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The Ising antiferromagnetic in the presence of a magnetic field on an anisotropic square lattice is
studied by Monte Carlo simulation. We obtained the phase diagram in the T –H plane investigating the
reentrant behavior around of the critical field Hc = 2 J y . Using the Binder cumulant we locate the critical
temperature Tc as a function of H . In order to test our simulation, for null field we obtain the critical
behavior of Tc as a function of r = J y/ J x and is in excellent agreement with exact solution of Onsager.
Our results indicate a second-order transition for all values of H and particular case r = 1 (independent
of the ratio r �= 0), where not reentrant behavior was observed.

© 2009 Elsevier B.V. All rights reserved.
In recent years, the effect of a longitudinal field in the Ising
antiferromagnetic on an anisotropic square lattice has been dis-
cussed [1–7]. The phase diagram in the temperature longitudinal
field plane was obtained by using several approximative methods
(for example, effective field theory (EFT), Bethe–Peierls approxima-
tion (BP), mean field approximation (MFA), etc.), and the results
have been, in some cases, contradictory. This model is described
by the following Hamiltonian:

H = − J x

∑
i,�δx

σiσi+�δx
+ J y

∑
i,�δy

σiσi+�δy
− H

∑
i

σi, (1)

where σi are the Ising variables with values ±1 at site i, J x ( J y)
is the exchange coupling along the x (y) axis, �δx (�δ y) denotes the
nearest-neighbor vector along the x (y) axis, and H is the longitu-
dinal magnetic field. We assume positive magnetic field (H > 0).

The ground-state of the model (1) is exactly soluble. For H >

2 J y a ferromagnetic (F) state is found with σi = 1 at all sites. On
the other hand, for H < 2 J y we have a ground-state which is de-
scribed as ferromagnetic chains, aligned along the x (or y) axis,
ordered antiferromagnetically in the y direction (or x direction).
This ordered state is denoted by superantiferromagnetic (SAF). This
model is also exactly soluble for H = 0, and the critical tempera-
ture is obtained by solution of the equation [8]:

sinh

(
2 J x

kB T N

)
sinh
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)
= 1, (2)

* Corresponding author at: Departamento de Física, Universidade Federal do Ama-
zonas, 3000 Japiim, 69077-000 Manaus-AM, Brazil.

E-mail address: jsousa@pq.cnpq.br (J.R. de Sousa).
0375-9601/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2009.04.060
where the critical Néel temperature T N is an increasing function of
the ratio r = J y/ J x . In the one-dimensional (r = 0) limit we obtain
T N = 0, as expected, with the following exact asymptotic behavior

kB T N

Jx
� √

2 . r1/2 (3)

as r → 0. This is different from the logarithmic behavior kB T N
Jx

�
A/ ln(1/r) obtained by EFT [7]. In the particular case J x = J y = J ,
we have the exact value kB T N/ J = 2/ ln(1 + √

2 ).
The study of the phase diagram in the T –H plane by using

the traditional MFA presents qualitative wrong results. It predicts
a first-order transition for low temperatures, with the presence of
a tricritical point (TCP), and when H/ J x approaches the value 2.0
the first-order transition temperature presents a negative slope (i.e.,
Γ = ( dT

dH )H=Hc < 0). Using the linear chain approximation (LCA) [3]
only second-order phase transition (no TCP) is observed with a
reentrant behavior around of the critical value Hc = 2.0 J y (i.e.,
positive slope, Γ > 0). Müller and Zittartz [4] developed a new ap-
proximation to obtain the critical line by considering an interface
free energy for the particular case of the isotropic square lattice.
The original application of this method was conjectured to give
exact results. Further analysis has shown that the method is not
exact for H �= 0, being exact only for the limit of null magnetic
field (H = 0) [9]. The generalization of this interface method to
treat the anisotropic square lattice, Eq. (1), has been presented by
Rottman [1]. The critical line obtained for J x = J y = J case shows
a negative slope at T = 0 (i.e., ( dT

dH )H=Hc < 0) and a reentrant phase
transition does not occur.

Introducing a new approach by considering the zeros of the
partition function on an elementary cycle, Wang and Kim [10]
have obtained a closed-form formula for the critical line and

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:jsousa@pq.cnpq.br
http://dx.doi.org/10.1016/j.physleta.2009.04.060


2414 J.R. Viana et al. / Physics Letters A 373 (2009) 2413–2415
showed that at T = 0 the slope is positive, indicating the presence
of a reentrant behavior. The system passes through the super-
antiferromagnetic (SAF) ordered for the paramagnetic phase as T is
decreased when H is slightly above the critical field Hc = 2 J y . This
approach in the zero-field limit reduces to the Onsager formula
for the critical temperature. Recently, Neto et al. [7] have used
two approximative methods, namely the Bethe–Peierls (BP) and
the effective-field-theory (EFT) and the results are contradictory.
The BP approximation found a reentrant behavior around of the
critical field Hc = 2 J y , while EFT presents not reentrance. There-
fore, the existence or not of the reentrant behavior on the phase
diagram in the T –H plane of the model (1) is still an open prob-
lem to be considered by a rigorous method, for example, Monte
Carlo (MC) simulations [11]. To the best of our knowledge, theo-
retical works to investigate this phase diagram have never been
carried out using a MC simulation.

The main purpose of this Letterr is to study the phase diagram
in the T –H plane for r = 1 of the model (1) by using Monte Carlo
simulations and investigate the existence or not of the reentrant
behavior around to the critical field Hc/ J x = 2.0. The square lat-
tice of size L having L × L sites is decomposed into two sublattice
(A and B) with opposite spins, corresponding to the SAF ground
state. The order parameter (staggered magnetization) is defined by
〈ms〉 = 〈(mA − mB)/2〉, where 〈mμ〉 = 〈 2

N

∑
i∈μ σi〉 is the magneti-

zation of the sublattice μ = A, B and N = L2 number of spins. In
our simulations we have considered lattices with periodic bound-
ary conditions. In addition, samples of L = 16, 32 and 64 have
been used for finite-size scaling. To locate the critical temperature
we performed simulations for each values of the parameters r and
H/ J x , with a temperature step �T = 0.1 and runs comprising up
to 104 MCS after equilibration. We used the intersection of the
fourth-order cumulant U4(L), which is defined as [12]

U4(L) = 1 − 〈m4
s 〉

3〈m2
s 〉2

, (4)

where 〈m2
s 〉 and 〈m4

s 〉 are the canonical averages of the second and
fourth moments of magnetization. Thus, we measured U4(L) for
a number of temperatures and systems sizes along the second-
order line. The statistical errors of the MC simulations used for the
estimation of T N (r, H) of a particular r and H were found much
smaller than the statistical errors coming from the fact that we
used. Therefore, the MC errors are not shown in our graphs they
are smaller than the symbol sizes.

In order to test our simulations we have calculated the crit-
ical temperature as a function of the ratio r for null field H = 0,
where the cumulants were obtained in the range r ∈ [0,1] for each
system size with L = 16, 32 and 64. In Fig. 1 we show the phase
diagram of the anisotropic Ising model in the plane of anisotropy
parameter (r) and reduced temperature (kB T / J x) and we compare
with the exact solution, Eq. (2). Our results are in excellent agree-
ment with exact solution. The critical temperature decreases with
the decreases of the parameter r, and in the one-dimensional limit
(r = 0) we obtain the exact value T N = 0 with a critical behavior
given by Eq. (3).

The presence of the magnetic field have indicated a qualitative
critical behavior independent on the ratio r. Therefore, consider-
ing the particular case r = 1 we will investigate the existence
of the controversial reentrant behavior on the phase diagram in
the T –H plane around the critical field Hc/ J x = 2.0. The inset in
Fig. 2 shows, as an example, the cumulants as a function of the
reduced temperature calculated for H/ J x = 1.0 for each system
size. The common point of intersection for these particular case
of field magnetic have been estimated as kB T N/ J x = 2.0196(7). In
Fig. 2 we show the phase diagram in the T –H plane so obtained.
In the region of low (high) temperature (field), the critical tem-
Fig. 1. Dependence of the zero-field reduced critical temperature kB T / J x on the
ratio r = J y/ J x for the Ising model on an anisotropic square lattice. The solid curve
corresponds to the exact solution, Eq. (2), and square our Monte Carlo simulations.

Fig. 2. Phase diagram in the T –H plane of the Ising superantiferromagnetic on an
anisotropic square lattice. The curves (a) and (b) corresponds solutions of MFA [2]
and EFT [7], respectively. The dashed line corresponds the first-order transition
and the solid line the second-order transition. The curve (c) is our results of MC
simulations. The inset shows the fourth-order cumulant U4(L) for particular field
H/ J x = 1.0 and system sizes L = 16, 32 and 64.

perature is monotonically decreasing with increase of field, and
for H/ J x = 2.0 we have T N = 0, where a reentrant behavior is
not observed. We have compared with results of mean field ap-
proximation (MFA) and effective-field theory (EFT). MFA presents
a tricritical point, while EFT shows the correct qualitative results
with only second-order transition and, as usual in this kind of
approach, overestimates T N in comparison with our MC simula-
tions.

In summary, the phase diagram in the T –H plane of the Ising
superantiferromagnetic on an anisotropic square lattice was stud-
ied by means of Monte Carlo simulations. Using standard finite
size scaling techniques, on high accuracy numerical data, we have
estimated the critical temperature. A second-order transition is
observed for all values of H/ J x ∈ [0,2]. The most important re-
sult of the present work is that the phase diagram observed has
no reentrant behavior around of the critical field Hc/ J x = 2. De-
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pending of the approximative methods used the reentrance can
be observed [7]. Recently, this model have been treated by us-
ing renormalization group (RG) approach [13], where the reentrant
behavior was not observed. The behavior of the phase diagram
at low temperature found using this approach (RG) is not in ac-
cordance with our results, in particular, the ground state (T = 0,
H = Hc � 1.62 J x), where the correct value of the critical field (ex-
act solution) is Hc = 2 J x .
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