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Percolation and cooperation with mobile agents: Geometric and strategy clusters
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We study the conditions for persistent cooperation in an off-lattice model of mobile agents playing the Prisoner’s
Dilemma game with pure, unconditional strategies. Each agent has an exclusion radius rp, which accounts for
the population viscosity, and an interaction radius ri,, which defines the instantaneous contact network for the
game dynamics. We show that, differently from the rp» = 0 case, the model with finite-sized agents presents
a coexistence phase with both cooperators and defectors, besides the two absorbing phases, in which either
cooperators or defectors dominate. We provide, in addition, a geometric interpretation of the transitions between
phases. In analogy with lattice models, the geometric percolation of the contact network (i.e., irrespective of
the strategy) enhances cooperation. More importantly, we show that the percolation of defectors is an essential
condition for their survival. Differently from compact clusters of cooperators, isolated groups of defectors will
eventually become extinct if not percolating, independently of their size.
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I. INTRODUCTION

Network reciprocity [1,2] is a general mechanism responsi-
ble for the development of spatial correlations within a viscous
population, opening the possibility of persistent cooperation.
Several specific models have been proposed showing how
these correlations are related to stable groups of cooperating
individuals, whose bulk benefits of self-defense and mutual
support outcompete the surface exploitation by defectors [3—
7]. Although actual experiments have been performed [8—11],
most of our knowledge comes from these simple models.
In particular, a prevailing characteristic in real systems, and
an important ingredient for cooperation, is the heterogeneous
contact in systems whose interactions are given by complex
[12,13] or diluted [14] networks. When we consider the
Prisoner’s Dilemma (PD) dynamics [1] on a diluted lattice
that, albeit heterogeneous, has only short-range interactions,
intermediate densities present an enhancement of cooperation
[14-16], and in the presence of a small amount of noise,
the optimal dilution is closely related to the (random-site)
percolation threshold for that lattice [16].

Whatever the level of heterogeneity, the contact network
topology may evolve in time. Although several rewiring
mechanisms can be devised (see Ref. [7] and references
therein), this may also be accomplished when the high-
viscosity restriction is relaxed and the agents become mobile.
Mobility patterns on different scales of human activity,
and their far-fetched consequences, have been studied in
recent decades. For example, airplane displacement and its
connection with disease spread [17], on a global level, can
be contrasted with the more local dynamics of pedestrians,
crowds, or traffic [18,19]. Of particular interest is how the
observed patterns can affect the outcome of the competition
between agents and, in turn, be influenced by it as well.
Within the evolutionary game theory framework, after several
sparse, early attempts to include mobility [20-27], it was only
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recently that the interest in the combined effects of mobility
and cooperation in the PD game had a significant increase.
Some level of information processing capability is required,
for example, when the movement is strategy dependent [28,29]
or driven by payoff [30-33], success [34—37], or neighborhood
composition [38—45]. However, the simplest scenario is when
mobility is diffusive [29,46-53]. Indeed, as hypothesized in
Refs. [46,54], random mobility may have evolved prior to
contingent mobility, allowing bacteria to move away from each
other while exploring new resources. Our previous results on a
lattice [46,48,55] show that, even in the framework of random,
noncontingent mobility of unconditional agents, diffusion is
favorable to cooperation, under rather broad conditions, if
velocities are not too high. Analogous conclusions, attesting
the robustness of the results, were also found in off-lattice
models [45,49,56].

When diffusion occurs on a lattice and the one agent per site
constraint holds, this area exclusion couples the diffusivity of
the agents with the free area. This dependence on density, on
the other hand, is not immediately present in off-lattice systems
with point-like particles [33,42,45,49,56]. Moreover, whereas
on a lattice the number of simultaneous interactions is limited
by its coordination number, there is no such restriction on the
number of point-like particles within the range of interactions
in off-lattice systems (unless it is explicitly included as in
Ref. [45]). A relevant question concerns the universal effects of
such a geometrical hindrance on the emergence and persistence
of cooperation. For example, letting the average body size be a
coevolving trait, there may be some evolutive pressure for not
too small cooperators because, assuming random diffusion, a
group of small individuals will more easily evaporate from
the cluster surface. They should not be too large either
and, consequently, not be able to evade defectors and avoid
exploitation. Analogously, for defectors, they should neither
be too small, in order to stay closer to their prey for longer
periods, nor too large, so that new, more promising regions
will not be explored. Therefore, one intuitively expects that
intermediate, optimal sizes may be beneficial to cooperation
and thus be selected for. Another possible interpretation for
an exclusion zone around each agent is its protected region,
and the resources within. Whatever the interpretation, it is
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FIG. 1. (Color online) Geometric parameters of the model, the
hard-core radius rp, and the interaction radius rj,. While the former
sets an exclusion area around each agent, the latter defines its contact
network. The characteristic length d, as indicated at the right, is
defined by dividing the available area, L2, by the area of the square
box around each of the N particles of diameter d, that is, L>/d*> = N.
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important to better understand the relevance of area exclusion
in these games. As a first approximation, we consider an
effective radius of exclusion, modeled as a hard disk.

Here we study, by explicitly taking into account the
excluded area of the agents, the interplay among geometry,
density, and mobility on the capability of a simple model to
sustain cooperation and the question of whether the transitions
in this class of model have a geometric interpretation. Although
the connection between the threshold of geometric percolation,
which is independent of the game dynamics, and cooperation
has been reported in Refs. [16], [57], and [58], we also explore
the geometry of clusters of cooperators and defectors, and the
connection between their critical properties and the transition
between regions with and without cooperation, thus providing
a geometric interpretation of these transitions.

II. THE MODEL

We study an off-lattice model [45,49,59] in which the N
agents living in a square of side L (with periodic boundary
conditions) are characterized by an unconditional strategy
(cooperate, C, or defect, D) and two independent geometric
parameters: an interaction radius ri, and a hard disk radius
rp to account for excluded area. The radius rj,, determines
the neighborhood of each agent and, as a consequence, its
instantaneous contact network. The area fraction occupied by
the hard disk particles is ¢ = Nnr%,/Lz. Weused = L//N
as our length scale. These geometric parameters are illustrated
in Fig. 1. The particular case studied by Meloni et al. [49] is
recovered in the limit of point-like particles, rp = 0.

Initially, N individuals with probability 1/2 of being either
C or D are randomly placed in such a way that there is no
overlap between any two individuals i and j; i.e., their center-
to-center distance r;; satisfies r;; > 2rp. Moreover, they are
allowed to randomly diffuse while playing the PD game with
their neighbors. Two agents are considered neighbors if r;; <
rint. A time step is defined as a sequence of N attempts of
diffusion and a complete, synchronous round of the PD in
which each of the N agents plays with all its neighbors. During
the diffusive part, the position (x;,y;) of the center of particle
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i at time ¢ is updated if there is no overlap between particles
in the final position:

xi(t + 1) = x;(t) + purinccos 6;(1),
yit + 1) = yi(t) + purin sin6;(¢).

Each step has a constant size uri,; and a random orientation
6;(t) drawn from a uniform distribution in the interval [—m,77].
When i = 0 there is no mobility and we consider here that ©
is small enough so that jumps over other agents do not occur.
Under mutual cooperation (defection), both receive payoff R
(P) as a reward (punishment); if one cooperates and the other
defects, then the latter receives T (temptation) and the former,
S. To characterize the PD, the following inequalities should
hold7 > R > P > Sand 2R > T + S. In particular, we use
R=1,P=S=0,and T > 1, a common parametrization
known as the weak form of the PD game. The evolution
follows the finite-population analog of the replicator dynamics
[13]. Each individual i, after accumulating the payoff from
all combats, randomly chooses a neighbor j with whom to
compare his or her respective payoffs P; and P;. If P; > P,
then i maintains its strategy. On the other hand, if P; > P;, i
will adopt the strategy of j with a probability proportional to
the payoff difference,

P, — P,

I = ———, 1
7 max{k; k)T &

where k; and k; are the number of neighbors of i and j,
respectively. Under this update rule, the total number of
individuals is kept constant.

Most of our results are for N = 322, T = 1.1, u = 0.01,
and L = 1. We then check the robustness of the model by
testing finite-size effects with up to N = 1282 particles, as
well as the dependence on T and . Averages are taken over
100 or more samples.

III. COOPERATION AND PERCOLATION

Two macroscopic asymptotic quantities, once averaged, are
used to characterize the system: the fraction of cooperators
pc (those, among the N agents, that cooperate) and the
fraction fc < pc of initial conditions whose evolution ends
in the absorbing state pc = 1. Their difference, pc — fc, is a
measure of the coexistence of both strategies. Four regimes
are present in the time evolution, as shown by the behavior of
pc(t) in Fig. 2. As is often the case for this class of model,
there is an initial drop in the fraction of cooperators from
pc(0) = 1/2, since small cooperator clusters are easily preyed
on in the beginning of the simulation. As pc(?) approaches its
minimum value at ¢ ~ 102, fluctuations may lead to extinctions
in finite-size systems. Away from the minimum, the surviving
clusters of cooperators resume growth. These two initial
regimes are quite independent of the occupied area fraction,
as indicated in Fig. 2 by the close proximity of all curves up
to t ~ 103. In the third regime, pc(t) attains a plateau where it
stays, indicating the persistent coexistence of both strategies,
if ¢ is large enough (in the case of Fig. 2, the threshold is
at ¢ >~ 0.37). When ¢ is below the threshold, after the stasis
period on the plateau, the system enters the last regime, in
which cooperators take over the system, that is, pc(co) = 1.
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FIG. 2. (Color online) Average fraction of cooperators as a func-
tion of time (in Monte Carlo steps). N =322, T = 1.1, riy =
V/3.5d, and = 0.01 for various area fractions ¢. Below ¢ ~ 0.37,
cooperators eventually invade the whole system. As ¢ approaches
this threshold, the time spent close to the critical plateau at pc >~ 0.85
also increases.

The time to reach this asymptotic state seems to diverge as the
threshold area fraction is approached from below.

Figure 3 summarizes our most important results, showing,
in the stationary regime, the average fraction of cooperators pc
as a function of both rj,/d and ¢. The lines are independent
measures of percolative properties that are explained below.
Several regimes may be identified: two absorbing phases, in
which all agents eventually become either defectors (oc =
fc = 0; labeled D) or cooperators (oc = fc = 1; labeled C);
and two coexistence ones (0 < pc < 1 and fc = 0; labeled
C and D). Finite systems may also present a bistable phase,
in which all initial conditions lead to one of the absorbing
states. In this case, although the average cooperativeness still
obeys 0 < pc < 1, it differs from the coexistence state since
fc = pc. However, with an increase in the system size, the
probability of becoming dominated by defectors goes to O
inside the C region in Fig. 3, and taking this into account
(see Fig. 5), we have already properly labeled it. We now

0.5F
C and D
0.4f
0.3f
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FIG. 3. (Color online) Phase diagram in the plane 7y, /d and ¢
for N =322, u = 0.01, and T = 1.1. The color code is the average
fraction of cooperators, pc. Besides the phases corresponding to the
absorbing states, C (oc = fc = 1) and D (pc = fc = 0), there are
two coexistence phases, C and D.
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concentrate on the results for a finite system with N = 322
particles and then discuss the finite-size effects at the end of
this section.

There are two limits of the diagram that have trivial results.
For very large values of rj,, very distant particles interact,
increasing the number of contacts and decreasing the effects
of spatial correlation. Thus, we recover the mean-field result
in which all agents become defectors. This trivial region of the
phase diagram was not explored. In the other limit, when ri,, <
2rp, the hard core prevents any interaction between the agents
and the fraction of cooperators remains equal to the initial one,
pc = 1/2 and fc = 0. This is the trivial coexistence region,
labeled C and D at the left in Fig. 3, above the line ¢ =
(n/4)(rim/d)2, corresponding to 2rp = riy.. Immediately to
the right of this line, interaction, albeit weak, is possible and
clusters are formed. However, they are small and do not favor
cooperation, therefore pc = 0, and this all-defector phase is
labeled D. As we discuss below, the transitions between the
other phases have geometric origins and are closely related to
the percolating properties of the contact networks.

A. Geometric percolation

For the area fractions considered here, nontrivial coopera-
tion first appears around rj, & d. For small ¢, the transition
from phase D to phase C corresponds to a change in stability
of the absorbing state, from the defector- to the cooperator-
dominated phase, while for larger ¢, roughly ¢ > 0.25, the
emergent phase is one in which cooperators and defectors
coexist, C and D. This onset of cooperation is strongly
correlated with the appearance of a geometric percolating
cluster, indicated by the steep line in Fig. 3 at the point where
the probability of finding a percolating cluster is 50%. This is
a purely geometric problem of disks with both an inner hard
core and a soft, penetrable region and, thus, independent of
the game dynamics. In other words, the network of contacts of
the percolating cluster spans the whole length of the system.
For ¢ = 0, our result is consistent both with the percolation
threshold obtained numerically in Refs. [60] and [61] and
with the exact bounds in Ref. [62]. For finite ¢, the threshold
is slightly smaller than for ¢ = 0, since as rp increases, the
overlap between the disks decreases and percolation is attained
with a smaller ryy.

B. Percolating clusters of defectors

Besides the clusters of particles, irrespective of their
strategies, we also consider the geometry of clusters composed
only of defectors (which are, in turn, intimately connected
with the geometry of cooperator clusters), which depends on
the particular strategy evolving dynamics. Figure 4 shows the
probability of percolation of D clusters as a function of time,
Py(1), for riy = V/3.5d. Note that in this region there is always
a percolating geometric cluster. Initially, as the fraction of
cooperators decreases towards the minimum, there is a sea
of defectors that obviously percolates and all curves overlap
at P, = 1. It is only when the curves of pc(t), for different
values of ¢, start to separate, around t ~ 103, that Py(1)
starts decreasing. The asymptotic probability of there being
a percolating cluster of defectors attains a limiting value, as
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FIG. 4. (Color online) Probability of percolation of D clusters as
a function of time, P,(¢), for several area fractions ¢ and the same
parameters as in Fig. 2. Inset: Asymptotic limit of Pp(¢) as a function
of ¢. The linear fit indicates that the percolation probability goes to
0 at ¢ ~ 0.37. The small deviation seen close to this point is due to
the long time of convergence.

shown in the inset in Fig. 4, from which the threshold can be
obtained. For the particular value of rj,, shown in this figure,
when the area fraction is below the threshold at (roughly) 0.37,
P,(00) = 0 and, as shown in Fig. 2, pc(co) = 1. The dotted
transition line in the phase diagram (Fig. 3) is obtained in
the same manner: it is the asymptotic value of ¢ at which
Py(00) = 0 as a function of riy. In the C region, finite-size
fluctuations sometimes lead to the all-D state (ry,/d % 2),
but these configurations are not taken into account for the
calculation of the asymptotic value of ¢. This transition
line suggests an important ingredient for understanding the
coexistence between cooperators and defectors: only under
the presence of a percolating sea of defectors is a stable
coexistence between cooperators and defectors possible. In
other words, differently from compact clusters of cooperators,
isolated groups of defectors either grow and percolate or
eventually become extinct.

C. Finite-size effects

We now discuss how the system size can affect the phase
diagram (Fig. 3). For finite-sized systems, a small region inside
the C phase has a bistable equilibrium, in which all initial
conditions lead to an absorbing state, either pc = 0 or pc =
1. The all-D state is due to the fact that the population of
cooperators becomes quite small during the initial drop in
the first generations and, therefore, sensitive to fluctuations
which occasionally cause extinctions. Figure 5 shows f¢ for
two values of ¢ and several system sizes. For point particles
(¢ = 0), the absorbing all-C-state region grows as the system
size increases. On the other hand, for (¢ ~ 0.28), the all-C
region shrinks. In both cases, however, the C-phase width
converges to a finite value and the bistable region decreases as
the system size increases. Furthermore, the size of the C region
in the limit of large systems is consistent with the transition
line obtained from the percolating defector cluster analysis for
N = 322, which explains why this phase is not homogeneously
colored in Fig. 3. Note that when the system is bistable, the
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FIG. 5. (Color online) Fraction of initial states that go to the pc =
1 absorbing state as a function of ry, /d for several system sizes and
two area fractions, ¢ = 0 and 0.28. For large values of r;, /d, as fc
increases for larger system sizes, the existence of the pc = 0 state for
point particles (¢ = 0) is due to finite-size fluctuations. For ¢ >~ 0.28
the behavior is the opposite and the transition becomes sharper when
the system size increases.

average fraction of cooperators is not a good measure since
it represents neither one of the final states [63]. On the other
hand, in the coexistence state, both strategies are present in
the asymptotic state, and while 0 < pc < 1, fc = 0. For the
rp = 0 case studied by Meloni et al. [49], the ¢ = 0O line in the
phase diagram, there is no coexistence phase and the system
eventually enters an absorbing state.

D. Robustness against mobility and temptation

We finally consider the robustness of our results when
the mobility @ and the temptation 7 are varied (Fig. 6).
The top panel in Fig. 6 shows several values of p, with
the temptation fixed at 7 = 1.1. Whatever the velocity, no
cooperation is possible for rj,; < d due to the absence of a
percolating geometric cluster. Nevertheless, for low mobilities,
the existence of cooperators is possible in a wide range of riy.
Comparing the low mobility case with the case of immobile
agents (i = 0), it can be seen that there is an improvement
only for low values of the rj,/d ratio. For high values of this
ratio, the curves overlap, which is expected, since the agents

Tint/d

FIG. 6. (Color online) Average asymptotic fraction of coopera-
tors as a function of ry, /d for ¢ ~ 0.28 and several values of u (top),
including = 0 (open symbols), and T (bottom). In both cases,
N =322 Top, T = 1.1; bottom, u = 0.01.

022132-4



PERCOLATION AND COOPERATION WITH MOBILE ...

have a large neighborhood that is minimally perturbed by the
small random movements. On the other hand, for low values
of the ratio, the contact range is small and is more affected by
the diffusion. Random movements lead to the evaporation of
cooperative clusters, and as the velocity increases, cooperation
levels decrease until a threshold above which it is no longer
possible. This effect of cooperation enhancement driven by a
low mobility is in accordance with previous simulations on
a lattice [46,48,49,55]. The bottom panel in Fig. 6 shows the
effect of the parameter 7. As expected, as the temptation to
defect increases, the fraction of cooperators decreases.

IV. DISCUSSION AND CONCLUSION

We have presented numerical results for an off-lattice model
of mobile agents playing the PD game while randomly moving
across a closed region. This model combines ingredients found
in two distinct models for such systems: the excluded area
found in lattice simulations and an available continuous space.
We arrive at two important results: first, if the agents are not
point-like, a nontrivial coexistence phase with cooperators and
defectors becomes possible (besides the trivial one when the
exclusion range is larger than the interacting radius); second, it
is possible to geometrically interpret, in terms of percolation,
the observed transitions. An important role is played not only
by geometric percolation, irrespective of the game dynamics,
but also by the percolative properties of defector clusters,
whose threshold depends on the details of the game.

When the agents’ interaction is prevented by the hard
core, trivial coexistence between cooperators and defectors
is possible. Beyond that region of the phase diagram, no
cooperation is possible in the absence of a percolating
geometric cluster. Random mobility provides an evaporating
mechanism for groups of cooperators that is detrimental to
cooperation, as isolated cooperators are easily preyed on.
However, in the presence of a percolating cluster, it is easier
for a detaching cooperator to be in contact with another
cluster and be protected. When hard cores are included,
movements are hindered and the agents spend some time
rattling around the same region, while large displacements
become less probable, which increases the correlation among
agents and benefits cooperation even further. This localization
is probably the mechanism responsible for the coexistence
between cooperators and defectors that is not present for
¢ = 0. Interestingly, the presence of defectors is only possible
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if they form a percolating cluster and no finite cluster of
defectors is stable: either they grow, merge with others,
and span the whole lattice or the isolated cluster becomes
extinct. This is our main result: finite-size cooperators and
defectors, whose hard core is an effective, averaged interaction
restraining their movements, are able to coexist over a broad
region of the phase diagram only if defectors are organized in a
interconnected cluster, a percolating sea of defectors. A similar
effect was found for the public goods game played on a lattice
with empty sites and no mobility [16]. It would be interesting
to investigate whether this condition for coexistence between
cooperators and defectors also occurs in lattice models, where
excluded area is inherent to the formulation of the problem.

In this paper we have focused on the particular homo-
geneous case of equal sizes and equal velocities for both
cooperators and defectors. Following Refs. [45] and [55], it
is essential to explore the whole (S,7") parameter space and
the dependence on the chosen dynamic rule in order to check
the robustness of cooperation. Furthermore, several extensions
are possible. For example, velocities may not be constant
[29] and depend on the neighborhood [45] or strategy. The
hard-core radius may also correlate with strategy, rc and
rp for cooperators and defectors, respectively. In particular,
if individuals coevolve with mutations, Is there an optimal
equilibrium radii ratio to which the system converges or,
instead, a permanent arms race? What are the effects of
having size dispersion? If velocity and size coevolve along
with strategies, defectors may become small and fast while
cooperators become large and slow. Finally, what happens if
there is a fraction of fundamentalists (both cooperators and
defectors or just defectors) whose strategies or positions never
change? In all these cases, it is important to study also the
geometric properties of the interfaces between cooperator and
defector clusters since these are the places where all strategy
flips occur. From a more physical perspective, it would be
interesting to find out, for each transition line, which dynamical
universality class it belongs to [58]. These and other relevant
questions are being considered.
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