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Viscous damping of the drift-Alfvén modes in tokamaks and its application for triggering improved
confinement regimes are considered. It is shown that these waves are effectively damped by the
neoclassical viscosity with the upper limit for their frequency � equal to the collision frequency of
slow ions �i /�, where � is the inverse aspect ratio. Quasistationary plasma poloidal and toroidal
velocities and current drive produced by damping of these waves are estimated. Evaluations of the
viscosity effects on the Alfvén waves which were induced by the dynamic ergodic divertor in the
Tokamak Experiment for Technology Oriented Research tokamak �K. H. Finken et al., Phys. Rev.
Lett. 94, 015003 �2005�� are made. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2434792�

Triggering a transition to improved confinement regimes
in tokamaks �see Ref. 1, and references therein� by external
sources of rf waves2 is attractive because of the flexibility of
this method in allowing the waves to be launched on arbi-
trary magnetic surfaces, control over the profiles of launched
and absorbed power, and the possibility of choosing the re-
quired wave power to trigger the transition. This is to be
contrasted with triggering by zonal flows,3 which have to
rely on turbulence or indirect coupling to be excited. The
transition can be realized via induced poloidal, Ui�, and/or
toroidal, Ui�, plasma �ion� flows to create sheared cross-field
velocity, VE=cEr /B0 �Er is the radial electric field, B0 is
equilibrium magnetic field, and c is the speed of light�,
through the relation

Er �
B0

c
�− Ui� +

�

q
Ui� + Upi� . �1�

Here �=r /R is the inverse aspect ratio, R is the tokamak
major radius, q is the safety factor, Upi= �c /ein0B0��pi /�r is
the ion drift velocity related to the radial ion pressure gradi-
ent, �pi /�r, and n0 is the equilibrium plasma number density.

Low-frequency �LF� magnetohydrodynamic modes, with
the characteristic frequency � of the order of ��vTi /qR
�vTi=�2Ti /Mi is the ion thermal velocity, Ti and Mi are the
ion temperature and mass, respectively�, e.g., drift-Alfvén
modes,4 are of special interest5 as they can be absorbed in the
tokamak plasma due to the neoclassical viscosity in different
collisionality regimes.6–10 In Ref. 5 it was demonstrated that
low-frequency modes induced by the dynamic ergodic di-
vertor �DED� can be efficient to induce toroidal plasma ro-
tation in tokamaks. However, an absorption mechanism of
these waves related to the neoclassical viscosity was not dis-
cussed in this reference. The perpendicular viscosity effect
on plasma rotation was discussed in Ref. 11 in relation to
analogous experiments, but this effect was weak.

Initially, we obtain the dispersion relation of the drift-
Alfvén waves taking into account viscous damping and find
the intervals of plasma parameters for which this mechanism
is effective. In the sequel we estimate the radial localization
of the absorption region of these modes for the neoclassical
viscosity. The next problem considered is to calculate the
time- and magnetic-surface-averaged LF forces that can in-
duce poloidal and toroidal plasma flows sufficient for trig-
gering transition to improved confinement regimes.

Here we follow the one-fluid approach in all collisional-
ity regimes �see, e.g., Ref. 12�. Thus our basic equations are
the current continuity equation13

� · j = 0, �2�

the ion continuity equation

�n

�t
+ � · �nVi�� = 0, �3�

and the heat balance equation

3

2

�pi

�t
+

5

2
pi � · Vi� + � · qi

∧ = 0. �4�

The perpendicular component of the current density is given
by

j� =
c

B
	h � 
Min

dVi�

dt
+ �p� + �� · ����� , �5�

where

p� = p − 1
2�
 , �6�

is the perpendicular pressure,
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�� · ��� = − F� + � · �∧, �7�

p= pi+ pe, and �
 is the parallel viscosity. The perpendicular
ion velocity is used in the form13

Vi� =
c

B
�E � h� +

c

einB
�h � �pi� �8�

and

qi
∧ =

5

2

cnTi

eiB
�h � �Ti� . �9�

For axially symmetric magnetic confinement configuration,
the viscous force related to the parallel viscosity, �
, is

F� = 3
2�
 � ln B �10�

with the magnetic surface averaged poloidal

F�
� = − 	�Min�Ui� − 
UTi� �11�

and parallel

F

� =

�

q
F�

� �12�

components; UTi=Upi
T /
p, where 
p=� ln pi /�r and

T=� ln Ti /�r and �∧ is the gyroviscosity.13–15

In Eqs. �11� and �12� the values 	� and 
 are equal to16,17

	� =
3

4
0.96

vTi
2

�iR
2 ; 
 = − 1.83 for �i � �vTi/qR,��

�13�

in the Pfirsch-Schlüter regime18,19 and

	� =
1

2
��

2
�1/2qvTi

R
; 
 = − 0.5 for

�14�
�3/2vTi/qR � ��i,�� � vTi/qR

and

	� = 2.10
�iq

2

�3/2 ; 
 = 1.17 for � �
�i

�
� �1/2vTi/qR

�15�

in the plateau and banana regimes, respectively.20 Here �i is
the ion-ion collision frequency.13

From Eqs. �2�–�11� renormalization of plasma inertia,
�→�+ i	�, following Refs. 6 and 7, leads to the dispersion
relation for the drift-Alfvén waves and their effective damp-
ing

��� − �pi
* � + i	��� − �pi

* + 
�Ti
* � − k


2cA
2 = 0, �16�

where �pi
* =mUpi /r and �Ti

* =mUTi /r are the drift frequencies
related to the ion pressure and ion temperature gradients,
respectively, and m is the poloidal mode number in the phase
factor of the perturbed quantity, � exp�−i�t+ i�m�−s���.
Here we omitted the plasma parallel untwisting effects,8–10

which introduce terms of the order of �1+ i�2	� /��−1 in Eq.
�16�. We should also note that one more banana regime is
possible,

�i

�
� � � �1/2vTi/qR , �17�

but in this regime 	��−i� /�� �see Ref. 7� and there is no
damping in Eq. �16�. Thus, the effective damping of the drift-
Alfvén waves by the neoclassical viscosity is only possible
for drift-Alfvén wave frequencies ���i /�.

Next we estimate the spatial region of drift-Alfvén wave
damping. For this, we first calculate components of the per-
mittivity tensor. From Eqs. �3� and �4� we find for perturbed
values

n�

n0
=


n


p

pi�

pi0
=


n


p

p�

p0
=


n


T

Ti�

Ti0
= −


n

�

icE��

B0
. �18�

In addition, here we assume pi�= pe� and Ti0=Te0. Substituting
these relations into Eq. �5�, we arrive at the permittivity ten-
sor components


rr = 1 +
c2

cA
2 	1 −

�pi
*

�
+

i	�

�
�1 −

�pi
*

�
+ 


�Ti
*

�
�� , �19�


�� = 1 +
c2

cA
2 �1 −

�pi
*

�
�, 
r� = − 
�r = − i

�p
*�ci

�2

c2

cA
2 , �20�

where �p
* =mc / �rein0B0��p0 /�r and p0= p0i+ p0e.

Assuming that the wave frequency is real and kr�m /r,
we find an equation for the spatial absorption of the drift-
Alfvén waves21

kr
2 = 

��2

c2 −
k


2


�

� , �21�

where



 = 1 −
�pe

2

�� + i�e��
�1 −

�pe
*

�
− 0.71

�Te
*

�
� , �22�

�pe
* =mc / �reen0B0��p0e /�r and �Te

* =mc / �reeB0��T0e /�r are
the electron drift frequencies, �pe

2 =4�n0
2 /Me is the plasma

frequency, and �e is the electron-ion collision frequency. The
last term in the brackets of Eq. �22�, related to the thermal
force, follows from the parallel component of the electron
momentum equation.13 From Eqs. �19�–�22� it follows that
these waves will be effectively absorbed due to the effect of
the neoclassical viscosity only in the vicinity of the rational
magnetic surface where k
 �� /cA��* /cA. They implies
that, if a magnetic island is present on this magnetic surface,
there is a possibility to affect it by the drift-Alfvén waves
damped on this surface.

Let us apply the obtained equations to explain the ex-
perimental results of Ref. 5. The low-frequency waves were
absorbed in the vicinity of the rational magnetic surface
q=3 in that work. In this region the plasma was collisional
satisfying the inequality ��	�. Then we can assume that
these waves transformed into the short-wave mode near the
rational magnetic surface

��� − �pi
* � − k


2cA
2 = 0 �23�

and then were absorbed due to the neoclassical viscosity with
the damping coefficient 	� according to Eq. �13�.
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Substituting Eq. �19� in this equation with 
�=
rr and
taking into account that, as it follows from Eq. �13�, 	���,
we find the characteristic region for absorption of these
waves from the relation

�
rA

rA+�rA

krdr � 1. �24�

Here rA and �rA are the wave transformation point and the
characteristic length of the wave absorption, correspond-
ingly. As a result, we have from Eqs. �21� and �24�

�rA ��3 rA

2

cA
2

�2�
rr





� . �25�

Using parameters of the Tokamak Experiment for Technol-
ogy Oriented Research �TEXTOR� �Ref. 5� and the Tokamak
Chauffage Alfvén Brazil �TCABR� �Ref. 25�, we find from
Eq. �25� �rA�1 cm and �rA�0.5 cm, correspondingly.

Let us now estimate the possible effect of the drift-
Alfvén waves on poloidal and toroidal plasma velocities and,
consequently, on the radial electric field. Magnetic-surface-
averaged equations for the poloidal and toroidal velocities
evolution in tokamaks are well-known16,17

�1 + 2q2�Min0
�Ui�

�t
= F�

� + F�
h �26�

and

Min0
�Ui�

�t
= 4�qMin0

�Ui�

�t
+ F�

� + F�
h. �27�

In a stationary state we have

F�
� + F�

h = 0 �28�

and

F�
� + F�

h = 0. �29�

The viscous force F�
� has been defined by Eq. �11� and for F�

�

we can use the expression22

F�
� =

�

�r

�i�� �Ui�

�r
− 0.107

q3

�

� ln T0i

�r
Ui��� , �30�

where �i�=6p0i�i / �5�ci
2 �.

Thus time- and magnetic-surface-averaged rf forces are
needed to be calculated as far as these forces can induce the
abovementioned flows. These forces are also important for
conventional rf current drive.23 For this calculation, for
weakly collisional regimes in tokamaks �banana and plateau
regimes�, a hydrodynamic approach can be utilized.24,25

From Ref. 24 we have

F̄e

h �

i

4�
	1

r

�

�r
�je

*rE

ef� +

1

qR
Em

ef� �

��
+ q

�

��
� je

*m − c.c.� , �31�

where

Ek
ef = Ek� +

4�i

�

�2

�pe
2 jek� .

The rf force, Eq. �31�, enters the magnetic surface-
averaged Ohm’s law26,27

�J
B0� = �
��E0
B0� −
1

eeNe
�B0 · �� · �̂
e��

+
1

eeNe
�Fe

h · B0�� , �32�

where

F̄�
 = �F�
B0�/Bs �33�

and

�¯� =� �¯�
dl

B0
�� dl

B0
. �34�

The rf forces F�
h and F�

h entering Eqs. �28� and �29� can
be found from Ref. 25 in the simplified form

F�
h =

i

4�
�
�
	1

r

�

�r
�rE��

ef j�
*r� −

j�
*k

r

�

��
E�k

ef − c.c.� �35�

and

F�
h =

i

4�
�
�
	1

r

�

�r
�rE��

ef j�
*r� −

j�
*k

R

�

��
E�k

ef − c.c.� , �36�

where

E�k
ef = Ek� +

4�i�

�p�
2 j�k� , � = i,e �37�

and �p�
2 =4�ne�

2 /M�. These expressions can be used for cal-
culating the quasistationary plasma poloidal and toroidal ve-
locities, radial electric field, and current drive produced by
these waves damping. We use these equations to compare
with results obtained in recent experiments.5

In this relation, we estimate the toroidal velocity induced
by the drift-Alfvén modes damping. As far as these waves
are absorbed by ions, for estimations we can rewrite Eq. �36�
in the simplified form

F�
h =

s

R�
Pw, �38�

where the absorbed power

Pw = 1
4 �ji

*E� + c.c.� . �39�

The viscous force, Eq. �30�, we use in the form

F�
� � �i�

Ui�

��rA�2 , �40�

where �rA is the characteristic size of the drift-Alfvén modes
absorption region Eq. �25�. Hence we have for the induced
toroidal velocity

Ui� �
��rA�2

�i�

s

R�
Pw. �41�

Exploring the relation

Pw =
�

8�
Im 
rr�Er��

2, �42�
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where

Im 
rr =
c2

cA
2

	�

�
�1 −

�pi
*

�
+ 


�Ti
*

�
� , �43�

and assuming ���pi
* , it is useful to represent Eq. �28� in the

form

Ui� � 
UTi�1 +
c2

2Upi
2 B0

2 �Er��
2� = 
UTi�1 +

�v���
2

2Upi
2 � . �44�

Here

v�� =
c

B0
Er�. �45�

Estimating

Er� �
cA

c
B��, �46�

we find for TEXTOR,5 with B���20 G,

v�� = 106 cm/s � Upi. �47�

We note that, from Eq. �44� it follows that the viscous coef-
ficient 	� disappears from the expression for the poloidal
velocity.

From Eqs. �41� and �42� we see that the toroidal velocity
induced by the drift-Alfvén waves in tokamaks depends on
the ratio of the poloidal and toroidal viscous coefficients

Ui� � 

	���r�2Min

2�i�


T


p

s

R�

c2

B0
2 �Er��

2. �48�

The last equation can be used only for qualitative evalua-
tions.

In conclusion, viscous damping of the drift-Alfvén
modes in tokamaks and its application for triggering im-
proved confinement regimes are considered. It is shown that
these waves are effectively damped by the neoclassical vis-
cosity with the upper limit for their frequency � equal to the
collision frequency of slow ions �i /�, where � is the inverse
aspect ratio. Quasistationary plasma poloidal and toroidal ve-
locities and current drive produced by these waves damping

are estimated. Estimations of the viscosity effects on the
Alfvén waves which were induced by the dynamic ergodic
divertor in TEXTOR tokamak are made.
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