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Abstract

The Heisenberg evolution of a given unitary operator corresponds classically to a fixed canon-
ical transformation that is viewed through a moving coordinate system. The operators that form
the bases of the Weyl representation and its Fourier transform, the chord representation are,
respectively, unitary reflection and translation operators. Thus, the general semiclassical study
of unitary operators allows us to propagate arbitrary operators, including density operators,
i.e., the Wigner function. The various propagation kernels are different representations of the
super-operators which act on the space of operators of a closed quantum system. We here pres-
ent the mixed semiclassical propagator, that takes translation chords to reflection centres, or vice
versa. In contrast to the centre–centre propagator that directly evolves Wigner functions, they are
guaranteed to be caustic free, having a simple WKB-like universal form for a finite time, what-
ever the number of degrees of freedom. Special attention is given to the near-classical region of
small chords, since this dominates the averages of observables evaluated through the Wigner
function.
� 2006 Elsevier Inc. All rights reserved.

1. Introduction

The semiclassical theory for the evolution of the states of a closed quantum system has
a long history. The way in which operators propagate semiclassically driven by the Heisen-
berg equation is a more delicate matter. On the one hand, observables that give rise to
smooth, approximately classical functions in the Weyl representation (admissible
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operators [1]) also propagate in an almost classical manner. In contrast, unitary operators
exhibit semiclassically narrow oscillations in the Weyl representation and so do density
operators, represented by the Wigner function. The propagation of these oscillatory
regions is not trivially related to the corresponding classical evolution, but it has been
shown that the semiclassical Wigner function is transported by pairs of phase space trajec-
tories [2]. Alternatively, these may be combined into a single trajectory in double phase

space, secondary phase space [3], or in full rigor, the symplectic groupoid [4].
A general qualitative picture in terms of a pair of orbits can always be invoked. If the

chord that connects the initial points of the relevant pair of orbits is small, we may substi-
tute these by a single central orbit, so that the propagator for Wigner functions assumes
the limiting d-function form along the classical trajectory, deduced semiclassically by
Marinov [5]. But, in the case of long chords, both the orbits at the chord tips must be used.
The difficulty is that the initial chord depends on the initial state, so that it is not so easy to
derive a general semiclassical propagator. Furthermore, the limit of small chords is a caus-
tic of the semiclassical theory demanding a higher uniform approximation [6] than that
developed in [2,3].

The Weyl, or centre representation decomposes arbitrary operators into a superposi-
tion of reflection operators [7]. The Fourier transform of the Weyl symbol, i.e., the
chord symbol, is the expansion coefficient of the same operator in the basis of transla-
tion operators. Both these bases belong to the general class of unitary operators, so that
the semiclassical theory for evolution of unitary operators allows us to propagate
arbitrary Weyl symbols or Wigner functions. The purpose of this paper is to provide
this general semiclassical framework. If one considers that the space of linear operators
that act on Hilbert space also forms a linear space, then the kernels of the integral
representation for the propagation of Weyl symbols and chord symbols correspond to
representations of super-operators [8]. Here, we are only concerned with a subclass of
super-operators, or non-selective operations [9], appropriate to closed quantum systems,
but a generalization of the present semiclassical theory to open Markovian systems will
soon follow.

The natural setting for the present semiclassical theory is double phase space, whose ele-
ments are all the ordered pairs of phase space points and hence encompasses all possible
classical transitions. A uniform translation of the ordinary phase space is represented by a
plane in double phase space, which is transverse to the double phase space plane that
defines a canonical reflection through a phase space point. The points on these alternative
sets of planes can be used as conjugate coordinates for double phase space, which corre-
spond, respectively, to the chord and the centre (Weyl) representations. It is the classical
evolution of these planes in double phase space that supplies the semiclassical form of the
propagators that represent super-operators.

The background literature for the present work spans several decades and various
notations. These are unified in Appendices A and B, which also contain working def-
initions of the Weyl and the chord representations. Appendix A reviews the semiclas-
sical correspondence between classical canonical transformations and quantum unitary
operators. The choice of a particular representation for the latter is necessarily paired
to a specific type of generating function for the corresponding classical transformation.
In the case of the centre, or the chord representations, the respective centre and chord
generating functions are subject to caustics wherever the canonical transformation can
be locally approximated by either a reflection, in the case of the centre generating func-
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tion, or a translation [10]. These give rise to spurious singularities in the simplest semi-
classical approximations that are reviewed in Appendix B, which also presents the cor-
responding forms of the Hamilton–Jacobi equation appropriate to both these
generating functions.

Within this theoretical background, the evolution of the unitary operators results
from the evolution of quantum states according to the Schröedinger equation. In Section
2, the less studied case of the Heisenberg evolution is reviewed with reference to the
Weyl propagator and its corresponding Hamilton–Jacobi equation. No distinction will
be made here with the von Neumann equation, appropriate to density operators that
are evolved unitarily, because it is simply related to the Heisenberg equation by a time
inversion, or by changing the sign of the Hamiltonian. A direct semiclassical correspon-
dence follows for this type of quantum evolution in the case of unitary operators, if we
view a fixed classical canonical transformation from a moving (canonical) coordinate
frame.

The notion of double phase space is introduced in Section 3, within the general point of
view developed by Amiet and Huguenin [11,4]. As well as providing an appealing reinter-
pretation of the previous results, this allows the simplest derivation of the Hamilton–Jaco-
bi equation for the chord generating function. A revised study of the general evolution of
operators follows in Section 4.

Section 5 is dedicated to the semiclassical evolution of translation operators. They cor-
respond to planes in double phase space that are analogous to the momentum planes in
ordinary phase space. Hence, the chord symbol is a d-function, whereas the Weyl (centre)
symbol is a plane wave. The latter is the preferred basis in which to view the general non-
linear semiclassical evolution of translations into a single WKB-like wave. The Weyl sym-
bols of translation operators are propagation kernels for the evolution of arbitrary
operators that are specified initially by their chord symbol and finally by their Weyl sym-
bol. The invariance of the identity operator under Heisenberg evolution corresponds to the
classical invariance of the zero-chord plane. It is only within this plane that the classical
double phase space motion generally coincides with the classical Liouville flow in ordinary
phase space.

In Section 6, we examine the evolution of the conjugate reflection operators. These
correspond to planes in double phase space which are analogous to the position planes
in ordinary phase space. Hence, the Weyl symbol is a d-function, whereas here it is the
chord symbol that evolves into a single nonlinear WKB-like wave from an initial plane
wave. Therefore, it is guaranteed to have no interference and no caustics for a finite
time. The chord symbol for the reflection operator is the propagation kernel for initial
Weyl symbols of arbitrary operators to be later specified by their chord symbols. Of
course, the final Weyl symbol or Wigner function, which is the subject of parallel work
[6], can be obtained at any time by a Fourier transform. An example is provided of
evolution driven by a homogeneous cubic Hamiltonian. This is the simplest nontrivial
case, since the evolution for quadratic Hamiltonians reduces to the linear Liouville
flow.

Our conclusions in the final section emphasise that actually we are dealing with a single
mixed propagator, in spite of the alternative definitions that correspond to the motion of
alternative planes in double phase space. Its simple semiclassical form is in sharp contrast
to the direct centre–centre propagator for Wigner functions, whose caustic structure is
analyzed in Appendix C.
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2. Operator evolution

The evolution of unitary operators results from Heisenberg’s equation

o bU ðtÞ
ot
¼ i

�h
bH ; bU ðtÞh i

. ð1Þ

Given that the Weyl representation and its Fourier transform are based on unitary reflec-
tion and translation operators, (1) also transports along with it the Weyl and the chord
symbols defined in Appendix A. (Here, it is proper to distinguish the external Hamiltonian,bH , from the Hamiltonian generator, which may have been used to define the initial unitary
operator bU in Appendix A.) Actually, (1) is more commonly employed for the propaga-
tion of observables (such as bq or bp) or density operators (with a change of sign), rather
than unitary operators. Perhaps the more intuitive realization is to consider bU as an active
transformation, whereas bH generates by exponentiation, according to (A.1), a continuous
group of passive coordinate transformations in Hilbert space, bV t. Then we obtainbU ðtÞ ¼ bV �t

bU bV t ð2Þ
as the time dependent unitary transformation that results from the adoption of the moving
coordinate frame. It is convenient to follow the nomenclature in [3], so as to distinguish
the Heisenberg evolution of bU ðtÞ governed by (1) from the Schrödinger evolution of bU t.
Though unusual, the latter is appropriate in as much as (A.1) is the solution of the Schrö-
dinger equation for the initial condition bU 0 ¼ bI .

This specialization of the Heisenberg evolution to unitary operators is the key to a clear
classical correspondence. Indeed, if we define the points in the 2L-dimensional phase space
as x = (p1, . . . , pL, q1, . . . , qL), we can also view the classical canonical transformation,
C : x� fi x+, in the moving coordinate frame defined by the continuous group of canon-
ical transformations, Kt : x0 fi xt. The latter is generated by the classical Hamiltonian
H (x), that corresponds to bH , not to the generator of the transformation C. Then the
evolving canonical transformation corresponding to bU ðtÞ is just

CðtÞ : x0� ! x0þ ¼ K�t � C � Ktðx0�Þ. ð3Þ

Clearly, the evolution of the initial active transformation C depends here on a pair of or-
bits generated by the Hamiltonian H (x), the one for x+ moving forwards in time, while the

x’–

x’+

x–

x+

ξ’–t

t

C

x’
K

K

(t)C

x
ξ

Fig. 1. The classical Heisenberg evolution, CðtÞ : x0� ! x0þ, of the initial canonical transformation, C: x�fi x+, is
constructed with the addition of the forward orbit, Kt : xþ ! x0þ, and the backward orbit, K�t : x0� ! x�.
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orbit for x� moves backwards (or forwards for �H (x)). This geometry is sketched in
Fig. 1. The fundamental difference between the classical Heisenberg evolution, C (t), and
the more usual evolution Ct considered in Appendix A, even if obtained from the same
Hamiltonian, is highlighted by the example where the initial active canonical transforma-
tion is just the identity: C = I. No change of coordinate system can alter this, so C (t) = I
for all time, which is not generally the case for the canonical transformation, Ct, that
results from the integration of Hamilton’s equations. Of course, the quantum operatorbI is also invariant according to (2), in contrast to the nontrivial evolution specified by
(A.1).

The semiclassical Heisenberg evolution of operators in the Weyl representation was
derived independently in [2] and in [3]. In both cases, the density operator bqðtÞ was con-
sidered, i.e., the propagation of the Wigner function, but the results can be immediately
appropriated for the Weyl symbol of bU ðtÞ, with a change of sign for the time (strictly
the von Neumann equation). U (x, t) has the same general form as (B.8), but with the alter-
native generating function S (x, t), corresponding to the canonical transformation C (t)
specified by (3) and the stability matrix M (x, t) obtained from (B.6). The partial differen-
tial equation satisfied by S (x, t) is then a kind of Hamilton–Jacobi equation [3]

oS
ot
ðx; tÞ þ H x� 1

2
J

oS
ox

� �
� H xþ 1

2
J

oS
ox

� �
¼ 0. ð4Þ

It will be shown in the following section that the chord generating function, S (n, t), for the
Heisenberg transportation of a canonical transformation satisfies a similar Hamilton–
Jacobi equation. In the conclusion of the present section, this same equation is anticipated
through the study of the semiclassical limit of the Heisenberg equation in the chord rep-
resentation. So as to represent the commutator in (1), we note that the chord symbol for
the product of operators, bAbB, is

bAbB� �
ðnÞ ¼ 1

ð2p�hÞL
Z

dn0Aðn0ÞBðn� n0Þ exp
i

2�h
n ^ n0

� �
ð5Þ

(see, e.g., [10]). In the case of the Hamiltonian it is better to use the Weyl representation,
which is a smooth real function. On the other hand, linear phases can be incorporated as a
shift of the origin of chords [16]

AðnÞ exp
i

2�h
g ^ n

� �
¼ Aðn� gÞ. ð6Þ

Hence, the chord commutator can be expressed asbH ; bU ðtÞh i
ðnÞ ¼ 1

2p�hð ÞL
Z

dn0dx0 H x0 � n

2

� �
� H x0 þ n

2

� �� �
Uðn0; tÞ

� exp � i

�h
ðn� n0Þ ^ x0

� �
. ð7Þ

Inserting the semiclassical approximation (B.10) for U (n, t) in this equation, the full 4L-di-
mensional integral can then be evaluated by stationary phase. First, we note that the sta-
tionary conditions are just that n 0 = n and that x 0 = x (n 0, t), according to (B.11), i.e., the
stationary centre that corresponds to the given chord is specified by the classical transfor-
mation. The Hessian determinant of the phase is unity, so that, within the semiclassical
approximation
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bH ; bU ðtÞh i
ðnÞ ¼ H J

oS
on
� n

2

� �
� H J

oS
on
þ n

2

� �� �
Uðn; tÞ. ð8Þ

In the next section, we will verify that the square brackets on the right specify the time
derivative of S (n, t). Though it is possible to derive directly the Hamilton–Jacobi equation
that determines the evolution of the chord generating function for the transported canon-
ical transformation (3) following [2], the phase space geometry of fitting polygons is quite
complicated. It is worthwhile instead to invest on the double phase space approach fol-
lowed by [3]. The great advantage is that then chords and centres merely define conjugate
planes in the enlarged space, so that their relation is entirely analogous to the conjugacy of
positions and momenta in ordinary phase space. In contrast, equation (4) appears strange
indeed when examined in ordinary phase space, if it is recalled that ordinary Hamilton–
Jacobi equations depend on only half of the phase space variables.

3. Double phase space

It might seem perverse to double the phase space of classical mechanics, which is
already a doubling of position space. Nonetheless, we are here concerned with represent-
ing operators, commonly represented by both bra and ket spaces, so it is not surprising
that the classical correspondence generally calls for the doubled classical space. Observ-
ables are deceptively simple in this respect, but, corresponding to unitary transformations,
there arises an attractive and simple geometrical picture for the canonical transformations,
C : x� fi x+, defined in the original phase space. Indeed the canonical property demands
that all closed curves, c�, be mapped onto closed curves, c+, such thatI

c�

p� � dq� ¼
I

cþ

pþ � dqþ. ð9Þ

Therefore, the definition of the double momentum space, P = (�p�, p+), and the double
positions, Q = (q�, q+), allows us to reinterpret the canonical condition asI

C
P � dQ ¼ 0; ð10Þ

where C = (c�, c+). These are arbitrary closed curves on the (2L)-dimensional surface de-
fined by the one-to-one function, x+ = C (x�), within the (4L)-dimensional double phase

space X = (P, Q).
In other words, the action or symplectic area for any closed curve drawn on the surface

that defines the canonical transformation, C, in double phase space is zero, i.e., canonical
transformations are described by Lagrangian surfaces in double phase space. This
Lagrangian property allows us to define locally a function

SCðQÞ ¼
Z Q

Q0

P CðQÞ � dQ ð11Þ

which is independent of the path followed between Q0 and Q. In its turn, this generating

function defines the given Lagrangian surface by the equations

oSC

oQ
¼ P CðQÞ or

oSC

oqþ
¼ pþ;

oSC

oq� ¼ �p� ð12Þ

that determine implicitly the canonical transformation [18].
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Though the mapping C : x� fi x+ = C (x�) is necessarily univalued, no such restriction
results on the function PC (Q), defined by the same (2L)-dimensional surface. We cannot
define generating functions using x� or x+ as independent variables, because these do not
lie on Lagrangian planes in the double phase space, i.e., there is no constraint that either
side of (9) be necessarily zero. What is allowed and often desirable is to apply linear canon-
ical transformations to the double phase space, X fi X 0, which leave invariant the
Lagrangian property for any surface, including P 0 = 0. Then we may define a new gener-
ating function in the new variables such that P 0CðQ0Þ ¼ oS0C=oQ0.

All the commonly used generating functions [18] are obtained by the application of
canonical 90� rotations to the single phase spaces, q± fi p±, separately or in combination.
Obviously, there exists unlimited other possibilities in double phase space [11], but we will
here be concerned only with the special canonical variables

Q0 ¼ x ¼ xþ þ x�
2

; P 0 ¼ y ¼ Jðxþ � x�Þ ¼ Jn. ð13Þ

Instead of the previous 90� rotations, this transformation to canonized centre and
chord variables is more like a 45� rotation in double phase space. The plane y = 0
(or n = 0) clearly specifies the identity transformation, I, which corresponds to a
Lagrangian plane. Actually, all planes y = constant are uniform translations, Tn, by
the vector �Jy = n, whereas each plane defined by a constant x identifies the reflection
Rx. Unlike the Lagrangian plane (q�, q+), the planes y = 0 and x = 0 can be considered
as phase spaces on their own: the space of reflection centres (Weyl space) and the space
of translation chords. But it must be remembered that these are Lagrangian as far as
the double phase space action, or symplectic form is concerned. Therefore, the mapping
C defines implicitly the local function yC (x) in terms of the generating function
SC(x) : yC(x) = JnC(x) = oSC/ox, which provides a double phase space interpretation
for the relation between centres and chords in (B.1). Alternatively, the generating func-
tion SC (y) can be defined, such that xC (y) = oSC/oy, corresponding to the chord gen-
erating function (B.11).

Rather than derive the intricate single phase space geometry for the evolution of the
chord generating function, it is much simpler to obtain the Heisenberg form of the Ham-
ilton–Jacobi equation corresponding to (4) from the double phase space dynamics. First,
we note that inserting (B.1) into (4) determines the double phase space Hamiltonian as

ðX Þ ¼ ðx; yÞ ¼ Hðx� Jy=2Þ � Hðxþ Jy=2Þ ¼ HðxþÞ � Hðx�Þ. ð14Þ
This should be contrasted to the Schrödinger double phase space Hamiltonian obtained
from (B.7), which is simply

ðX Þ ¼ ðx; yÞ ¼ Hðx� Jy=2Þ ¼ HðxþÞ. ð15Þ

In each case ðX Þ generates the Hamiltonian flow in double phase so as to evolve any
Lagrangian surface according to the respective Hamilton–Jacobi equation. The Heisen-
berg double Hamiltonian (14) determines the phase in Marinov’s path integral for the evo-
lution of the Wigner function [5].

It must be stressed that the motion generated by the double Hamiltonian, ðX Þ in (14),
is purely classical, albeit in double phase space. This is in general quite different from the
Liouville flow in single phase space. Generally, it is only within the invariant plane, y = 0
or n = 0, that the flow is Liouvillian, as will be discussed in Section 5.
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Generally, the double phase space motion generated by ðx; yÞ in (14) depends on both
the initial centre, x0 and on y0. Indeed, double phase space can be considered as an incor-
poration of the dynamics of pairs of orbits, starting from x�0 and x+0, into a single Ham-
iltonian scheme. Thus, it is only within the ‘horizontal’ zero chord plane of double phase
space that the single and double phase space motions always coincide, as will be further
discussed in the next section. However, in the special case of quadratic Hamiltonians,
H (x) = � a � x + x Æ Bx, where B is an orthogonal matrix, the motion of chords and cen-
tres becomes independent. This follows simply from (14), so that

ðx; yÞ ¼ a � y� 2x � BJy ð16Þ
and Hamilton’s equations for the conjugate variables x and y become

_x ¼ � o

oy
¼ �a� 2JBx ð17Þ

and

_y ¼ o

ox
¼ �2BJy. ð18Þ

In the case of the centres, this is exactly the same as _x in single phase space and merely
reflects the fact that the centre between two points satisfies the same linear equation as
each of them individually. This fact is the basis of the classical propagation of the Wigner
function and Weyl symbols for quadratic Hamiltonians. What is not so familiar is that the
chord function and chord symbols also propagate classically [22]. In the case of a homo-
geneous quadratic form (a = 0), Hamilton’s equations for _n ¼ J _y and for _x again coincide
according to [22], but the chords are insensitive to the linear part a � x. The latter gener-
ates a translation, which appears in the chord symbol as the phase factor in (6).

Coordinatizing locally the moving surface driven by ðX Þ as y = y 0 (x, t), the solution
is the generating function

Sðx; tÞ ¼
Z x

x0

y0ðx; tÞ � dx. ð19Þ

The conjugate action is defined via the Legendre transform

Sðy; tÞ ¼ x0 � y� Sðx0; tÞ ð20Þ
in the usual way, i.e., x 0 (y, t) is specified by the condition that (20) is stationary with re-
spect to x 0. Taking now the full derivative of (20) with respect to the time and using the
fact that oS (y, t)/oy = x 0 (y, t), then leads to

oSðy; tÞ
ot

¼ � oSðx0; tÞ
ot

¼ ðx0ðy; tÞ; yÞ. ð21Þ

Reintroducing (B.11) into (21) and again recalling that n = � Jy, leads to the chord evo-
lution equation corresponding to the Heisenberg evolution as

oSðn; tÞ
ot

� H J
oS
on
þ n

2

� �
þ H J

oS
on
� n

2

� �
¼ 0. ð22Þ

Of course, we can also obtain the partial differential Hamilton–Jacobi equation for the
Schrödinger action St (x) by exactly the same procedure, so that
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oStðnÞ
ot
� H J

oSt

on
þ n

2

� �
¼ 0. ð23Þ

4. Operator evolution revisited

To apply the above theory to the evolution of quantum operators it should be recalled
that they form a Hilbert space of Hilbert–Schmidt operators with the scalar product [1,23]

hhAjBii ¼ tr bAybB ð24Þ
defined in terms of the adjoint operator, bAy. When the trace is defined, the Heisenberg (or
von Neumann) evolution can be considered as the action of a unitary super-operator, since
it preserves the scalar product. General super-operators always preserve the trace of the
self-adjoint density operator, tr bq, but not necessarily tr bq2 [9].

Each foliation of double phase space by parallel Lagrangian planes corresponds to a
possible operator representation. Perhaps the most common representation relies on the
position projection operators, hhQj ¼ jq�ihqþj, so that

hhQjAii ¼ hqþj bAjq�i ¼ tr jq�ihqþj bA; ð25Þ
where the Lagrangian planes are just Q = (q�, q+) = constant. From this one can switch to
momentum, or various mixed representations through Fourier transformations, corre-
sponding to 90� rotations in double phase space. The Weyl representation, based on the
self-adjoint operator, bRx, then corresponds to the double phase space rotation (13), so that
for Q 0 = x

hhQ0jAii ¼ 2Ltr bRx
bA ¼ AðxÞ ð26Þ

and the Lagrangian basis in double phase space are the reflection planes, x = constant. The
Fourier transformation (A.8) then brings in the translation operator, whose adjoint isbT �n . This is represented in double phase space by the new Lagrangian plane,
P 0 = y = Jn = constant, so that

hhP 0jAii ¼ tr bT �n
bA ¼ AðnÞ. ð27Þ

In each case the representation in terms of a set of Lagrangian planes, Q 0, is complemen-
tary to the conjugate representation in terms of P 0, which is obtained by a Fourier trans-
form. Thus, Heisenberg’s uncertainty principle manifests itself in double phase space.
Further discussion is presented in reference [24].

The suggestive use of a Dirac notation for operators, in direct analogy to that common-
ly reserved for states in Hilbert space, is supported by the manner in which the evolution of
unitary operators is semiclassically related to the evolution of Lagrangian surfaces, in
double phase space. In the case of the chord propagator, combining (22) with (8) we verify
that

½ bH ; bU ðtÞ�ðnÞ ¼ �h
i

oU
ot
ðn; tÞ ð28Þ

to lowest order in Planck’s constant. In the following sections, we study the evolution of
the particular unitary operators, translations, and reflections, which are the basis of the
present theory.
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The preceding theory is concerned with the evolution of unitary operators that always
correspond to Lagrangian surfaces in double phase space. The next section focuses on
evolved unitary translation operators which allow us to propagate arbitrary operators
through their chord symbols. But first, it should be noted that the present semiclassical
theory can also be applied directly to other operators that also correspond classically to
Lagrangian surfaces in double phase space.

The most important case is that of projectors, or pure state density operators, |wæÆw|.
Indeed, it is quite usual for the semiclassical description of a state |wæ to be based on a
Lagrangian surface in single phase space, a torus for a bounded state, e.g., a closed curve
in the case that L = 1. Then the projector onto this state is supported by the product man-
ifold with doubled dimension, e.g., a two-dimensional torus if L = 1. Another interesting
case is that of a dyadic operator, |wæÆw 0|, which is useful to describe transitions. In the case
that |wæ and |w 0æ are eigenstates of the same observable, the Weyl representation of this
operator is known as a Moyal function, or cross-Wigner function [25,26]. Its semiclassical
form in single phase space has been previously studied [27], relying on chords (and their
centres) that connect the pair of distinct single tori, but the double phase space picture
is simpler because a single Lagrangian surface is involved as in the case of the projectors.

In all these cases, caustics cannot generally be avoided. Taking the product of the torus
in x� with the torus in x+, results in a surface with the same dimension as the single phase
space in which each torus is embedded, but which projects down singularly as the single
torus into either of x±. But, as we have seen, x± are not Lagrangian surfaces in double
phase space with which to view caustics of the double torus in the sense that they cannot
supply the variables for a generating function. The n = 0 plane within double phase space,
in which the Wigner function is defined, is Lagrangian and the caustic that arises along the
torus in the single space picture [28] can now be reinterpreted as the fold caustic for the
projection of the double torus onto this particular coordinate plane. The section of the
double torus with the plane n = 0 is identical to the single space torus, just as the sections
with x� and x+. If L > 1, the Wigner caustic has a higher dimension than the single torus,
though the latter is included as a higher singularity [29]. In all cases, the Wigner caustic
results from the projection of the double torus onto the x plane. Further application of
semiclassical methods in double phase space are presented in [23].

The projection of the double torus onto the chord plane, x = 0, is even more singular.
Indeed, the origin of this plane, n = 0, is the image of the entire single torus. The approx-
imation of the chord function in this region is studied in [16], as well as the caustic for
maximal chords of the single torus. In any case, it is clear that a simple Fourier switch
between the Weyl and the chord representations does not deliver us from caustics and
the problem of their evolution. The alternative that is pursued in Sections 5 and 6 is to
propagate either the translation or the reflection basis operators.

5. Propagating translations

It was reviewed in Appendix B that the chord representation may be considered as the
decomposition of an arbitrary operator into a superposition of unitary translations.
Hence, the general evolution of operators in this representation can be reduced to the
propagation of this special class of operators, each of which corresponds to a basis plane
y = constant in double phase space. These can be pictured as horizontal, if we interpret y

as the double momentum, P 0, and the y = n = 0 plane corresponds to the identity trans-
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formation. Each of its points results from the intersection with a vertical, Q 0 = x = con-

stant, plane that corresponds to a reflection, being that the plane x = 0 corresponds to
the operator for reflection through the origin of ordinary single phase space, which is also
known as the parity operator.

It is immediately obvious from the form of the double Hamiltonian for Heisenberg
propagation (14) that the y = 0 plane is always invariant. This merely expresses the fact
that the corresponding canonical transformation remains the identity for all time, just
as the quantum identity operator, bI , is invariant for arbitrary Heisenberg propagation.
In this sense, a classical-quantum correspondence becomes exact in the strict limit of small
chords. This confirms the interpretation in [16] of the long chords as responsible for the
essentially quantum long range correlations of the density operator. Within the purely
quantum domain, the combination of the unitarity of the Heisenberg super-operators,
which preserves the trace of products of operators (24), with the invariance of bI , results
in the invariance of the trace itself. This property must be demanded of the nonunitary
super-operators for open systems, which are no longer generated by the Heisenberg
equation[9].

The flow within the invariant classical plane results from the expansion of the double
phase space Hamiltonian, ðx; yÞ in (14), for a fixed centre x

ðx; yÞ ¼ oH
ox
ðx; 0Þ ^ yþOðy3Þ. ð29Þ

Hence, Hamilton’s equations in double phase space for the centres, x, within the classical
invariant plane are identical to the equations of motion generated by the single phase
space Hamiltonian, H(x).

General translations, C = Tn, are not invariant for arbitrary Heisenberg propagation.
The initial Lagrangian surface that will be evolved by C(t) = Tn(t) is a horizontal plane,
so that analogy with single phase space indicates that the chord symbol is

T nðn0Þ ¼ dðn� n0Þ; ð30Þ
whereas the Weyl representation is the plane wave [10]

T nðxÞ ¼ exp � i

�h
x ^ n

� �
. ð31Þ

The chord symbol is not in a simple semiclassical form, because the horizontal planes
project singularly onto the vertical axis, but (31) is in the form (B.8) with the classical
action Sn (x) = � x � n and the tangent matrix Mn, defined by (B.5) is twice the unit
matrix. Inserting this linear form of the generating function in (B.1) results in the same
chord n being placed on all the centres x. This need no longer hold after a classical Hei-
senberg evolution, so that the evolved actions Sn (x 0, t) obtained from the Hamilton–Jaco-
bi Eq. (4) will generally have second and higher order terms and Mn (x 0, t) will no longer be
proportional to the unit matrix. Unless the evolution proceeds to the possible production
of a vertical fold, i.e., a centre caustic, the phase h in (B.8) will be the same as in (31). Thus
the general semiclassical form of the distorted translation in the centre representation is

T nðx0; tÞ ¼ 2Lj detð1þMnðx0; tÞÞj�
1
2 exp½i�h�1Snðx0; tÞ�. ð32Þ

The identification of the Hermitian conjugate of bT nðtÞ with bT �n ðtÞ, i.e., the inverse oper-
ator, establishes that S�n (x, t) = � Sn (x, t).
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An important constraint on the classical Heisenberg evolution of the plane that
describes a finite translation is that it cannot touch, or intersect the invariant identity
plane, y = 0. This means that the distorted translation never develops a fixed point.
Indeed, the number of fixed points is invariant throughout the evolution. Furthermore,
the linearization of the monodromy matrix near each fixed point is also invariant. Thus,
summing over the fixed points we obtain a semiclassical invariance of Tabor’s version
[30] of Gutzwiller’s trace formula [31], once the quantum invariance of the trace of any
operator is recalled.

If we now adopt the Weyl representation for the Heisenberg evolution bAðtÞ of an arbi-
trary operator bA, (A.7) leads to

Aðx0; tÞ ¼
Z

dn

ð2p�hÞL
AðnÞ T nðx0; tÞ. ð33Þ

Hence, the distorted translation, Tn (x 0, t), is identified as the mixed chord-centre prop-

agator. In view of the previous discussion, the simple semiclassical approximation (32)
then supplies an initially caustic free approximation for the Weyl symbol (or Wigner func-
tion) that evolves from a given chord symbol. This is not the case of the chord–chord prop-

agator that follows from the evolution of the chord symbol of bAðtÞ given by (A.7):

Aðn0; tÞ ¼
Z

dn

ð2p�hÞL
AðnÞ T nðn0; tÞ. ð34Þ

Even though the invariance of tr bAðtÞ, implies that A (0, t) = A (0, 0) for all t, this propaga-
tor evolves from the d-function (30) into a semiclassical form that must negotiate caustics
through Airy functions, or other higher diffraction catastrophes [32,12]. Using the product
rules for chord symbols [10] it is possible to express the chord–chord propagator directly in
terms of the chord symbols for the elementary evolution operators bV t in the full Heisen-
berg propagation (2)

T nðn0; tÞ ¼
Z

dg V t gþ n0 � n

2

� �
V t g� n0 � n

2

� ��
exp

i

�h
g ^ n0 þ n

2

� �
. ð35Þ

It is interesting to note that this exact expression has the same form as the transformation
that defines the chord function v (n) for a pure state density operator from the wave func-
tion Æq|wæ [16]. Stationary phase evaluation of (35) far from caustics leads to a superposi-
tion of terms of the general semiclassical form (B.10).

As noted at the end of Section 4, we are dealing with a general semiclassical theory for
the evolution of operators, each of which corresponds to a Lagrangian surface in double
phase space. The translation operators are an important particular case, but if the opera-
tor bA that is propagated is related to a particular Lagrangian surface of its own, one may
as well evolve it directly in the Weyl representation using (B.8), instead of integrating the
evolved basis operators. Indeed, far from a caustic, the stationary phase evaluation of (33),
or (34) will give the same result as (B.8). However, specially for pure state density opera-
tors, the whole region of small chords, that is identified with the near-classical part of the
density operator [16], lies in the neighbourhood of a caustic of the chord function as well
as a caustic of the Wigner function. Furthermore, the phenomenon of decoherence, i.e., the
evolution of the density operator in an open system (into a mixed state) [17], leads to a cut-
off for the contribution of the longer chords [22]. It is thus important to determine the
semiclassical evolution of the neighbourhood of the invariant plane y = 0 (or n = 0) in
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double phase space. The difficulty is that it is necessary to keep track of the (small) chords
throughout the evolution, whereas the chord-centre propagator in this section depends on
the initial chord, but is later only described by the centres. The situation is clarified in the
following section by the alternative definition of the mixed centre-chord propagator.

6. Propagating reflections

The Heisenberg evolution of arbitrary operators, bA, according to (2), is given by (A.9)
as a superposition of evolved reflection operators. (Though density operators propagate
backwards in time.) Taking the Weyl symbol of the evolved operator bAðtÞ, then leads to

Aðx0; tÞ ¼
Z

dx AðxÞ 2LRxðx0; tÞ; ð36Þ

where we introduce in the integrand the Weyl symbol for bRxðtÞ, the quantum reflection
through x seen in a moving coordinate frame. Thus, (36) identifies 2LRx (x 0, t) as the prop-
agator for Weyl symbols and Wigner functions (with backward propagation in the latter
case). This propagator can be expressed exactly as a path integral [5] and can also be ob-
tained exactly [2] from the Weyl symbols of the operators bV t that are responsible for the
Heisenberg evolution (2), using the Weyl product rules [25]

2LRxðx0; tÞ ¼
Z

dx V t
x0 þ x

2
þ x

� �
V t

x0 þ x

2
� x

� ��
exp

2i

�h
x ^ ðx0 � xÞ

� �
. ð37Þ

This formula is the companion of (35) and it has the same structure as the transform that de-
fines the Wigner function for a pure state in terms of the corresponding wave function [15].

Initially, for t = 0, (36) reduces to the known result that

Rxðx0Þ ¼ 2�Ldðx� x0Þ; ð38Þ
i.e., the Weyl symbol for the reflection through the point x is just a d-function [7]. This is
analogous to the fact that position states in single phase space are represented by d-func-
tions in the position representation, because we associate reflection centres to positions,
Q 0 = x, and canonized translation chords, P 0 = y = Jn, to momenta. Thus, it is no surprise
that in the conjugate chord representation we have

RxðnÞ ¼ exp
i

�h
x ^ n

� �
; ð39Þ

i.e., the reflection operator is represented by a plane wave [10]. Note that the double phase
space relation between reflection operators, viewed in the translation (chord) representa-
tion (39), and translation operators in the Weyl (reflection centre) representation is in per-
fect analogy to that between the relation for position eigenstates viewed in the momentum
representation and momentum eigenstates in the position representation.

In the special case where the Hamiltonian, bH , is quadratic, so that the corresponding
classical transformations are linear, the propagator for Weyl symbols remains a Liouvil-
lian d-function for all time

Rxðx0; tÞ ¼ RxðtÞðx0Þ ¼ 2�LdðxðtÞ � x0Þ; ð40Þ

where x (t) is the classical trajectory for x. The double phase space point of view shows
how special this situation is: it is a canonical transformation that takes vertical planes into
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vertical planes. Appendix C discusses how any nonlinearity remains with caustics into this
centre representation, because the transformed surface representing the canonical trans-
formation, Rx (t), must have a vertical tangent at y = 0, as shown in Fig. 2B. The nonlinear
distortion of a reflection in the original single phase space is sketched in Fig. 2A.

In contrast, using the chord representation for these propagated reflections, bR ðtÞ, the
Heisenberg evolution merely distorts the plane wave (39), which can only develop a caustic
after a finite time. Even so, the invariance of the number of fixed points for classical Hei-
senberg evolution commented in the previous section prevents the evolved vertical plane in
double phase space from intersecting, or even touching the invariant plane y = 0 a second
time. Comparing (39) with (B.10) shows that the exact Rx (n 0, 0) is already in its semiclas-
sical form, with Sx (n 0,0) = x � n 0. The classical Heisenberg evolution (3), i.e., the Hamil-
ton–Jacobi Eq. (22), takes this into

Sxðn0; tÞ ¼ xðtÞ ^ n0 þOðn03Þ ð41Þ
which is until an approximate linear reflection about x (t) for small chords. All even pow-
ers in the components of n are missing in Sx (n 0, t), because the involution property of the
reflections, that is R2

x ¼ I, the identity, remains invariant for coordinate changes; hence,
x (�n, t) = x (n, t).

There is a simple semiclassical form for the mixed centre-chord propagator that defines
the chord symbol A (n 0, t) for the operator bAðtÞ, which has evolved according to the Hei-
senberg equation from the operator bA with Weyl symbol A (x):

Aðn0; tÞ ¼
Z

dx AðxÞ2LRxðn0; tÞ. ð42Þ

The mixed propagator has the semiclassical form defined by a single evolving classical
generating function, Sx (n 0, t), which is a special case of (B.10)

Rxðn0; tÞ ¼ j detð1�Mxðn0; tÞÞj�
1
2 exp½i�h�1Sxðn0; tÞ�; ð43Þ

q

p

y

x–

–x’

x+

x

+x’

x’

A B

Fig. 2. (A) A nonlinear classical Heisenberg evolution maps the original reflection centre, x fi x 0 (t), but the
linear reflection about this point is only a local linear approximation to the evolved transformation, Rx (t): the
centres, x 0 (n 0), of finite chords do not generally coincide with x 0 (t). However, for all chords, x 0 (n 0) = x 0 (�n 0). (B)
In double phase space, a linear reflection is represented by a vertical plane. This is curved by a nonlinear
evolution, but the tangent is until vertical at the identity plane, y = 0.
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where the monodromy matrix M for the transformation from x � n/2 to x + n/2 is ob-
tained from the evolving action in (B.12). The family resemblance between the semiclassi-
cal expressions (43) for Rx (n 0, t) and (32) for Tn (x 0, t) can be pushed all the way by the
identity

T nðx0; tÞ ¼ tr bT nðtÞ2LbRx0 ¼ tr 2LbR0xð�tÞbT n ¼ Rx0 ðn;�tÞ; ð44Þ
where (2) is used for bT nðtÞ and bRx0 ð�tÞ. It follows that Sx (n 0, t) = Sn 0 (x, �t) and hence
both semiclassical propagators will be free of caustics for the same interval of time. The
identity (44) expresses the fact that Heisenberg evolution defines unitary super-operators,
so that a complex conjugate kernel is obtained by reversing the time. This unitarity is also
apparent in (37).

In the limit of small chords the amplitude in (43) tends to one, just as in (39). In fact, it
is now legitimate to investigate this limit and thus keep only the lowest term in (41), since
n 0 is the free variable. In this region even the distorted reflexion operator takes the simple
form

Rxðn0; tÞ ¼ exp
i

�h
xðtÞ ^ n0

� �
. ð45Þ

Here, x (t) is the Liouville orbit of x (0) = x in single phase space, because we are restricting
the double phase space motion to the invariant plane y = 0, where the double Hamiltonian
is just (29). Thus, the mixed centre-chord propagation (42) becomes approximately

Aðn0; tÞ ¼
Z

dx AðxÞ 2L exp
i

�h
xðtÞ ^ n0

� �
. ð46Þ

The small chord approximation is thus a moving Fourier transform of the initial Weyl
symbol. At first sight, this may appear to be equivalent to generalizing the d-function cen-
tre–centre propagator (40) for nonquadratic Hamiltonians, but this is not so. Such a stron-
ger approximation is equivalent to extrapolating (46) for all chords, which is not necessary
in the chord representation.

Consider, for instance, the evolution of the pure state density operators studied in
[16]. Even though such operators may be associated to a double phase space Lagrangian
surface, given locally by the functions n = n (x), or x = x (n), both the chord and the cen-
tre representations have caustics in the part of this surface for which n is small. Refer-
ence [16] developed a small chord approximation which could be extended so as to
overlap with the semiclassical approximation valid for long chords. Now we find that
these different regions can be propagated separately. For the long chords that carry
information concerning long range quantum correlations, the simplest is to proceed with
a direct semiclassical evolution, based on the classical propagation of the generating
function, S (n, t), for the Lagrangian surface corresponding to the density operator. As
for the small chords in the near classical region, the best alternative is to use a chord
basis, so that the evolution is pictured as a moving Fourier transform from the initial
Wigner function (46).

6.1. A simple cubic case

The case of a quadratic Hamiltonian is exactly solvable, as mentioned previously. An
exact result in the nonquadratic case is also available for the Hamiltonian
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HðxÞ ¼ ap3. ð47Þ
We can indeed make the full development of the double phase space Heisenberg Hamilto-
nian (14)

ðX Þ ¼ Hðxþ n=2Þ � Hðx� n=2Þ ¼ að3p2np þ 1
4
n3

pÞ. ð48Þ

However, it must be remembered that the relevant classical motion occurs in the double
phase space X = (x, y = Jn), so that the conjugate pair of variables are (xp = p, yp = �nq)
and (xq = q, yq = np). Thus, Hamilton’s equations for ðX Þ result in constant values for p

and np, whereas

qðn; tÞ ¼ qþ 3aðp2 � 1
4
n2

pÞt ð49Þ

and nq (t) = nq + 6apnpt. Note that the motion within the invariant plane, n = 0, is just the
classical motion in single phase space

qðtÞ ¼ qþ 3ap2t. ð50Þ
In this simple case, we can verify that the chord symbol for the reflection through the
point x,

Rxðn0; tÞ ¼ exp
i

�h
pn0q � qðtÞn0p þ

at
4

n3
p

� �� �
ð51Þ

satisfies

oRx

ot
ðn0; tÞ ¼ � i

�h
a 3p2n0p þ

1

4
n03p

� �
Rxðn0; tÞ ð52Þ

by performing the integrations in the exact expression for the commutator (7). Further-
more, the phase

Sxðn0; tÞ ¼ pn0q � qðtÞn0p þ
at
4

n03p ð53Þ

in (51) satisfies the Hamilton–Jacobi equation (22), so that the semiclassical form of the
mixed propagator (43) is exact in this example, given that the amplitude is constant. None-
theless, the motion x 0 (n 0,t) obtained from the derivative of Sx (n 0, t) according to (B.11),
i.e., (49), is not Liouvillian unless n 0 = 0.

Inserting (51) into the general evolution formula (42) results in

Aðn0; tÞ ¼
Z

dx AðxÞ 2 exp
i

�h
pn0q � qðtÞn0p þ

at
4

n03p

� �� �
. ð54Þ

Thus, the Fourier kernel that initially transforms from the Weyl representation to the
chord symbol becomes non-Liouvillian, as well as nonlinear, and the cubic term in the
phase cannot generally be neglected.

Let us now consider the propagation of the Wigner function for the position projector
|q0æÆq0|, which is just W0 (x) = d(q � q0). This corresponds classically to the evolution of
the vertical straight line which is bent into a parabola under the action of the Hamiltonian
(47). According to (54) the evolving chord function will be

v0ðn0; tÞ ¼
Z

dpdq dðq� q0Þ 2 exp
i

�h
pn0q � qðtÞn0p þ

at
4

n03p

� �� �
ð55Þ
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which can be immediately integrated to yield

v0ðn0; tÞ ¼
2p�h

3atn0p

" #1=2

exp
i

�h
�q0n

0
p þ

at
4

n03p þ
n02q

12atn0p

 !" #
. ð56Þ

This is the exact chord function for the parabola, though it is in its semiclassical form
[16], so the exponent is just the chord action. Unlike the corresponding Wigner function,
there is no interference, because a parabola translated by n 0 intersects the original parabola
at a single point. In contrast, a parabola reflected through x 0 intersects twice, if x 0 is in the
concave region, or not at all. The corresponding Wigner function, W0 (x 0, t), is an Airy
function, as can be verified by directly integrating the Fourier transform that relates these
representations, using (56). The parabola itself is the Wigner caustic, whereas the chord
function has a nongeneric caustic for n0p ¼ 0, which corresponds to the translated parabola
approaching the original parabola at infinity, for any horizontal translation.

The small chord approximation (46) in this case merely misses the ðat=4Þn03p part in the
exact expression (56) for v0 (n 0, t). However, it is a good approximation for small chords
even along the chord caustic. It is only if this locally valid expression is extrapolated for
all chords that its Fourier transform yields the crude Liouvillian approximation to the
Airy function evolution:

W 0ðx0; tÞ ¼ dðq0 � q0 � 3ap02tÞ. ð57Þ

7. Conclusion

Previous semiclassical approximations for the evolution of the Wigner function, or
other oscillatory Weyl symbols have not dealt with the near-classical region where the con-
jugate chords are small. However, this will be the dominant region in the integral that
determines the expected value of any observable, bA

h bAi ¼ Z dx W ðxÞ AðxÞ. ð58Þ

We have shown that the simplest way to deal with the propagation in the near-classical
region is to resort to the mixed propagators between the chord symbol, A (n), and the cen-
tre, or Weyl representation. These propagation kernels are defined by the Heisenberg evo-
lution of different operators, 2L Rx (n 0, t) and Tn (x 0, t), namely reflections and translations,
but they are identified by the relation (44).

Though it is possible to dispense with the construction of a double space, the concep-
tual clarification also simplifies the calculation. From this point of view, the transition
between centres and chords lies in strict analogy to that which relates the conjugate posi-
tions and momenta in ordinary phase space. From this point of view, we have merely
applied the general Maslov method for negotiating caustics [13] to double phase space.
It turns out that caustics in the evolution kernel are not avoided by viewing the entire evo-
lution in neither the Weyl, nor the chord representation on their own, but we are guaran-
teed a simple semiclassical form by alternating between them. Of course, the more intricate
chord–chord, or centre–centre propagations lie a mere Fourier transform away.

Whether considered in double, or in single phase space, the propagation of unitary
operators, such as the translations, or reflections which are the bases of the chord and
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the Weyl representations, have a clear classical analog. This classical Heisenberg evolution

continuously distorts a fixed canonical transformation through an evolving change of
coordinates in phase space. Viewed in double phase space, this is an evolving Lagrangian
surface. Once this quantum-classical correspondence is established, we are free to also
propagate other Lagrangian surfaces in the doubled space, which, for instance correspond
to projectors, or dyadic transition operators. In all cases, the motion is driven in double
phase space by a classical Heisenberg Hamiltonian, simply related to the single Hamilto-
nian by (14). Each trajectory in double phase space corresponds to a pair of trajectories in
single space, which emanate from the pair of points x± = x ± n/2. Only in the limiting case
where n fi 0 does the motion of the centre x (t) coincide with the single phase space tra-
jectories, x (t), of the Liouville flow.

Translation chords and reflection centres are conjugate classical variables that define
transverse foliations of double phase space. They form the bases for complementary rep-
resentations of quantum operators. The extension of Heisenberg’s uncertainty principle to
double phase space, discussed in Sections 4 and 5, prevents us from defining centres and
chords simultaneously within the quantum theory. This fact lies at the root of the difficulty
of discussing the near-classical propagation of Wigner functions, because this region is
defined as the region of small chords, whereas the Wigner function is constructed in the
conjugate centre basis. In references [2,3] this problem was partly circumvented by analyz-
ing directly the evolution of given operators, semiclassically linked to particular Lagrang-
ian surfaces, which locally tie a single chord to each centre. However, the classical region
of small chords for all such surfaces are caustics in both the chord and the Weyl represen-
tation, so that improved uniform approximations become necessary. Here, we have adopt-
ed the alternative of developing mixed propagators which bypass the uncertainty principle
because the chord and the centre are each specified at a different instant. These propaga-
tors are privileged representations of the super-operators that act on the space of linear
operators of Hilbert space.
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Appendix A. Correspondence between canonical and unitary transformations

In this appendix, we recall several known facts about classical-quantum correspondence
of unitary operators and canonical transformations. This generally only holds within a
semiclassical approximation, but the reflection and translation operators, which form,
respectively, the bases of the Weyl representation and its Fourier transform, belong to
the special class for which the correspondence is exact.

Time dependent unitary operators that act on quantum states in Hilbert space corre-
spond classically to evolving canonical phase space transformations. In the case of motion
generated by a constant Hamiltonian operator, bH , the continuous group of unitary
operators,

bU t ¼ expð�it bH =�hÞ ðA:1Þ
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is related to the continuous group of canonical transformations Ct. Indeed, if we define the
points in the 2L-dimensional phase space as x = (p1, . . . , pL, q1, . . . , qL), we have
Ct : x0 fi xt, driven by the classical Hamiltonian H (x) according to Hamilton’s equations,
while the Hilbert space vectors evolve linearly: jwti ¼ bU tjw0i. The various representations
of the unitary operators correspond to different generating functions. Semiclassically, the
latter determine the phase of the corresponding quantum propagators. The Schrödinger
equation for bU t, e.g., in either of the position, momentum, or the Weyl–Wigner represen-
tations, corresponds to alternative versions of the Hamilton–Jacobi equation (see, e.g.,
[12]).

Even an initially single valued generating function may become multiple valued as it
evolves. Its different branches are then connected along caustics, which lead to spurious
singularities of the semiclassical approximation for the various representations of bU t.
For this reason, prescriptions for transforming between the different representations is
an important part of the semiclassical theory [13]. In the case of the Weyl propagator,
Ut (x), that is the Weyl–Wigner representation of bU t, the initial generating function corre-
sponding to the identity operator bI , is just St (x) = 0, so that the appearance of caustics is
optimally delayed. Even so, they may eventually appear [10], occurring where Ct can be
locally approximated as a reflection about a point x, i.e., the transformation

Rx : x� ! xþ ¼ �x� þ 2x. ðA:2Þ
It is then appropriate to switch to the complementary phase space representation,

which, for an arbitrary operator, bA, takes the form

AðnÞ ¼ 1

2p�hð ÞL
Z

dx exp � i

�h
n ^ x

� �
AðxÞ. ðA:3Þ

Here, we have used the skew product

x ^ x0 ¼
XL

n¼1

ðplq
0
l � qlp

0
lÞ ¼ J x � x0 ðA:4Þ

which also defines the skew symplectic matrix J. In the case of unitary operators, the Fou-
rier transform between Ut (x) and Ut (n) corresponds classically to a Legendre transform
between St (x) and the new generating function, St (n). This describes the evolution in terms
of uniform translations

T n : x� ! xþ ¼ x� þ n ðA:5Þ
by a vector n, which is a chord in the classical trajectory, hence this is termed the chord
generating function.

Corresponding to this, the chord representation [10], A(n), of an operator, bA, can be
defined directly as a superposition of the unitary translation operators

bT n ¼ exp
i

�h
n ^ bx� �

; ðA:6Þ

where bx ¼ ðbp; bqÞ, that is,

bA ¼ Z dn

ð2p�hÞL
AðnÞ bT n. ðA:7Þ
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Recalling the definition of the unitary reflection operators as

2LbRx ¼
Z

dn

ð2p�hÞL
bT n exp

i

�h
x ^ n

� �
ðA:8Þ

and comparing with (A.3), we see that the Weyl representation, A (x), decomposes an arbi-
trary operator, bA, into a superposition of reflection operators [7]

bA ¼ Z dx AðxÞ 2LbRx. ðA:9Þ

Probably the first to remark on the general structure of translations and reflections under-
lying the Weyl and the chord representations were Grossmann and Huguenin [14].

The greater familiarity of the Weyl–Wigner representation is justified by its use for the
density operator, bq, which is represented by the celebrated Wigner function [15],
W (x) = q (x)/(2p⁄)L, a real (but not necessarily positive) quantum quasiprobability in
phase space. In the case of the density operator, its Fourier transform can be interpreted
as a kind of quantum characteristic function, v (n), called in [16] simply the chord function.
The evolution of density operators in open systems is constrained by trace conservation
and positivity [9,17], but is not limited to the simple form that is studied in this paper.
It should be noted, however, that the basis operators for the Wigner function, namely
the reflection operators, bRx, are not themselves positive, having degenerate eigenvalues ±1.

Appendix B. Semiclassical propagators for states

A given centre generating function, SC(x), defines the canonical transformation,
C : x� fi x+, implicitly through the equation

oSC

ox
¼ J nCðxÞ ðB:1Þ

with nC (x) = x+ � x�, i.e., the chord centred on x [11,10]. This is subject to the usual con-
straints for generating functions [18]. It was shown by Marinov [19] that this centre action
is just

StðxÞ ¼ AtðxÞ � tHðx�Þ; ðB:2Þ

where At (x) is the symplectic area

AtðxÞ ¼
I

ct

p � dq ðB:3Þ

for the circuit ct that starts along a trajectory segment chosen so that its endpoints are cen-
tred on x and then is closed by reversing nt (x). Of course, for a Hamiltonian system, we
have H (x+) = H (x�), but generally H (x) „ H (x�). It might appear awkward to find the
point x� (x), but this is merely the fixed point of the canonical transformation Rx � C,
which shows this to be a reflection representation of classical mechanics [10], as shown
in Fig. 3. For short times, the trajectory segment is approximately nt (x) itself, so that, like
the trajectory, the chord is unique. In this limit, the first term in (B.2) is negligible, result-
ing in the explicit approximation

StðxÞ !
t!0
�tHðxÞ. ðB:4Þ
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Linearizing the canonical transformation in the neighbourhood of the tips of the chord
centred on x, so as to define the tangent map

dxþ ¼MðxÞ dx� ðB:5Þ
we obtain the Hessian matrix of S (x) as

o2S
oxox

¼ �J½1�M�½1þM��1 ðB:6Þ

which is a Cayley parametrization of M [11,10]. References [10,4] discuss some of the prop-
erties and a few examples of the centre generating function. It follows from (B.6) that the
centre caustics for the generating function are the manifolds where M (x) has an eigenvalue
�1, so that locally C is a reflection for one of the degrees of freedom.

Let us now consider the evolution equation of a centre generating function, St (x), driv-
en by a constant Hamiltonian, H (x). Fixing the initial phase space point x� from which
evolves x+ (t) = Ct (x�), implies that dSt = � H (x�)dt, because of the centre variational
principle [20,10]. Recalling that x� = x � n/2 together with (B.1), leads then to Marinov’s
version of the Hamilton–Jacobi equation [19]

oSt

ot
þ H xþ 1

2
J

oSt

ox

� �
¼ 0. ðB:7Þ

Several other partial differential equations are presented in this paper that describe the
evolution of generating functions, in different contexts and depending on different free
variables. We here follow the tradition of naming all of these anachronically as Hamil-
ton–Jacobi equations.

These are the basic ingredients for constructing the semiclassical Weyl propagator

UðxÞ ¼ 2Lj detð1þMÞj�
1
2 exp½i�h�1SðxÞ þ ih�. ðB:8Þ

Here, it makes no difference if the unitary operator, bU , with Weyl symbol, U(x), corre-
sponds to a given canonical transformation C, or a time dependent transformation gener-
ated by a Hamiltonian H (x). The original derivation [21] of U (x) in the latter case made
no reference to Marinov’s generating function, but (B.8) follows by inserting (B.2) in Ber-
ry’s result. An alternative derivation based on the Weyl path integral is presented in [10].
As usual, the semiclassical propagator is exact in the case of quadratic Hamiltonians, i.e.,
linear classical motion.

For a unitary transformation, bU t, that evolves continuously from the identity, bI , driven
by bH , we obtain from (B.4) and the fact that U0 (x) = 1 that the phase h = 0 for small

x

CxR  (    )x

x x–

–

+

Fig. 3. The point x� (x) is mapped onto x+ (x) by the reflection Rx in the same way as it is moved by the given
canonical transformation C. It follows that x� (x) is a fixed point of the transformation Rx � C, in which case the
circuit ct is defined by the composition of both these motions.
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times. This is only altered when a centre caustic of the generating function St (x) is reached,
so that the denominator of (B.8) blows up. But in this event, the eigenvalues of M that
become �1 must come in pairs, because this is a symplectic matrix (see, e.g., [10]). Thus
the change of phase can only be a multiple of p/2, instead of just p/4, which is more usual
for caustic traversals. Beyond the passage of the first caustic through a given point x, the
centre generating function is no longer univalued, so that the semiclassical Weyl propaga-
tor becomes a superposition of terms like (B.8), one for each branch of the generating
function. Of course, close to the caustic, the spurious singularity of the semiclassical
amplitude points to the need for an improved uniform approximation. One way to derive
this is to transform back from the chord propagator that will now be examined. This is the
natural procedure from the double phase space point of view that will be discussed in
Section 5.

We can now obtain the semiclassical chord propagator by inserting (B.8) into (A.3),
that is

UðnÞ ¼ 1

p�hð ÞL
Z

dx
exp½i�h�1ðSðxÞ � n ^ xÞ þ ih�

jdetð1þMðxÞÞj
1
2

ðB:9Þ

and then evaluating this Fourier integral by the method of stationary phase. The station-
ary phase condition simply picks out the centre x (n), such that n (x) given by (B.1) equals
the given chord n. The amplitude factor for stationary phase integration is then obtained
from the determinant of (B.6) as

UðnÞ ¼ j detð1�MÞj�
1
2 exp½i�h�1SðnÞ þ i/�; ðB:10Þ

where we identify the chord generating function, S (n), as the Legendre transform of S (x).
Indeed, it describes the same canonical transformation C by the relation [10]

oSC

on
¼ �J xCðnÞ ðB:11Þ

which is conjugate to (B.1). As discussed in [10], we determine x� (n) = x (n) � n/2 as the
fixed point of T�n � C by a construction that is similar to Fig. 3. Actually, there is a con-
jugate Cayley relation between the matrix M that linearizes the canonical transformation
and the Hessian matrix of the chord action

o
2S

onon
¼ �J½1þM�½1�M��1. ðB:12Þ

Thus, we see that the spurious semiclassical singularity of U (n) in (B.10) takes place at the
caustic of the chord generating function where det [1 �M] = 0. This occurs when the
canonical transformation in the neighbourhood of the chord tips can be approximated
by a uniform translation, or the identity. Thus, the chord generating function is singular
as t fi 0 for a Hamiltonian flow. In contrast, the chord propagator is perfectly regular at
reflections, which correspond to the caustics of the Weyl propagator. Hence, the comple-
mentarity of this pair of phase space representations.

It has been seen that the phase h in (B.8) is zero for short times. Therefore, the phase /
in (B.10) will be initially �p/4 times the signature of the Hessian matrix for H (x (n)) see,
e.g., [12]. In the case of the simple quadratic Hamiltonians, this signature equals 2, for a
harmonic oscillator (L = 1) and it equals 0, for the inverted oscillator. The explicit form of
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St (n) for these cases is discussed in [10]. For quadratic Hamiltonians, the semiclassical
chord propagator is exact just as the Weyl propagator.

Appendix C. Centre–centre propagation

The propagator, 2LRx (x 0, t), that takes a Weyl symbol of an operator into a new Weyl
symbol and thus evolves arbitrary Wigner functions corresponds classically to a Lagrang-
ian surface in double phase space, y0xðx0; tÞ, that has evolved from the initial vertical plane,
x = constant. This is strictly analogous to the position propagator, hqþj bU tjq�i, in single
phase space, which corresponds to the classical evolution of the vertical plane, q = q�.
In both cases the initial vertical plane is an extreme nongeneric caustic, but the semiclas-
sical position propagator is usually well behaved for a finite t > 0. It might not then be
immediately obvious why caustics are inevitable in the double space evolution. In other
words, why is the evolving Lagrangian surface always tangent to a vertical plane at
y = 0, as shown in Fig. 2B.

The essential difference lies in the driving Hamiltonians. The typical form of the Ham-
iltonian in single phase space corresponding to the Schröedinger equation is p2/2 + V (q),
so that _q ¼ p. This tilts the initial plane, q = q�, and so breaks the verticality. Indeed, to
first order in time, the Lagrangian surface is p = (q � q�)/t. In contrast, the double phase
space motion is driven by the Heisenberg Hamiltonian, ðx; yÞ, defined by (14) for an
arbitrary single space Hamiltonian H (x). Its expansion to lowest order in y is given by
(29), which leads to an evolution of the x coordinate that is independent of y. The third
order terms in y contribute quadratic terms to the classical equations of motion which
break the strict verticality, but the vertical tangent remains at y = 0.

In the example at the end of Section 6, the Fourier transform of (51) leads immediately
to an Airy function for the centre–centre propagator and generically we can expect uni-
form approximations based on Airy functions in the case of a single degree of freedom.
This was previously derived for special quantum maps [33]. For higher dimensions and
for nongeneric cases, higher diffraction catastrophes come into play [32]. In contrast,
the mixed propagator remains caustic free in all these cases.
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