cancel in the same way as in the abelian case. We stress that we did not
proved that the v.e.v. of the gauge anomaly is non-zero for the non-abelian case. We proved that it is
not cancelled by a generalization of the argument given in Section 3. However, in the next sections,
we will give more general arguments to show that it cancels also in the non-abelian case.

Before ending this sectionwewant to compare our findingswith Eq. (28). It is precisely the relation
we were seeking (changing g for g−1), but computed for θ a = 0. A generalization of this equation
would be natural (and would be Eq. (42)) and then one could think to have arrived at a contradiction.
In fact, the exact analytic form for Ag−1

µ (expressions (45)–(47)), is valid only under the assumption
that some of the θ a are distinct from zero. So, (28) would not be obtainable from (42) (if it would
be true) and, in this way, we could suspect that the generalization of (28) for θ a ≠ 0 would not be
trivial. The exact analytic form of δAg−1

µ,b (z)/δθ
a(x) can be directly (but patiently) obtained from the

elements we gave and we see that the expression is far more complicated than the (relatively) simple
form (Dg−1

µ )baδ(z − x). What makes the non-abelian case so different from the abelian one remains to
be discovered.

5. Null divergence of the gauge current

Now we will give general arguments to the cancellation of v.e.v. of the gauge anomaly even in
the non-abelian case, in d dimensions. We will consider the v.e.v. of the covariant divergence of the
current and we will show very simply that it has to vanish. To see this, we consider a bosonic change
of variables in the functional integral:

Z[0] =


dψdψ̄dAµ exp(iI[ψ, ψ̄, Aµ]) =


dψdψ̄dAg

µ exp(iI[ψ, ψ̄, Ag
µ])
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=


dψdψ̄dAµ exp(iI[ψ, ψ̄, Ag

µ]), (48)

where we used again the invariance of the bosonic measure dAg
µ = dAµ. The functional integral

does not contain a gauge group volume, as it would happen in a non-anomalous gauge theory,
because fermion integration produces a gauge non-invariant W [Aµ]. So, the Faddeev–Popov trick is
unnecessary here, as it has already been stressed. This way of facing the problem is known as gauge
non-invariant representation [20,23].

Next, we consider an infinitesimal gauge transformation, characterized by g ≈ 1 + iδθ aTa,

I[ψ, ψ̄, Ag
µ] = I


ψ, ψ̄, Aµ +

1
e
Dµδθ


= I[ψ, ψ̄, Aµ] +

1
e


dx (Dµδθ(x))a

δI
δAa

µ(x)

= I[ψ, ψ̄, Aµ] −
1
e


dx δθ a(x)


Dµ

δI
δAµ(x)


a
. (49)

This gives

Z[0] =


dψdψ̄dAµ exp(iI[ψ, ψ̄, Ag

µ])

≈


dψdψ̄dAµ exp(iI[ψ, ψ̄, Aµ])

−
1
e


dx δθ a(x)


dψdψ̄dAµ


Dµ

δI
δAµ(x)


a
exp(iI[ψ, ψ̄, Aµ])

⇒


dψdψ̄dAµ


Dµ

δI
δAµ(x)


a
exp(iI[ψ, ψ̄, Aµ]) = 0. (50)

Remembering that

δI
δAa

ν(x)
= (DµFµν)a − eψ̄γ νTaψ, (51)

and that (DµDνFµν)a = 0 identically,
Dµ

δI
δAµ(x)


a
= (Dµ)abψ̄γ µTbψ, (52)

we conclude that

⟨0|(Dµ)abψ̄γ µTbψ |0⟩ = ⟨0|(Dµ)abJ
µ

b |0⟩ = 0. (53)

We notice that this result was reached without making any fermionic change of variables. In fact, it
does not even matter if the fermionic measure is gauge invariant or not. The above equation is also
completely consistent with our previous conclusions in the abelian case, but it is also valid for the
non-abelian case as well.

We can face this result as a general argument (i.e. independent of the consideration of Weyl or
Dirac fermions) for the vanishing of the expectation value of the covariant divergence of the gauge
current. It relies only on the existence of classical gauge symmetry and gauge invariance of the
gauge field functional measure. It means that, if the theory is to be consistent, the right-hand side of
Eq. (18) must vanish accordingly. In the case where we are considering Dirac fermions, this is seen as
a trivial consequence of the invariance of the fermion measure under gauge transformations (which
says that the Jacobian J[Aµ, g] = 1 and thus that Aa = 0). However, in the Weyl fermion case, the
Jacobian is not trivial and we must investigate in further detail if the right hand side vanishes or if we
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simply ended at an inconsistency. This can be easily achieved in two steps: first, gauge invariance of
Ieff (Eq. (30)) implies

dg(δθ g
−1
)a(x)


Dg−1

µ


δW [Ag−1

µ ]

δAg−1
µ (x)


a

exp(iW [Ag−1

µ ]) = 0,

with δθ g
−1

= g−1δθg and δθ = δθ aTa. Integrating this equation over the gauge field and using again
the gauge invariance of the bosonic measure we obtain

0 =


dAµ


Dµ


δW [Aµ]
δAµ(x)


a
exp(iW [A])

⇒ ⟨0|Aa(Aµ)|0⟩ = 0. (54)

This works as a consistency check of the anomaly equation, as this vanishing is obtained on a
independent basis of the vanishing of the divergence of the fermion current (although both proofs
use gauge invariance of dAµ).

6. The gauge anomaly and the Hilbert space

A very important question is if the behaviour found above for the anomaly is repeated for its
insertion on an arbitrary correlation function. If this would be true it would be a very dangerous
situation for the theory, for it could imply that the gauge field operator has to be zero itself, what
could mean that the theory is trivial (or inconsistent). We found no means to answer completely this
question. However, it can be answered in the case of arbitrary gauge invariant correlators, as we show
below.

Any gauge invariant operators can be expressed in terms of ψ , ψ̄ and Aµ. The basic property that
they must obey is

O(ψg , ψ̄g , Ag
µ) = O(ψ, ψ̄, Aµ). (55)

This property, by its turn, implies that

O(ψ, ψ̄, Ag
µ) = O(ψg−1

, ψ̄g−1
, Aµ). (56)

That is all we need to analyse gauge invariant correlators. We consider the generating functional for
correlators of general composite operators Oi(ψ, ψ̄, Aµ),

ZO[λi] =


dψdψ̄dAµ exp


iI[ψ, ψ̄, Aµ] + i


dxλiOi(ψ, ψ̄, Aµ)


, (57)

Arbitrary correlators are obtained from ZO[λi] in a standard way:

⟨0|T (Oi1(x1) . . .Oin(xn))|0⟩ = (−i)n
δnZO[λi]

δλi1(x1) . . . δλin(xn)


λ=0

. (58)

Now, we can begin integrating over Ag
µ instead of Aµ (as before, a dummy integration variable):

ZO[λi] =


dψdψ̄dAg

µ exp

iI[ψ, ψ̄, Ag

µ] + i


dxλiOi(ψ, ψ̄, Ag
µ)


=


dψdψ̄dAµ exp


iI[ψg−1

, ψ̄g−1
, Aµ] + i


dxλiOi(ψ

g−1
, ψ̄g−1

, Aµ)


=


dψdψ̄dAµ exp


iI[ψ, ψ̄, Aµ] + i


dxλiOi(ψ, ψ̄, Aµ)− iα1(Aµ, g−1)


, (59)
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where we took into account the gauge invariance of the gauge field measure and the gauge non-
invariance of the fermion measure

dAµ = dAg
µ,

dψdψ̄ = exp(−iα1[Aµ, g−1
])dψg−1

dψ̄g−1
. (60)

Restricting ourselves to an infinitesimal gauge transformation,

α1(Aµ,−δθ) = i


dx δθ aAa(Aµ)+ · · · , (61)

we obtain

ZO[λi] = ZO[λi] − i


dx δθ a


dψdψ̄dAµAa(Aµ) exp

iI[ψ, ψ̄, Aµ]

+ i


dxλiOi(ψ, ψ̄, Aµ)


⇒


dψdψ̄dAµAa(Aµ) exp


iI[ψ, ψ̄, Aµ] + i


dxλiOi(ψ, ψ̄, Aµ)


= 0. (62)

Taking arbitrary functional derivatives with respect to λi and setting them to zero we obtain

⟨0|T (Aa(Aµ)Oi1(x1) . . .Oin(xn))|0⟩ = 0. (63)

We showed that the gauge anomaly has null insertion into arbitrary gauge invariant correlators.
This fact indicates that the anomaly is null in the subspace of the Hilbert space consisting of physical
vectors (those who are annihilated by the BRST charge, obeying physical restrictions such as gauge
conditions [24]). It must be remarked that the technique above cannot say anything about the case of
gauge non-invariant correlators. Other techniques (such as lattice calculations, for example) can bring
some light to this question.

7. Chiral symmetry versus gauge symmetry

Another important question concerns the chiral anomaly. When the gauge field is not quantized,
it is well known [7–10] that chiral symmetry is in competition with gauge symmetry. Then, we must
investigate what happens with the chiral anomaly in a context where the gauge anomaly cancels.
Classical chiral symmetry is expressed by the transformations [11]

ψ c
= cψ,

ψ̄ c
= ψ̄c, (64)

Ac
µ = Aµ, (65)

where c = exp(iαγd+1), with ∂µα = 0 and2 γd+1 = iγ 0γ 1 . . . γ d−1. The classical action (1) is
symmetric with respect to this transformation

I[ψ c, ψ̄ c, Aµ] = I[ψ, ψ̄, Aµ], (66)

and, as a consequence,

∂µJ
µ

d+1 ≡ ∂µ(ψ̄γ
µγd+1ψ) = 0.

2 The essential property of γd+1 is {γd+1, γ
µ
} = 0, which is not satisfied in odd dimensions. In order to avoid this difficulty,

we will restrict our discussion, in this section, to the case in which d is even.
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Following the same standard reasoning of section II (an infinitesimal chiral transformation, with
∂µδα ≠ 0) we conclude that

Zc =


dψ cdψ̄ cdAµ exp


iI[ψ c, ψ̄ c, Aµ] + i


dx[ηψ c

+ ψ̄ cη + jµa A
a
µ]


=


dψdψ̄dAµJ[Aµ, c] exp


iI[ψ, ψ̄, Aµ] + i


dx[ηψ + ψ̄η + jµa A

a
µ]

+ i


dx(iδα[∂µJ
µ

d+1 + ηγd+1ψ + ψ̄γd+1η])


. (67)

Expanding the Jacobian

J[Aµ, c] = J[Aµ, δα] ≡ exp(iβ1[Aµ, δα])

≈ 1 + i


dx δα(x)
δβ1

δα(x)
(Aµ)


δα=0

≡ 1 +


dx δα(x)Ad+1(Aµ), (68)

and imposing Z = Zc , we find the usual equation that indicates the possible presence of the chiral
anomaly:

⟨0|∂µJ
µ

d+1|0⟩ = ⟨0|Ad+1(Aµ)|0⟩ (69)

We can try to follow the same path as in Sections 5 and 6, in order to see if we can prove that one
or both of the two sides of (69) is zero. In Section 5 we began by making a change of variables in the
expression for Z[0] (Eq. (48)): itwas a gauge transformation onAµ. Thenwe explored gauge invariance
of the bosonic measure dAµ to show that the gauge anomaly vanished. As the chiral transformation
affects only the fermion fields (because Ac

µ = Aµ), it is not possible to apply this procedure here. The
same reasoning invalidates the extension of the procedure followed in the end of Section 5 to the case
of the chiral anomaly, because there is no sense in asking if Ieff[Aµ] is or is not chiral invariant. So, we
see that one cannot conclude that the chiral anomaly vanishes on the basis of the same arguments
that we used to the case of gauge symmetry.

8. Conclusion

We considered the anomaly equation

⟨0|(Dµ)abJ
µ

b |0⟩ = ⟨0|Aa(Aµ)|0⟩

and showed arguments to support the vanishing of both sides, independently. In one case (l.h.s.)
we considered the expectation value of a fermionic/bosonic operator (Dµ)abJ

µ

b and showed that it
vanishes. On the other side of the equation, we had the expectation value of a completely bosonic
operator Aa(Aµ), which was shown to be also zero. In both demonstrations we have something in
common: gauge invariance of the bosonic measure. So, gauge invariance at quantum level seems to be
determined by the behaviour of the fluctuations of theAµ field. The conclusion is that gauge invariance
of the fermionic measure does not seems to be important to guarantee gauge invariance of the full
theory. It seems that gauge invariance is much more resistant than it is usually supposed.

However, we showed that there are signs indicating that the precise mechanisms behind the
cancelling of the gauge anomaly in the abelian andnon-abelian cases are very distinct. The cancellation
of the anomaly in the abelian case seems to be a consequence of the Dyson–Schwinger equations
extended to the Wess–Zumino fields. This could indicate that the anomaly should be dealt with as
a subsidiary condition (similar to what happens in the case of a Proca model, when we obtain ∂µAµ
as a consistency condition). This seems not to be the situation in the non-abelian case. What is the
true mechanism behind the cancellation of the non-abelian anomaly is a question that deserves to be
investigated further.
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The chiral anomalywas shownnot to be cancelled on the basis of the arguments thatwe presented.
Although the proof is quite trivial, it is very important to stress this fact explicitly, because this
anomaly has deep phenomenological implications (in an opposite way to the gauge anomaly, which
is only used to find inconsistencies in the theory). It remains possibly different from zero, both in the
vector and in the chiral cases.

The functional formalism points out the origin of the gauge anomaly and a road for its formal
cancellation. Restoration of gauge symmetry implies a null expectation value for the anomaly. This
cancellation suggests that anomalies are not an obstacle to the quantization of theories involving
chiral fermions. The usual argument is that anomalies destroy Slavnov–Taylor identities, necessary
to relate renormalization constants and prove the renormalizability of the theory. On the basis
of our results, there is no reason to believe that Slavnov–Taylor identities are not preserved in a
gauge anomalous theory. A detailed analysis of the perturbative renormalization procedure under
this new perspective would be very important and will be considered in detail in the future. We
already began to investigate it by considering insertions of the gauge anomaly in arbitrary gauge
invariant correlators. Their vanishing points in the direction of a null anomaly in the physical subspace.
However, wemust also obtain progress in the gauge non-invariant case, if we want to understand the
full dynamics of the gauge field in a so called gauge anomalous theory.

One can see that themain difference between the vector case (coupling to both chiralities) and the
chiral case (coupling to just one of them) is that gauge invariance can be maintained at all steps of the
quantization in the vector case, even before quantizing the gauge field. In the chiral case, this is not
so. One has to go through the complete quantization of the theory to see gauge invariance again. But
it seems to be present there, in the end.
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Appendix A

We present a simple demonstration of the vanishing of the v.e.v. of the gauge field. First we show
that the derivative of a scalar operator has vanishing v.e.v.: let U(Λ, a) denote the operator that
represents a Poincaré transformation in Hilbert space (Λ is the Lorentz transformation and a is the
vector that indicates translation). Then

⟨0|∂µΩ(x)|0⟩ = ⟨0|UĎ(1, x)∂µΩ(0)U(1, x)|0⟩ = ⟨0|∂µΩ(0)|0⟩, (70)

as expected from Poincaré invariance of the vacuum. Now, performing a pure Lorentz transformation,

⟨0|∂µΩ(0)|0⟩ = ⟨0|UĎ(Λ, 0)∂µΩ(0)U(Λ, 0)|0⟩ = Λµ
ν
⟨0|∂νΩ(0)|0⟩. (71)

This can only be true (for generalΛ) if ⟨0|∂µΩ(0)|0⟩ = 0. Now, we can consider the gauge field: using
a similar argument for translations we find

⟨0|Aµ(x)|0⟩ = ⟨0|Aµ(0)|0⟩. (72)

However, under a general Lorentz transformation, this field does not behaves as a tensor (see [25])

UĎ(Λ, 0)Aµ(x)(0)U(Λ, 0) = Λµ
νAν(Λx)+ ∂µΩ(Λ, x), (73)

with Ω(Λ, x) being a scalar field dependent on the particular Lorentz transformation under
consideration. So,

⟨0|Aµ(0)|0⟩ = ⟨0|UĎ(Λ, 0)Aµ(0)U(Λ, 0)|0⟩
= Λµ

ν
⟨0|Aν(0)|0⟩ + ⟨0|∂µΩ(Λ, 0)|0⟩

= Λµ
ν
⟨0|Aν(0)|0⟩ = 0. (74)
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