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Abstract. Multiparticle production processes in pp collisions at the central rapidity region are usually con-
sidered to be divided into independent "soft" and "hard" components. The first is described by exponential
(thermal-like) transverse momentum spectra in the low-pT region with a scale parameter T associated with
the temperature of the hadronizing system. The second is governed by a power-like distributions of transverse
momenta with power index n at high-pT associated with the hard scattering between partons. We show that the
hard-scattering integral can be approximated as a nonextensive distribution of a quasi-power-law containing a
scale parameter T and a power index n = 1/(q−1), where q is the nonextensivity parameter. We demonstrate that
the whole region of transverse momenta presently measurable at LHC experiments at central rapidity (in which
the observed cross sections varies by 14 orders of magnitude down to the low pT region) can be adequately
described by a single nonextensive distribution. These results suggest the dominance of the hard-scattering
hadron-production process and the approximate validity of a “no-hair" statistical-mechanical description of the
pT spectra for the whole pT region at central rapidity for pp collisions at high-energies.

1 Introduction

Particle production in pp collisions comprises of many
different mechanisms in different parts of the phase space.
We shall be interested in particle production in the central
rapidity region where it is customary to divide the mul-
tiparticle production into independent soft and hard pro-
cesses populating different parts of the transverse momen-
tum space separated by a momentum scale p0. As a rule
of thumb, the spectra of the soft processes in the low-pT

region are (almost) exponential, F(pT )∼exp(−pT /T ), and
are usually associated with the thermodynamical descrip-
tion of the hadronizing system, the fragmentation of a flux
tube with a transverse dimension, or the production of par-
ticles by the Schwinger mechanism [1–5]. The pT spectra
of the hard process in the high-pT region are regarded as
essentially power-like, F(pT )∼p−n

T , and are usually asso-
ciated with the hard scattering process [6–10]. However,
it was found already long time ago that both description
could be replaced by simple interpolating formula [11],

F(pT ) = A
(
1 +

pT

p0

)−n

, (1)
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that becomes power-like for high pT and exponential-like
for low pT . Notice that for high pT , where we are usually
neglecting the constant term, the scale parameter p0 be-
comes irrelevant, whereas for low pT it becomes, together
with power index n, an effective temperature T = p0/n.
The same formula re-emerged later to become known as
the QCD-based Hagedorn formula [12]. It was used for
the first time in the analysis of UA1 experimental data [13]
and it became one of the standard phenomenological for-
mulas for pT data analysis.

In the mean time it was realized that Eq. (1) is just an-
other realization of the nonextensive distribution [14] with
parameters q and T , and a normalization constant A,

F (pT ) = A
[
1 − (1 − q)

pT

T

]1/(1−q)
, (2)

that has been widely used in many other branches of
physics. For our purposes, both formulas are equivalent
with the identification of n = 1/(q−1) and p0 = nT , and we
shall use them interchangeably. Because Eq. (2) describes
nonextensive systems in statistical mechanics, the param-
eter q is usually called the nonextensivity parameter. As
one can see, Eq. (2) becomes the usual Boltzmann-Gibbs
exponential distribution for q → 1, with T becoming the
temperature. Both Eqs. (1) and (2) have been widely used
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in the phenomenological analysis of multiparticle produc-
tions (cf., for example [15–28])1.

We shall demonstrate here that, similar to the origi-
nal ideas presented in [11, 12], the whole region of trans-
verse momenta presently measurable at LHC experiments
(which spans now enormous range of ∼14 orders of mag-
nitude in the measured cross-sections down to the low-pT

region) [17–19] can be adequately described by a single
quasi-power law distribution, either Eq. (1) or Eq. (2).
We shall offer a possible explanation of this phenomenon
by showing that the hard-scattering integral can be cast
approximately into a non-extensive distribution form and
that the description of a single nonextensive pT distribu-
tion for the pT spectra over the whole pT region suggests
the dominance of the hard-scattering process at central ra-
pidity for high-energy pp collisions.

2 Questions associated with a Single
Nonextensive distribution for pT spectra
in pp collisions

The possibility of two components in the transverse spec-
tra implies that its complete description will need two in-
dependent functions with different sets of parameters, each
dominating over different regions of the transverse mo-
mentum space. The presence of two different components
will be indicated by gross deviations when the spectrum
over the whole transverse space is analyzed with only a
single component. An example for the presence of two (or
more) components of production processes can be clearly
seen in Fig. 1 of [31], in the pT spectra in central (0-6%)
PbPb collisions at

√
sNN=2.76 TeV from the ALICE Col-

laboration, where two independent functions are needed to
describe the whole spectra as described in [32, 33].

For our purposes in studying produced hadrons in pp
collisions, where the high pT hard-scattering component
is expected to have a power-law form with a power index
n, either (1) or (2) can be written as

E
dσ
d3 p
=

A(
1 + mT−m

nT

)n , (3)

where n is the power index, T is the ‘temperature’ parame-

ter, and m and mT=

√
m2 + p2

T are the rest mass and trans-
verse mass of the produced hadrons which are taken to be
the dominant particles, the pions. It came as a surprise to
us that for pp collisions at

√
sNN = 7 TeV, the pT spectra

within a very broad range, from 0.5 GeV up to 181 GeV,
in which cross section varies by 14 orders of magnitude,
can still be described well by a single nonextensive for-
mula with power index n = 6.6 [34]. The good fits to the
pT spectra over such a large range of pT with only three
parameters, (A, n,T ), raise intriguing questions :

1For those who would like to use Eq. (2) in the context of nonexten-
sive thermodynamics (as is done, for example, in [25, 26]) references in
[29] provide arguments that this is fully legitimate. Outside the physics
of multiparticle production, this approach is much better known and com-
monly used (see for example, [14, 30] for details and references).

• Why are there only three degrees of freedom in the spec-
tra over such a large pT domain? Does it imply that there
is only a single component, the hard scattering process,
contributing dominantly over the whole pT domain? If
so, are there supporting experimental evidences from
other correlation measurements?

• Mathematically, the power index n is related to the pa-
rameter q = 1+1/n in non-extensive statistical mechan-
ics [14]. What is the physical meaning of n? If n is
related to the power index of the parton-parton scatter-
ing law, then why is the observed value so large, n∼7,
rather than n ∼ 4 as predicted naively by pQCD?

• Are the power indices for jet production different from
those for hadron production? If so, why ?

• Do multiple parton collisions play any role in modifying
the power index n?

• In addition to the power law 1/pn
T
, does the differential

cross section contain other additional pT -dependent fac-
tors? If they are present, how do they change the power
index?

These questions were discussed and, at least partially,
answered in [35]. Before proceeding to our main point
of phenomenological considerations we shall first recapit-
ulate briefly the main results of this attempt to reconcile,
as far as possible, the nonextensive distribution with the
QCD where, as shown in [35], the only relevant ingredi-
ents from QCD are hard scatterings between constituents
resulting in the production of jets which further undergo
fragmentation, showering, and hadronization to become
the observed hadrons.

3 Approximate Hard-Scattering Integral

The answers to the questions posed above will be facil-
itated with an approximate analytical form of the hard-
scattering integral. We start with the relativistic hard-
scattering model as proposed in [6]2 and examined in
[5, 10, 35]. We consider the collision of projectiles A and
B in the center-of-mass frame at an energy

√
s in the re-

action A + B → c + X, with c coming out at midrapidity,
η∼ 0. Upon neglecting the intrinsic transverse momen-
tum and rest masses, the differential cross section in the
lowest-order parton-parton elastic collisions is given by

Ecd3σ(AB→ cX)
dc3 =

∑
ab

∫
dxadxbGa/A(xa)Gb/B(xb)

×Ecd3σ(ab→ cX′)
dc3 . (4)

The parton-parton invariant cross section is related to
dσ(ab→cX′)/dt by

Ec
d3σ(ab→ cX′)

dc3 =
ŝ
π

dσ(ab→ cX′)
dt

δ(ŝ + t̂ + û), (5)

where

ŝ = (a + b)2, t̂ = (a − b)2, û = (b − c)2. (6)
2For the history of the power law, see [7].
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In the infinite momentum frame the momenta can be writ-
ten as

a =

(
xa

√
s

2
, OT , xa

√
s

2

)
,

b =

(
xb

√
s

2
, OT ,−xb

√
s

2

)
,

c =

xc

√
s

2
+

c2
T

2xc
√

s
, cT , xc

√
s

2
−

c2
T

2xc
√

s

 .
We denote light-cone variable xc of the produced parton c
as xc = (c0 + cz)/

√
s. The constraint of ŝ + t̂ + û = 0 gives

xa (xb) = xc +
c2

T(
xb −

c2
T

xc s

)
s
. (7)

We consider only the special case of c coming out at θc =
90o, in which xc =

cT√
s , xa(xb) = xc + x2

c/ (xb − xc) and
xa = xb = 2xc. We have therefore

Ecd3σ(AB→cX)
dc3

∣∣∣∣∣
y∼0
=

∑
ab

∫
dxbdxaGa/A(xa)Gb/B(xb)

× xaxbδ(xa−xa(xb))
π(xb − c2

T /xcs)
dσ(ab→cX′)

dt
,

where Ga(xa) = xaGa/A(xa) and Gb(xb) = xaGb/B(xb). Af-
ter integrating over xa, we obtain

ECd3σ(AB→ cX)
dc3

∣∣∣∣∣
y∼0

=
∑
ab

∫
dxb
Ga(xa(xb))Gb(xb)
π(xb − c2

T /xcs)

× dσ(ab→cX′)
dt

. (8)

To integrate over xb, we use the saddle point method, write
Ga(xa(xb))Gb(xb) = e f (xb), and expand f (xb) about its min-
imum at xb0. We obtain then that∫

dxbe f (xb)g(xb) ∼ e f (xb0)g(xb0)

√
2π

−∂2 f (xb)/∂x2
b|xb=xb0

. (9)

For simplicity, we assume Ga/A and Gb/B to have the same
form. At θc ∼ 900 in the CM system, the minimum value
of f (xb) is located at

xb0 = xa0 = 2xc, (10)

and we get the hard-scattering integral

EC
d3σ(AB→ cX)

dc3

∣∣∣∣∣
y∼0
∼

∑
ab

B[xa0Ga/A(xa0)][xb0Gb/B(xb0)]

× dσ(ab→cX′)
dt

(11)

where

B =
1

π(xb − c2
T /xcs)

√
2π

−∂2 f (xb)/∂x2
b|xb=xb0

. (12)

For the case of Ga(xa) = xaGa/A(xa) = Aa(1 − xa)ga , we
find

EC
d3σ(AB→cX)

dc3

∣∣∣∣∣
y∼0
∼

∑
ab

AaAb
(1 − xa0)ga+

1
2 (1 − xb0)gb+

1
2

√
πga
√

xc(1 − xc)

× dσ(ab→cX′)
dt

. (13)

If the basic process ab → cX′ is gg → gg or ab → cX′ is
qq′ → qq′, the cross sections at θc ∼ 90o [36] are

dσ(gg→ gg)
dt

∼ 9πα2
s

16c4
T

[
3
2

]3

,

dσ(qq′ → qq′)
dt

∼ 4πα2
s

9c4
T

5
16
. (14)

In both cases, the differential cross section behave as
dσ(ab→cX′)/dt ∼ α2

s/(c
2
T )2.

4 Parton Multiple Scattering

As the collision energy increases, the value of xc gets
smaller and the number of partons and their density in-
crease rapidly. Thus the total hard-scattering cross section
increases as well [8]. The presence of a large number of
partons in the colliding system results in multiple hard-
scatterings of projectile parton on partons from target nu-
cleon.

We find that for the process of a→ c in the collision of
a parton a with a target of A partons in sequence without a
centrality selection, the cT -distribution is given by [35]

dσ(tot)
H (a→ c)

dcT
= A
α2

s

c4
T

∫
db T (b) (15)

+
A(A − 1)

2
16πα4

s

c6
T

· ln{ cT

2p0
}
∫

db[T (b)]2 ·

+
A(A − 1)(A − 2)

6
936π2α6

s

c8
T

[ln
cT

3p0
]2

∫
db[T (b)]3,

where the terms on the right-hand side correspond to colli-
sions of the incident parton with one, two and three target
partons, respectively. Here, the quantity A is the number
of partons in the nucleon as a composite system and is the
integral of the parton density over the parton momentum
fraction. This result shows that without centrality selec-
tion in minimum-biased events, the differential cross sec-
tion will be dominated by the contribution from a single
parton-parton scattering that behaves as α2

s/c
4
T (cf. previ-

ous analysis on the multiple had-scattering process in [37–
39]). Multiple scatterings with N > 1 scatterers contribute
to terms of order α2N

s [ln (CT /N p0)]N−1/c2+2N
T [35].

5 The Power Index in Jet Production

From the above results one gets the approximate analytical
formula for hard-scattering invariant cross section σinv, for
A + B→ c + X at midrapidity, η ∼ 0, equal to

Ec
d3σ(AB→cX)

dc3

∣∣∣∣∣
y∼0
∝α

2
s(1−xa0(cT ))ga+

1
2 (1−xb0(cT ))gb+

1
2

c4
T

√
cT /
√

s
√

1 − xc

. (16)

The power index n has here the value 4 + 1/2. Its
value can be extracted by plotting (lnσinv) as a function of
(ln cT ) (then the slope in the linear section gives the value
of n, and the variation of (lnσinv) at large (ln cT ) gives the
value of ga and gb). One can also consider for this purpose
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Figure 1. (Color online) Comparison of the relativistic hard-
scattering model results for jet production, Eq. (19) (solid
curves), with experimental dσ/dηET dET data from the D0 Col-
laboration [45], for hadron jet production within |η|<0.5, in p̄p
collision at (a)

√
s=1.80 TeV, and (b)

√
s=0.63 TeV.

a fixed xc and look at two different energies (as suggested
in [40]),

ln[σinv(
√

s1, xc)/σinv(
√

s2, xc)]
ln[
√

s2/
√

s1]
∼ n(xc) − 1

2
. (17)

We follow an alternative method and analyze the pT spec-
tra using a running coupling constant,

αs(Q2(cT )) =
12π

27 ln(C + Q2/Λ2
QCD)
, (18)

where we have chosen ΛQCD to be 0.25 GeV to give
αs(M2

Z) = 0.1184 [41]. We identify Q as cT and have
chosen C=10 both to give αs(Q∼ΛQCD) ∼ 0.6 in hadron
spectroscopy studies [42] and to regularize the coupling
constant for small values of Q(cT ). We search for n by
writing the invariant cross section Eq. (16) for jet produc-
tion as

Ec
d3σ(AB→cX)

dc3

∣∣∣∣∣
y∼0

∝ α
2
s(Q2(cT ))(1 − xa0(cT ))ga+

1
2 (1 − xb0(cT ))gb+

1
2

cn
T

√
1 − xc

. (19)

Table 1. The power index for jet production in p̄p and pp
collisions

Collaboration
√

s R η n
D0 [45] p̄p at 1.80 TeV 0.7 |η| < 0.7 4.39
D0 [45] p̄p at 0.63 TeV 0.7 |η| < 0.7 4.47

ALICE [46] pp at 2.76 TeV 0.2 |η| < 0.5 4.78
ALICE [46] pp at 2.76 TeV 0.4 |η| < 0.5 4.98
CMS [47] pp at 7 TeV 0.5 |η| < 0.5 5.39

In the literature [43, 44] the index ga for the structure
function of a gluon varies from 6 to 10. Following [43]
we shall take ga = 6. As shown in Fig. 1 and Table I,

data from D0 [45] on dσ/dηET dET for hadron jet produc-
tion within |η|<0.5 can be fitted with n=4.39 for p̄p colli-
sions at

√
s=1.8 TeV, and with n=4.47 for p̄p collisions at√

s=0.630 TeV. In other comparisons with the ALICE data
for jet production in pp collisions at

√
s = 2.76 TeV at the

LHC within |η| < 0.5 [46], the power index is n=4.78 for
R = 0.2, and is n=4.98 for R = 0.4 (Table I). The power
index is n=5.39, for CMS jet differential cross section in
pp collisions at

√
s = 7 TeV at the LHC within |η| < 0.5

and R = 0.5 [47]. This latter n value exceeds slightly the
expected value of n = 4.5.

Except for the CMS data at 7 TeV that may need
further re-examination, the power indices extracted for
hadron jet production and listed in Table I are in approx-
imate agreement with the value of n=4.5 in Eq. (16) and
with previous analysis of Arleo et al. [40], indicating the
approximate validity of the hard-scattering model for jet
production in hadron-hadron collisions, with the predomi-
nant α2

s/c
4
T parton-parton differential cross section as pre-

dicted by pQCD.

6 Change of the Power Index n from Jet
Production to Hadron Production

The results in the last section indicates that the sim-
ple hard-scattering model, i.e., Eq. (18), adequately de-
scribes the power index of n ∼ 4.5 for jet production in
high-energy pp collisions. However, the power index for
hadron production is considerable greater, in the range of
n∼ 6 − 10 [34, 40]. What is the origin of the increase in
the power index n?

A jet c evolves by fragmentation, showering, and
hadronization to turn the jet into a large numbers of
hadrons in a cone along the jet axis. The showering of
the partons will go through many generations of branch-
ing. If we label the (average) momentum of the i-th gen-
eration parton by p(i)

T , the showering can be represented as
cT → p(1)

T → p(2)
T → p(3)

T → ... → p(λ)
T . Each branching

will kinematically degrade the momentum of the shower-
ing parton by a momentum fraction, ζ=p(i+1)

T /p(i)
T . At the

end of the terminating λ-th generation of the showering,
and hadronization, the pT of a produced hadron is related
to the cT of the parent parton jet by

pT

cT
≡

p(λ)
T

cT
= ζλ. (20)

It is easy to prove that if the generation number λ and the
fragmentation fraction z are independent of the jet cT , then
the power law and the power index for the pT distribution
are unchanged [35].

We note however that in addition to the kinematic de-
crease of pT as described by (20), the showering gener-
ation number λ is governed by an additional criterion on
the virtuality, which measures the degree of the off-the-
mass-shell property of the parton. From the different par-
ton showering schemes in the PYTHIA [48], the HERWIG
[49], and the ARIADNE [50], we can extract a general pic-
ture that the initial parton with a large initial virtuality Q
decreases its virtuality by showering until a limit of Q0 is
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reached. The downgrading of the virtuality will proceed as
Q=Q(0) → Q(1) → Q(2) → Q(3) → ... → Q(λ)=Q0. There
is a one-to-one mapping of the initial virtuality Q with the
transverse momentum cT of the evolving parton as Q(cT )
(or conversely cT (Q)). Because of such a mapping, the de-
crease in virtuality Q corresponds to a decrease of the cor-
responding mapped c̃T as cT=c̃(0)

T → c̃(1)
T → c̃(2)

T → c̃(3)
T →

...→ c̃(λ)
T =cT (Q0), where c̃(i)

T =cT (Q(i)). The cut-off virtual-
ity Q0 maps into a transverse momentum cT0=cT (Q0). In
each successive generation of the showering, the virtual-
ity decreases by a virtuality fraction which corresponds, at
least approximately, in terms of the corresponding mapped
parton transverse momentum c̃(i)

T , to a decrease by a corre-
sponding transverse momentum fraction, ζ̃=c̃(i+1)

T /c̃(i)
T . The

showering will end in λ generations such that

cT0

cT
≡ c̃T (Q(λ))

cT
= ζ̃λ, (21)

We can infer a relation between cT and the number of gen-
erations, λ,

λ = ln
(

cT0

cT

)/
ln ζ̃. (22)

Thus, the showering generation number λ depends on the
magnitude of cT . On the other hand, kinematically, the
showering processes degrades the transverse momentum
of the parton cT to that of the pT of the produced hadron as
given by Eq. (20), depending on the number of generations
λ. The magnitude of the transverse momentum pT of the
produced hadron is related to the transverse momentum cT

of the parent parton jet by

pT

cT
= ζλ = ζ

ln cT0
cT
/ln ζ̃
. (23)

We can solve the above equation for pT as a function of cT

and obtain

pT

cT0
=

(
cT

cT0

)1−µ
, and

cT

cT0
=

(
pT

cT0

)1/(1−µ)
, (24)

where

µ = ln ζ/ln ζ̃, (25)

and µ is a parameter that can be searched to fit the data. As
a result of the virtuality ordering and virtuality cut-off, the
hadron fragment transverse momentum pT is related to the
parton momentum cT nonlinearly by an exponent 1 − µ.

After the fragmentation and showering of the parent
parton cT to the produced hadron pT , the hard-scattering
cross section for the scattering in terms of hadron momen-
tum pT becomes

d3σ(AB→ pX)
dyd pT

=
d3σ(AB→ cX)

dydcT

dcT

d pT
(26)

Upon substituting the non-linear relation (24) between the
parent parton moment cT and the produced hadron pT in
Eq. (24), we get

dcT

d pT
=

1
1 − µ

(
pT

cT0

) 2µ
1−µ

. (27)

Therefore under the fragmentation from c to p, the hard-
scattering cross section for AB→ pX becomes

Ec
d3σ(AB→pX)

dp3

∣∣∣∣∣
y∼0
=

d3σ(AB→ pX)
dyd pT

∣∣∣∣∣
y∼0

∝ α
2
s(Q2(cT ))(1 − xa0(cT ))ga+

1
2 (1 − xb0(cT ))gb+

1
2

pn′
T

√
1 − xc(cT )

, (28)

where

n′ =
n − 2µ
1 − µ , with n = 4 +

1
2
. (29)

Thus, the power index n for jet production can be signif-
icantly changed to n′ for hadron production because the
greater the value of the parent jet cT , the greater the num-
ber of generations λ to reach the produced hadron, and the
greater is the kinematic energy degradation. By a proper
tuning of µ, the power index can be brought to agree with
the observed power index in hadron production. For ex-
ample, for µ=0.4 one gets n′=6.2 and for µ = 0.6 one gets
n′=8.2. Because the parton branching probability, parton
kinematic degradation, and parton virtuality degradation
depend on the coupling constant and the coupling constant
depends on the parton energy, we expect the quantity µ to
depend on the pp collision energy. Consequently, n′ may
change significantly with the collision energy.

7 Regularization of the Hard-Scattering
Integral

The power-law (28) has been obtained for high pT . In
order to apply it to the whole range of ET , we need to
regularize it by the replacement,

1
pT
→ 1

1 + mT /mT0
. (30)

The quantity mT0 measures the average transverse mass
of the detected hadron in the hard-scattering process. The
differential cross section d3σ(AB→ pX)/dyd pT in (28) is
then regularized as

d3σ(AB→ pX)
dyd pT

∣∣∣∣∣
y∼0

∝ α
2
s(Q2(cT ))(1−xa0(cT ))ga+1/2(1−xb0(cT ))gb+1/2

[1 + mT /mT0]n′
√

1 − xc(cT )
. (31)

In the above equation for the production of a hadron with a
transverse momentum pT , the variable cT (pT ) refers to the
transverse momentum of the parent jet cT before fragmen-
tation. We can relate pT with cT by using the empirical
fragmentation function of Ref. [51] and we get [35]

cT (pT ) ∼ pT ⟨
1
z
⟩ = 2.33 pT . (32)

This can be regarded as a linearized approximation of Eq.
(24), which shows that cT and pT are non-linearly related,
when we consider the virtuality in the fragmentation pro-
cess. Comparisons of the theoretical results calculated
with Eq. (31) with the experimental hadron transverse mo-
mentum distributions in pp collisions at the LHC from the
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Figure 2. (Color online) Comparison of the experimental
⟨Epd3N/dp3⟩η data for hadron production in pp collisions at the
LHC with the relativistic hard-scattering model results of (solid
and dashed curves) Eq. (31). The solid line is for

√
s=7 TeV, and

the dashed line is for
√

s=0.9 TeV.

CMS [17], ATLAS [18], and ALICE Collaborations [19]
are shown in Fig. 2. We find that the experimental data
gives n′=5.69 and mT0=0.804 GeV for

√
s=7 TeV and

n′=5.86 and mT0=0.634 GeV for
√

s=0.9 TeV. This indi-
cates that there is indeed a systematic change of the power
index n from jet production to a larger value n′ in hadron
production. The fits to the low pT region for the ALICE
data can be improved, with a larger power index n′ as we
shall see below in Section 9.

8 Further Approximation of the
Hard-Scattering Integral

We would like to simplify further the pT dependencies of
the structure function in Eq. (31) and the running coupling
constant as additional power indices in such a way that
will facilitate subsequent phenomenological comparison.
For parton c coming at mid-rapidity, the quantities xa0, xb0,
and xc in Eqs. (10) and (31) are

xa0 = xb0 = 2xc, and xc =
cT√

s
. (33)

The structure function factor and the denominator factor
in Eq. (31) can be approximated for high energies with√

s ≫ cT as

(1−xa0(cT ))ga+1/2(1−xb0(cT ))gb+1/2

√
1 − xc(cT )

∼ (1 − xc(cT ))2ga+3/4.

We can relate cT with pT by Eq. (32) and further approx-
imate the right-hand side of the above equation in a form
that is advantageous for subsequent purposes. For high
energy with large

√
s, we make the approximation

(1−xc(cT ))2ga+
3
4 =

(
1− 2pT√

s
⟨1

z
⟩
)2ga+3/4

∼ 1
[1 + mT /mT0]ng

,(34)

where

ng =
2(2ga + 3/4)mT0√

s
⟨1

z
⟩. (35)

We therefore estimate that ng ∼ 0.04 and 0.007 for
√

s =
0.9 and 7 TeV respectively.

The running coupling constant αs is a monotonically
decreasing function of Q(cT ). It can be written approxi-
mately as

αs(Q2(cT )) ∝ 1
[1 + mT /mT0]nα

, (36)

where nα can be chosen to minimize errors by matching αs

at two points of pT . If we match αs(pT ) at pT=ΛQCD=0.25
GeV and at pT=100 GeV, then nα = 0.36. If we match αs

at pT=ΛQCD and at pT=20 GeV, then nα = 0.46.
As a consequence of the above simplifying approxi-

mations, we can write the hard-scattering integral Eq. (31)
in the approximate form

d3σ(AB→ pX)
dyd pT

∣∣∣∣∣
y∼0
= F(pT ) ∼ A

[1 + mT /mT0]n , (37)

where

n = n′ + ng + nα, (38)

and n′ is the power index after taking into account the frag-
mentation process, ng the power index from the structure
function, and nα from the coupling constant. We note that
the predominant change of the power index from jet pro-
duction to hadron production arises from the fragmenta-
tion process because ng and nα are relatively small.

In reaching the above equation, we have approximated
the hard-scattering integral F(pT ) that may not be ex-
actly in the form of 1/[1 + mT /mT0]n into such a form.
It is easy then to see that upon matching F(pT ) with
A/[1 + mT /mT0]n according to some matching criteria,
the hard-scattering integral F(pT ) will be in excess of
1/[1 + mT /mT0]n in some region, and will be in deficit in
some other region. As a consequence, the ratio of the hard-
scattering integral F(pT ) to the fitting 1/[1+mT /mT0]n will
oscillate as a function of pT . This matching between the
physical hard-scattering outcome that contains all physi-
cal effects with the approximation of Eq. (37) may be one
of the origin of the oscillations of the experimental fit with
the non-extensive distribution (as can be seen below in Fig.
3).

9 Nonextensive Distribution as a
Lowest-Order Approximation of the
Hard-scattering Integral

In the hard-scattering integral Eq. (37), if we identify

n→ 1
q − 1

and mT0 →
T

q − 1
= nT, (39)

and consider produced particles to be relativistic so that
mT∼ET∼pT and ET∼E at mid-rapidity, then we will get
the nonextensive distribution of Eq. (2) as the lowest-order
approximation for the QCD-based hard-scattering integral.
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The convergence of Eq. (37) and Eq. (2) can be consid-
ered from the viewpoint of the reduction of a microscopic
description to a statistical-mechanical description. From
the microscopic perspective, the hadron production in a pp
collision is a very complicated process, as evidenced by
the complexity of the evolution dynamics in the evaluation
of the pT spectra in explicit Monte Carlo programs, for ex-
ample, in [48–50]. If one starts from the initial condition
of two colliding nucleons, there are many intermediate and
complicated processes entering into the dynamics, each of
which contain a large set of microscopic and stochastic
degrees of freedom. Along the way, there are stochas-
tic elements in the picking of the degree of inelasticity,
in picking the colliding parton momenta from the parent
nucleons, the scattering of the partons, the showering evo-
lution of scattered partons, the hadronization of the frag-
mented partons. Some of these stochastic elements cannot
be definitive and many different models, sometimes with
untestable assumptions, have been put forth. In spite of all
these complicated stochastic dynamics, the final result of
Eq. (37) of the single-particle distribution can be approx-
imated to depend only on three degrees of freedom, after
all is done, put together, and integrated. The simplification
can be considered as a “no hair" reduction from the micro-
scopic description to nonextensive statistical mechanics in
which all the complexities in the microscopic description
“disappear" and are subsumed behind the stochastic pro-
cesses and integrations. In line with statistical mechanics
and in analogy with the Boltzmann-Gibbs distribution, we
can cast the hard-scattering integral in the non-extensive
form in the lowest-order approximation as [52]3

dN
dyd pT

∣∣∣∣∣
y∼0
=

1
2πpT

dN
dydpT

∣∣∣∣∣
y∼0
= Ae−E/T

q , (40)

e−E/T
q ≡ [

1 − (1 − q) E/T
]1/(1−q) , e−E/T

1 = e−E/T ,

where E=
√

m2 + p2 and E=ET=mT at y=0. Here, the pa-
rameter q is related physically to the power index n, the
parameter T related to mT0 and the average transverse mo-
mentum, and the parameter A related to the multiplicity
(per unity rapidity) after integration over pT . Given a
physically determined invariant cross section in the log-
log plot of the cross section as a function of the transverse
hadron energy as in Fig. 3, the slope at large pT gives
the power index n (and q), the average of ET gives T (and
mT0), and the integral over pT gives A.

Fig. 3 gives the comparisons of the results from Eq.
(40) with the experimental pT spectra at central rapidity
obtained by different Collaborations [17–19]. In these cal-
culations, the effective temperature parameter is set equal
to T=0.13 GeV, and the parameters of A, q and the cor-
responding n are given in Table 2. The dashed line (an
ordinary exponential of ET for q→ 1) illustrates the large
discrepancy if the distribution is described by Boltzmann-
Gibbs distribution. The results in Fig. 3 shows that Eq.
(40) adequately describes the hadron pT spectra at central
rapidity in high-energy pp collisions. We verify that q in-
creases slightly with the beam energy, but, for the present

3We are adopting the convention of setting both Boltzmann con-
stant kB and the speed of light c to be unity.

dN
dydpT
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Figure 3. Comparison of Eq. (19) with the experimental trans-
verse momentum distribution of hadrons in pp collisions at cen-
tral rapidity y. Herein the temperature is set to be the same for
all curves and equal T = 0.13 GeV, and the normalization con-
stant in units of GeV−2/c3. The corresponding Boltzmann-Gibbs
(purely exponential) fit is illustrated as the dashed curve. For a
better visualization both the data and the analytical curves have
been divided by a constant factor as indicated. The ratios data/fit
are shown at the bottom, where a roughly log-periodic behavior
is observed on top of the q-exponential one. Data are taken from
[17–19].

energies, remains always q ≃ 1.1, corresponding to a
power index n in the range of 6-8 that decreases as a func-
tion of

√
s.

Table 2. Parameters used to obtain fits presented in Fig. 3
where we have used T=0.13 GeV. The values of A is in units of

GeV−2/c3.

Collaboration
√

s [TeV] A q n=1/(q − 1)
CMS [17] 7 38 1.150 6.67

ATLAS [18] 7 43 1.151 6.62
CMS [17] 0.9 30 1.127 7.87

ATLAS [18] 0.9 32 1.124 8.06
ALICE [19] 0.9 27 1.124 8.06

What interestingly emerges from the analysis of the
data in high-energy pp collisions is that the good agree-
ment of the present phenomenological fit extends to the
whole pT region (or at least for pT greater than 0.2 GeV/c,
where reliable experimental data are available) [34]. This
is being achieved with a single nonextensive distribu-
tion. On the other hand, theoretical analysis demonstrates
that the hard-scattering integral can be written as a non-
extensive distribution with only three degrees of freedom,
in the lowest-order approximation. It is reasonable to infer
that the dominant mechanism of hadron production over
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the whole range of pT at central rapidity and high energies
is the hard-scattering process.

The dominance of hard-scattering also for the produc-
tion of low-pT hadron in the central rapidity region is
supported by two-particle correlation data where the two-
particle correlations in minimum pT -biased data reveals
that a produced hadron is correlated with a “ridge" of par-
ticles along a wide range of ∆η on the azimuthally away
side centering around ∆ϕ ∼ π [16, 53, 54]. The ∆ϕ ∼ π
(back-to-back) correlation indicates that the correlated pair
is related by a collision, and the ∆η correlation in the shape
of a ridge indicates that the two particles are partons from
the two nucleons and they carry fractions of the longitudi-
nal momenta of their parents, leading to the ridge of ∆η at
∆ϕ ∼ π.

10 Conclusions and Discussions

Particle production in high-energy pp collisions at cen-
tral rapidity is a complex process that can be viewed from
two different and complementary perspectives. On the one
hand, there is the successful microscopic description in-
volving perturbative QCD and nonperturbative hadroniza-
tion at the parton level where one describes the detailed
mechanisms of parton-parton hard scattering, parton struc-
ture function, parton fragmentation, parton showering, the
running coupling constant and other QCD processes. On
the other hand from the viewpoint of statistical mechan-
ics, the single-particle distribution can be cast into a form
that exhibit all the essential features of the process with
only three degrees of freedom. The final result of the pro-
cess can be summarized, in the lowest-order approxima-
tion, by a power index n which can be represented by a
nonextensivity parameter q=(n + 1)/n, the average trans-
verse momentum mT0 which can be represented by an ef-
fective temperature T=mT0/n, and an multiplicity constant
A that is related to the multiplicity per unit rapidity when
integrated over pT . Such a reduction from microscopic
description to a statistical mechanical description can be
shown both from theoretical considerations by obtaining
a simplified and approximate hard-scattering integral, and
also by comparing with experimental data. In the process,
we uncover the dominance of the hard-scattering hadron-
production and the approximate validity of a “no-hair"
statistical-mechanical description for the whole transverse
momentum region in pp collision at high-energies. We
emphasize also that, in all cases, the temperature turns out
to be one and the same, namely T = 0.13 GeV.

What we may extract from the behavior of the experi-
mental data is that scenario proposed in [11, 12] appears to
be essentially correct excepting for the fact that we are not
facing thermal equilibrium but a different type of station-
ary state, typical of violation of ergodicity (for a discussion
of the kinetic and effective temperatures see [55, 56])).

As a concluding remark, we note that the data/fit plot
in the bottom part of Fig. 3 exhibit an intriguing rough
log-periodicity oscillations, which suggest corrections
to the lowest-order approximation of Eq. (37) and some
hierarchical fine-structure in the quark-gluon system

where hadrons are generated. This behavior is possibly an
indication of some kind of fractality in the system. Indeed,
the concept of self-similarity, one of the landmarks of
fractal structures, has been used by Hagedorn in his
definition of fireball, as was previously pointed out in [21]
and found in analysis of jets produced in pp collisions
at LHC [57]. This small oscillations have already been
preliminary discussed in Section 8 and in [58, 59], where
the authors were able to mathematically accommodate
these observed oscillations essentially allowing the in-
dex q in the very same Eq. (40) to be a complex number4

(see also Refs. [60, 61]; more details on this phenomenon,
including also discussion of its presence in recent AA
data, can be found in [33]).
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