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a b s t r a c t

We present an extensive, systematic study of the Prisoner’s Dilemma and Snowdrift games
on a square lattice under a synchronous, noiseless imitation dynamics. We show that for
both the occupancy of the network and the (random) mobility of the agents there are
intermediate values that may increase the amount of cooperators in the system and new
phases appear. We analytically determine the transition lines between these phases and
compare with the mean field prediction and the observed behavior on a square lattice. We
point out which are the more relevant microscopic processes that entitle cooperators to
invade a population of defectors in the presence of mobility and discuss the universality of
these results.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Spatially distributed viscous populations sustain cooperationdue to the fact that individuals formclusters for self-defense
and mutual support (see Refs. [1–5] and references therein for reviews). Nonetheless, the conditions for the appearance
and the properties of such cooperative regions are not fully understood both in real and model systems. Given that the
spatial localization allows a continuing interaction within the local neighborhood, the population viscosity may prevent
defectors from invading the whole population, what otherwise occurs under random mixing. Once the high viscosity con-
straint is relaxed and density permits [6,7], agents are able to diffuse. There are many ways in which mobility [8–12] can
be implemented: it may be random [13–20], strategy dependent [21], driven by payoff [22–25], success [26–28] or neigh-
borhood [29–34], take or not [25,33,35] excluded volume into account, be local or long ranged, occur on a discrete lattice
(regular or complex) [13–18,22,28,30,36], in continuous space [25,33,35] or in a fully connected system, it may be explicit
or included as a cost [36], etc. Our previous results [13,17] show that even in the simplest framework of random, non-
contingent mobility of unconditional agents, diffusion is remarkably able to enhance cooperation within broad conditions.
Besides the typical interval between generations, a new timescale is involved when mobility is taken into account in this
simplemodel, the diffusion characteristic time. If the typical time a step takes to occur ismuch larger than the generation in-
terval, the high viscosity limitmay be a reasonable approximation. On the other hand, if diffusion is fast, the behavior should
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approach, density permitting, the fully mixed case. An interesting regime is when both timescales are similar: in that case
the order in which the dynamics is performed, whether the offspring generation occurs before of after the diffusion step,
has important consequences for the cooperative outcome [13,17] and is often neglected.

We consider a 2 × 2 game with pure, unconditional strategies: cooperation (C) or defection (D). Cooperation involves a
benefit to the recipient at the expense of the provider. Depending on the mutual choice, the earned payoff is: a reward R
(punishment P) if both cooperate (defect), S (sucker’s payoff) and T (temptation) if one cooperates and the other defects,
respectively. In the Prisoner’s Dilemma (PD) game, the above payoffs are ranked as T > R > P > S and 2R > T + S. Thus,
it clearly pays more to defect whatever the opponent’s strategy: the gain will be T > R if the other cooperates and P > S in
the case of defection. The dilemma appears since if both play D they get P , what is worse than the reward R they would have
obtained had they both played C. On the other hand, there are situations when mutual defection is even worst than being
exploited, and P < S. This defines a different game, in which T > R > S > P , known as Chicken or Snowdrift (SD) [37].
Without loss of generality, we renormalize all values such that R = 1 and P = 0, the values of T and S remaining as the
parameters that define the nature of the game.

In a randomly mating population (mean field limit) with both C and D strategies present, defection will be the most
rewarding strategy for the PD game, independently of the opponent’s choice. As shown by Nowak and May [38], when
spatial correlations are included in the population, for example by placing the agents on a lattice, cooperators form clusters
inwhich the benefits ofmutual cooperation can outweigh losses against defectors, thus enabling cooperation to be sustained,
in contrast to the spatially unstructured game, where defection is favored (these effects of the spatial structure may be due
to either the distribution of agents in space or to the context preservation during the dynamics, see Ref. [39] for a detailed
account). Since then, the original Nowak–May version was extended and modified in several different ways (see Ref. [3]
and references therein). Once placed on a network, by analyzing the possible neighborhoods [40,41], one can divide the
parameter space into several regions with different levels of cooperation and spatial structures. In this work we extend
their analysis to include the SD game, dilution andmobility of the agents, locating all transitions between distinct phases. In
the presence of defects (density ρ < 1) but without mobility, all transitions already present in the full system remain, but a
few others appear because of the larger number of possible local configurations. Remarkably, when diffusive processes are
also present, in which an agent jumps to an empty site with probability m, whether new phases appear or not depends on
the chosen dynamics.

A systematic study of how often spatial structure favors cooperative behavior has been the program of a few papers (see,
for example, Refs. [39,41–45]). The task is not simple due to themultitude of different dynamical rules and lattice geometries
that may be considered [3]. Nonetheless, we complement these previous works by including dilution and mobility while
considering a parallel imitation rule, in which each individual combats with all its closest neighbors (if any), accumulates
the corresponding payoff and then may either move or try to generate its offspring. In the reproduction step, each player
compares its total payoff with those of its neighbors and changes strategy, following the onewith the greatest payoff among
them. This strategy changing updating rule preserves the total number of individuals, thus keeping ρ constant. Notice that
although there is no noise in this updating rule, the random mobility to be considered here now has a similar role and
prevents the system from becoming stuck on shallow minima. Initially, an equal number of cooperators and defectors are
randomly placed on a two dimensional square lattice of linear size L and periodic boundary conditions, and the system is
allowed to evolve until a stationary state is attained, when the measures are thus taken.

The paper is organized as follows. In the next section, the phase diagrams for fully occupied and diluted (with andwithout
random mobility) are obtained and compared with numerical simulations and the mean field prediction. We then discuss
the possible mechanisms leading to the enhancement or inhibition of cooperation and finally present our conclusions.

2. Phase diagrams

When spatial correlations are not relevant, aswhen all agents interactwith all others (mean field limit), the phase diagram
is easily obtained, Fig. 1 (see, e.g., Ref. [42]). For P = 0 and R = 1 there are two transition lines, one at T = 1 and other at
S = 0, dividing the TS plane into two sections above T = 1,1 the PD game for S < 0 and the SD for S > 0. When S < 0
(and T > 1), defectors dominate and the relative2 density of cooperators, ρc, is equal to 0. On the other hand, for S > 0 (and
again T > 1), cooperators and defectors coexist with ρc = S/(S + T − 1).

When spatial localizationbecomes an important factor, the correspondingphase diagramcanbe constructedby analyzing
all the neighborhood configurations that are possible in the confrontation between two agents having different strategies.
The transitions present in the phase diagram consider all such configurations, irrespective of their probability of occurrence.
If a given local configuration is rather rare, it might happen that our finite time simulations on a finite lattice are not
able to sample it and, as a consequence, two phases might look rather similar or perhaps identical. In the following, we
consider a square lattice with the von Neumann neighborhood (nearest neighbors only) and without self-interaction, but
the results can be extended to other lattices and neighborhoods, although the complexity of the task may vary. Unless

1 There are indeed two more regions for T < 1, but they are not considered here: for S > 0 (Harmony game), ρc = 1, and for S < 0 (Stag Hunt game),
the amount of cooperators depends on their initial density: if it is larger (smaller) than S/(S + T − 1), then ρc = 0 (1).
2 In this paper, all densities are relative to the total number of agents, not sites.
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Fig. 1. Mean field (fully mixed) phase diagram for P = 0 and T > R = 1. The solid line shows the transition from the defector dominated phase (S < 0,
PD game) to the coexistence one (S > 0, SD game). The scale at the right indicates the density of cooperators, ρc = S/(S + T − 1), for S > 0, with darker
colors assigned to larger ρc .

specified, all simulated systems have a linear length of L = 100, and results are averaged over 100 different initial random
configurations such that ρc(0) = ρd(0) = ρ/2. The number of initial steps neglected before the asymptotic state depends
on the density and mobility. In order to compare with our previous works, we consider the ‘‘imitate-the-best’’ dynamics,
in which all individual’s strategies are synchronously replaced by the strategy adopted by the individual with the highest
collected payoff in the neighborhood. Besides this synchronous updating of the strategies, a Monte Carlo Step (MCS) also
comprises an attempt, by each agent, to diffuse: each agent blindly chooses a neighboring site and, if it is empty, jumps to it
with probabilitym. Using the notation of Schweitzer et al. [41], K n

θ denotes the local occupation pattern and p(K n
θ ) the payoff

acquired by an individual in such a configuration. Here, n ∈ {0, 1, 2, 3, 4} gives the total number of cooperators in the local
neighborhood and θ ∈ {0, 1} describes whether the center cell is occupied by a defector or a cooperator, respectively. In the
absence of empty sites, the number of defectors in a neighborhood is 4− n. The construction of the phase diagram amounts
to the analysis of all the possible confrontations of K n0

0 and K n1
1 , for n0 ∈ {1, 2, 3} and n1 ∈ {0, 1, 2, 3, 4}. The value of n0 = 0

is not important because a D having four D neighbors will either be surrounded by Ds with the same payoff or with higher
payoff D players that have C neighbors, since T > P . The value of n0 = 4 is not considered because with the chosen payoffs
(T > R), a D with four C neighbors always has the highest possible payoff. This value might play a role when considering
games in which (T < R), as in the Stag Hunt [42,46].

2.1. Full occupancy (ρ = 1)

We initially consider the simpler case without empty sites (ρ = 1), in which obviously no mobility, as implemented
here, is possible. For the PD and SD games, the following family of functions compare the payoffs that result from all possible
confrontations of a D and a C, having local neighborhoods given by K n0

0 and K n1
1 , respectively,

fn0n1 =
n1R + (4 − n1)S − (4 − n0)P

n0
. (1)

If T > fn0n1 , then the D with local configuration K n0
0 will beat the C with local configuration K n1

1 ; if T < fn0n1 , then the D will
beaten; and if T = fn0n1 , there will be a draw between the two players. Indeed, the behavior at a transition point may be
different from theneighboring regions,whatmakes each segment between line crossings a phase in itself. The phase diagram
will then be composed of the regions defined by all these functions, together with the inequalities that define the games.
For given values of R, P and ni in the allowed ranges, these 15 functions, which can be separated into 3 groups depending on
n0, represent the values of T where there are transitions which divide the parameter space into different phases. Without
loss of generality, we can take R = 1, so that the above functions will describe planes in the three dimensional space of
T , P and S, leading to a complex phase diagram in three dimensions. The usual choice of P = 0 takes a 2d cross-section
of this three dimensional parameter space allowing a simpler description of the phase diagram, as shown in Fig. 2. Within
each phase, the behavior is the same, and it is enough to numerically study a single representative point for synchronous
imitation dynamics, as can be seen in Fig. 3, where different simulation points in the same phase lead to the same outcome.
The transition between twoneighboring phases is usually discontinuous, the density of cooperators presenting abrupt jumps
when a transition line is crossed, as can be seen in Fig. 3. The dashed lines in Fig. 2 are not transition lines, but two common
parametrizations of the payoff matrix for these games. The diagonal dashed line considers T = 1 + r and S = 1 − r
(such that T + S = 2), where r is a parameter. The second parametrization line, the vertical one at S = 0, is exactly at
the border between the SD and PD games, and is known as the weak PD. Notice that several phases are left out with such
parametrizations.

Fig. 3 (top) shows, for T = 1.4, the fraction of cooperators as a function of S, along with the mean field result. Two
important features can be noticed. First of all, while for S < 0 the spatial correlations significantly increase the amount of
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Fig. 2. Two dimensional cross section of the phase diagram displaying the asymptotic density of cooperators, for full occupancy (ρ = 1) and P = 0, T >

R = 1 and S < R. The solid lines represent the functions fn0n1 which delimit different phases (functions having the same n0 intercept at the same point on
the line S = 1). White regions are dominated by defectors, while the blue/gray ones have some fraction of cooperators, its density indicated by the scale
on the right. The color code does not represent what happens at the transition lines, where draws happen and the fraction of cooperators may differ from
the two neighboring phases. Notice that, for a fixed T , ρc is not monotonic in S (see Fig. 3). The dotted line T = 2− S is a usual choice for the payoff matrix:
T = 1 + r and S = 1 − r, r being a payoff parameter. Another traditional choice, also shown as a dotted line, is S = 0 and separates the PD and SD games
(however, this is a transition line in the mean field case). The horizontal line at T = 4/3 separates the low C region (above) from the high C one (below).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. (Top) Asymptotic density of cooperators as a function of S for T = 1.4, when the lattice is fully occupied (ρ = 1) and the initial state is random.
Notice both the abrupt change of ρc when a transition line is crossed and the non monotonic behavior of ρc . On those lines, the value of ρc may be very
different from the neighboring phases. Also shown is the fully-mixed result, for which the density of cooperators is non zero only for S > 0 and is an
increasing function of S in that interval. Notice that for the region around the weak PD (S = 0), spatial correlations enhance cooperation [38]. (Middle)
Fraction of active sites ρa for the same parameters. Besides the transition points, only the 0.6 < ρ < 0.7 region breaks the increasing monotonicity.
(Bottom) The fraction ρper of cooperator–defector pairs (to be compared with the snapshots of Fig. 4).

cooperation when compared to the mean field limit, this is not always the case for S > 0 (SD). Indeed, for S & 0.24, the
mean field curve lies above the lattice results, while for 0 < S . 0.24, spatial correlation improves cooperation. The second
evident feature is the non-monotonicity of ρc: as S increases, one would intuitively expect larger levels of cooperation;
instead, some regions (most prominently, around S = 0.65) present a smaller than expected fraction of cooperators. A large
amount of cooperation is related to the existence of a long tail in the distribution of group sizes (a group is defined as a
set of neighboring, same strategy agents), as is the case, for example, for S = 0 and 0.8. On the other hand, for S = 0.65
the system has a much lower level of cooperation and very few large clusters. This can be checked in Fig. 4 in which some
characteristic snapshots are shown for T = 1.4 and 1.8. For S = 0, leftmost snapshot, the minimal cooperative cluster able
to grow is 2×2, while smaller or linear clusters are removed in the first steps of the dynamics. The surviving clusters are far
away from each other and grow through flat edges (with at least two cooperators) while diagonals are stable (although both
cooperators and defectors at a diagonal interface have two neighboring cooperators, and p(K 2

1 ) < p(K 2
0 ), the cooperators are

backed up by interior cooperators with higher payoffs). Thus, rather large and compact clusters may grow before starting
to interfere with each other. Once they get close enough, defectors trapped between these clusters will have cooperators
at both sides, and therefore will acquire a large payoff and reproduce. These defector clusters will grow as well until a
dynamical equilibrium is achieved. For S = 0.5, second snapshot, since p(K 0

1 ) > p(K 1
0 ), single cooperators are able to seed

a growing cluster and survive in a sea of defectors. The clusters are much less compact than in the previous case and the
lattice is populated by those smaller clusters that were decimated in the S = 0 case. Being less compact, clusters increase
the amount of interactions between cooperators and defectors and both the fraction of interface and active sites increase.
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Fig. 4. Snapshots after 103 MCS showing typical configurations for several values of T and S for ρ = 1. Blue/yellow (black/gray) sites represent
cooperators/defectors, respectively. Larger levels of cooperation are associated with the presence of a long tail in the group size distribution, while the
compactness of the large cooperator groups depends on S, being large (small) for small (large) S. Notice that the rightmost snapshot is the only one with
T = 1.8. In this last case, 2 × 2 squares of defectors separated by lines of cooperators form a fully stable structure since p(K 4

1 ) > p(K 2
0 ) > p(K 2

1 ). Because
of the random initial state, we only observe patches of such structure.

For the region around S = 0.65, the only difference in the ranking of payoffs is that we now have p(K 1
1 ) > p(K 2

0 ), while
for S = 0.5 it was p(K 1

1 ) < p(K 2
0 ). Interestingly, although a cooperator with a single cooperative neighbor fares better for

S = 0.65 than for 0.5, when comparedwith a defectorwith two cooperating neighbors, the density of cooperators is strongly
reduced when compared with the neighboring regions.

If one ranks all values of p(K n
θ ), for the values of T and S considered in Fig. 4, as S increases, the unique modification

is that p(K 2
0 ) moves further down in the payoff ranking. For S = 0.8, for example, p(K 2

0 ) and p(K 0
1 ) switch places (when

compared with S = 0.65) and p(K 2
0 ) < p(K 0

1 ). A sublattice of cooperators (or, equivalently, defectors) separated by every
other site is stable, while the intermediate sites may flip from one to the other. For a random initial state, the lattice will
be populated with small patches of such a stable structure. In the PD region, cooperation is sustained by compact groups of
cooperators while they decrease in compactness as S becomes larger, accompanied by an increase of cooperator–defector
interfaces, since unilateral cooperation becomesworthwhile. It is important to emphasize that although it seems at first that
the increase of S would enhance cooperation in a population, what it indeed promotes is a continued interaction between
cooperators and defectors, since the punishment for being exploited decreases. In fact, onemay introduce ameasure of such
exploitation as the relative number of CD pairs (ρper), also related to the total perimeter of cooperator clusters and shown
in Fig. 3, bottom panel. These interfaces can also be directly observed in the snapshots of Fig. 4, in the form of checkerboard-
like regions in which large groups of cooperators exist with nested defectors. Notice that although ρc is not monotonic in
S, ρper is an almost monotonically increasing function of S (the region 0.6 < ρ < 0.7 is very particular: besides the strong
depression in the amount of cooperators, it also breaks the monotonicity, as a function of S, of both ρper and the fraction of
strategy switching, i.e. active, sites, ρa).

Interestingly, the elongated structures of cooperators in the SD game, observed in the rightmost snapshot of Fig. 4, are
similar to those observed in Ref. [47] although the dynamics and the parameters are not the same, indicating that the results
found here for a specific dynamical rule may bemore generally valid. In addition, those dendritic structures are but one way
of creating large interface structures, alternatives being isolated cooperators or checkerboard-like groups [48].

2.2. Diluted lattices (ρ < 1) without mobility (m = 0)

Disorder may be included in these games in several different ways, for example, as site [6] or bond [49] dilution. We
consider here the former, once the mobility mechanism that we will later use is dependent on the existence of empty sites.
In Ref. [6] we have seen that, for theweak version of the PD game, a small amount of disorder gives rise to pinning points that
prevent the strategy switching waves from traversing the system. Indeed, groups of cooperators can be shielded by empty
sites, what could be interpreted as natural landscape defenses, and keep their strategy for long intervals of time. These long
lasting strategies may be observed, for example, by measuring the persistence function, the fraction of agents that did not
switch strategy since t = 0. The existence of an asymptotic zero persistence has been shown [6] to be related to the existence
of an expressive number of active sites (those that changed strategy since the last time step) at larger densities, while for
smaller ones the persistence attains a finite plateau and there is a vanishing number of such active sites. In particular, there
is an optimal intermediate density at which cooperators have a maximum population, what remains valid even when the
imitating updating dynamics is stochastic [7]. In this last case, in which the optimal cooperative state is closely related to the
percolation threshold [7], the existence of fractal clusters at the threshold seems to be important as neither disconnected
nor compact clusters are present that help defectors to invade and exploit cooperator communities.

We here extend the results of Ref. [6] for other values of S (see also Ref. [17]), and explore its microscopic interpretation.
The introduction of empty sites changes the phase diagram by allowing new configurations of local structures. Therefore,
the phase diagram will be composed by the lines that were already present in the case without empty sites, Fig. 2, plus a
few more. Besides such new phases, the amount of cooperation will also depend on the total density ρ [6].

Extending the notation introduced earlier, the local neighborhoods shall be denoted by K ne
θ , where θ ∈ {0, 1} describes

the occupation of the center cell, e ∈ {0, 1, 2, 3, 4} gives the total number of empty sites in the local neighborhood and
n ∈ {0, 1, 2, 3, 4} (n ≤ 4− e and n0 ≠ 0) gives the total number of cooperators in the local neighborhood. Now, the number
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Fig. 5. Phase diagram for diluted lattices without mobility (m = 0) and several densities ρ. The color code indicates the level of cooperation ρc/ρ. The
solid lines represent the functions fn0n1e0e1 which delimit different phases. Although the levels of cooperation are quite similar to those of Fig. 2, a fewmore
lines (and, consequently, a large number of new phases) are introduced due to dilution. This is the case of the four lines that cross at (S, T ) = (1, 3/2) and
another one that passes through the point (1, 3). In the bottom figures, for ρ = 0.3 and 0.5, cooperation is sustained, even if at low levels, in all regions.

of defectors is given by 4 − n − e. In this way, we have K n0
θ ≡ K n

θ . In addition to the functions given in Eq. (1), the following
functions which compare the local neighborhoods K n0e0

0 and K n1e1
1 , with e1 ≠ 0, should also be taken into account

fn0n1e0e1 =
n1R + [4 − (n1 + e1)]S − [4 − (n0 + e0)]P

n0
. (2)

Using the above notation, fn0n100 ≡ fn0n1 . Not all of these functions are used, since many give conditions in the region T ≤ R
(valid for other games).

The values of (n0, n1, e0, e1) that contribute to the diagram in the range T > R andwhich lead to functions different from
the ones listed for the case ρ = 1 are: (2, 3, 0, 1), (2, 2, 0, 1), (2, 1, 0, 1), (2, 0, 0, 1), (1, 3, 0, 1), (1, 2, 0, 1), (1, 1, 0, 1),
(1, 0, 0, 1), (1, 0, 0, 2), (1, 2, 0, 2) ≡ (2, 4, 0, 0) and (1, 1, 0, 2) ≡ (2, 2, 0, 0). It should be noted that this diagram is only
valid for the case P = 0, because in this case a Dwith a D neighbor is equivalent to a Dwith an empty neighbor. If P ≠ 0, then
these two configurations are not the same, whatwill give rise to further phase separating lines. Fig. 5 shows the diagrams for
several values of ρ. For ρ = 0.9, it is not very different from the full ρ = 1 case, apart from an intensification of cooperation
in the lower right corner of the figure, what is consistent with the results of Refs. [6,7] that showed that a small amount
of quenched dilution is an enhancement factor for cooperation as it prevents defectors from invading cooperator clusters.
Stronger deviations are observed for ρ = 0.5: although presenting cooperation in the whole region shown, the phases
that presented cooperation previously now have a smaller density of cooperators. For small densities, mainly below the
percolation threshold, the fate of isolated clusters only depends on their initial composition of Cs and Ds. Thus, regions that
were previously unable to sustain cooperation now have small but finite fractions of cooperators (e.g., in the left top corner
of the phase diagrams in Fig. 5). For even smaller densities, the final configuration differs little from the initial one, ρc tends
to 1/2 and the phase diagram becomes homogeneous, independent of S and T .

An example of the sudden transitions occurring at the delimiting lines between phases is shown in Fig. 6 for a cut at
T = 1.4 for several densities [17]. Again, the transitions can be observed as jumps in the value of ρc at the specified points.
Themost notable transition occurs at S = 0.4: depending on the total density ρ, the fraction of cooperatorsmay either jump
upwards or downwards, and the change is muchmore pronounced than for ρ = 1. Cooperation is enhanced at intermediate
densities and may even fare better than the mean field (e.g., for ρ = 0.5 and 0.7 in the figure). The structures formed by
cooperators also follow the overall pattern observed for ρ = 1 and a few examples are shown in Fig. 8: compact groups in
the PD game (left column) and dendritic or checkerboard like in the SD game. For S = 0 (left column), although the ever
present small cooperator clusters start to increase in size after the percolation threshold, only well above this transition
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Fig. 6. Average fraction of cooperating individuals ρc versus S (T = 1.4, R = 1 and P = 0) for different values of the density ρ without mobility (m = 0).
The panel at the bottom shows, as vertical lines, the transition points for ρ = 1: S = −0.3, −0.2, 2/15, 0.35, 0.4, 0.6 and 0.7. In the remaining panels, in
which ρ < 1, new transitions appear at S = 0.2, 7/15, 0.8, 0.9 and 14/15. Interestingly, besides the transition at S = 0.4 representing a strong change
in ρc , whether the jump is upward or downward depends on the value of ρ. Also shown (curved line) is the mean field result. Notice that for large values
of S, small and large densities fare worse than the mean field and cooperators perform better only for intermediate densities in the presence of spatial
correlations.

Fig. 7. Average fraction ρa of active (green/light gray circles) and pairs of opposite strategies (blue/dark gray squares), ρper , versus S (T = 1.4, R = 1 and
P = 0) for different values of the density ρ without mobility (m = 0). The transition lines follow Fig. 6.

point do they occupy a large fraction of the network. The optimal density for cooperators is not that high when stochastic
rules are used, being shifted towards the threshold [7]. For S = 0.8 (right column), on the other hand, cooperators group
themselves into dendritic or checkerboard structures (or stay isolated).

The density of cooperators ismonotonic in S only for very lowdensities, Fig. 6,while for large S (most notably for S > 0.4),
ρc tends to decrease and becomes non monotonic. More information can be obtained by measuring the fraction of active
sites, ρa, and the fraction of pairs of different strategies, ρper, as shown in Fig. 7. For low densities, ρ = 0.3 and 0.5 in Fig. 7,
the configuration is almost frozen and both quantities are very close to zero. Otherwise, they present a tendency to increase
with S (albeit exceptional intervals are still present). Interestingly, although there seems to be a correlation between the
two parameters for all densities, deviations are stronger close to the optimum density (see the case of ρ = 0.9 in Fig. 7).

2.3. Diluted lattices (ρ < 1) with mobility (m ≠ 0)

In the case m = 0 studied in Ref. [6] (T = 1.4 and S = 0), and for the noiseless imitation rule considered here, the
fraction of cooperators starts to increase again around the site random percolation threshold (ρ ≃ 0.593 in the square
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Fig. 8. Snapshots for m = 0, after 104 MCS, showing typical configurations for several values of S with T = 1.4 and densities both below and above the
site random percolation threshold (ρ ≃ 0.59). Blue/yellow (black/gray) sites represent cooperators/defectors, as in Fig. 4, while white ones are empty
sites. Notice that for a given density, the empty sites in these snapshots are in the same position.

lattice). At low densities, cooperators persist on some isolated clusters because of a favorable initial condition that allowed
them to overcome defectors. In this regime, and depending on how mobility is implemented, defectors may act as free
riders that eventually exploit the whole system (remember that random diffusion is a disaggregating factor), leading to the
extinction of cooperators. As shown in Ref. [13], there is a minimum density above which cooperators are able to survive in
the presence of mobility. Although in some cases such density is above the percolation threshold, and cooperation seems
to need an underlying percolating cluster in order to be maintained when m ≠ 0, cooperation may also resist below the
percolation threshold. Indeed, with a smaller temptation, isolated groups of cooperators are less predated by defectors and
are able to survive.

Whether or not the phase diagram changes when random mobility is also taken into account depends on the details of
the diffusion. When the offspring step is performed before the diffusion (COD—combat–offspring–diffusion dynamics—in
the notation of Ref. [13]), no new transition appears, and the phase diagram has the same cross sections as those of the
previous section, whatever the value of m, albeit with different fractions of ρc in each phase. These diagrams are shown
in Fig. 9. Notice that many regions now are fully dominated by defectors. In general, low mobility (left column) is more
favorable to cooperation: besides being present in more regions of the phase diagram, the fraction of cooperators is also
higher. However, the SD game benefits much more frommobility than the PD, as most of the shaded regions are located for
S > 0. The latter, in particular, only presents a finite fraction of cooperators for high densities (see also Ref. [17]). Although it
is difficult to summarize its general behavior, the SD game fares better at intermediate densities. In the snapshots of Fig. 10
we observe how cooperators are able to build clusters even in the presence of random mobility. These clusters, however,
are less compact than those for the case without mobility, Fig. 8. An interesting aspect in those snapshots is the presence of
defector and cooperator-free regions. In the upper row, forρ = 0.7 (above the percolation threshold), cooperators aggregate
in isolated domains while the defectors percolate throughout the lattice. In the bottom row, on the other hand, although the
connected domains are smaller, a different kind of order can be observed: cooperators and vacant sites form large regions
free of defectors. These cooperators, due to the rattling aspect of diffusion, are indeed correlated. Moreover, these defector-
free regions now percolate. For this COD dynamics, the agents do not carry any payoff with them, since the combat and
offspring steps are performed in succession before diffusion. In other words, there is no memory of the previous location.
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Fig. 9. Phase diagrams for the case in which the diffusive step is taken after the offspring generation (COD). The smaller mobility has more cooperative
regions in the phase diagram (blue) and an overall higher level of cooperation in each region. Notice also that the PD game does not present cooperation
at low densities. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Snapshots for m = 0.1 and T = 1.4 with COD dynamics for several times, showing typical configurations. The top row is for ρ = 0.7 and S = 0,
while the bottom row shows ρ = 0.3 and S = 0.5. Blue/yellow (black/gray) sites represent cooperators/defectors, as in Fig. 4, while white ones are empty
sites. The bottom row, despite its small density (below the percolation threshold), has percolating defector-free regions. The upper row presents, on the
other hand, cooperator-free percolating regions.

Although evaporation is an importantmechanism to decrease cooperation (cooperators thatmove away from the surface
of clusters tend to become defectors), when its rate is not too large or if diffusion is prevented by geometric hindrance at
larger densities, clusters may be stable. If the cluster surface is locally flat, cooperators located at the surface make contact
with three other cooperators and have high payoff. Moreover, they also compare their payoff with interior cooperators
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Fig. 11. Two dimensional cross section of the phase diagram when mobility is considered after the combats (CDO dynamics). Notice that although for
m = 1 the density of cooperators is monotonic, form = 0.1 it is not, and intermediate densities sustain more cooperation.

whose payoff is even larger. These regions are prone to cooperation and any defector that, after diffusion, gets in contact
with the cooperative surface will be assimilated. This is the basic growth mechanism in the COD case.

The phase diagram for the CDO (combat–diffusion–offspring) case is slightly different from the one for empty sites or
COD dynamics. This is due to the fact that in them, the configurations given by K 0e0

0 (Dwithout cooperating neighbors) never
compete with any K n1e1

1 (C with cooperating neighbors) configuration. In the CDO, however, since the diffusion step occurs
between the contest and the generation of offspring, the confrontations described above are possible due to the change in
configuration between the two steps. Therefore, by taking these new possibilities into account, a few more lines should
contribute to the phase diagram, namely

g(n0=0,n1,e0,e1) =
(4 − e0)P − n1R
4 − (n1 + e1)

, (3)

which are valid for n0 = 0 and n1 + e1 ≠ 4. If the latter inequality is not satisfied, the functions will give rise to conditions
on R and P . These functions mark transitions at S = g(n0=0,n1,e0=0,e1), for the different possible values of n1, e1 and e0. For
R = 1 and P = 0, this means that there will be new transition points at the following values of S: −3, −2, −1, −1/2, −1/3
and 0, independent of e0. No new transition appears for S > 0. It is interesting to notice that due to the new transition
line at S = 0, this is the only case (besides the mean field) in which the regions around the weak PD case (S = 0) differ.
These lines are shown in Fig. 11 for several values of ρ and m. Most of the regions are fully dominated by cooperators,
although a few regions (mainly at small S, large T ) are cooperator free. As shown in Fig. 11, right column, the high mobility
case (m = 1) is more favorable to cooperation at low densities. On the other hand, for low mobilities (left column), at
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Fig. 12. Top: average fraction of cooperating individuals for CDO dynamics,m = 1, T = 1.4 and S = 0. For intermediate densities, cooperators dominate.
At low densities (ρ . 0.18) there is a discontinuous transition to a phase in which all agents become defectors while at high densities, ρ & 0.73, the all C
state continuously turns into a mixed strategy phase. Bottom: order parameters indicating the leading microscopic processes originating the intermediate
all C phase. We also indicate the more relevant microscopic process in each region. Yellow/light gray are defectors, blue/dark gray are cooperators, and
white boxes are empty sites to which one of the agents may jump. The letters indicate the payoff accumulated by the combating agents. Notice that the
rightmost process is not diffusive. Below ρ ≃ 0.18, since it has a C neighbor, the defector has payoff T when it collides with the single cooperator whose
payoff is zero, winning the combat. On the other hand, above ρ ≃ 0.18, the cooperator with payoff R, because of its C neighbor, outperforms the defector
whose payoff is zero. Being the dominant process, this leads to a fast increase in the population of cooperators. Up to ρ ≃ 0.73, cooperators still have an
advantage when interacting with defectors after the jump, since they had accumulated enough payoff from their previous interaction. However, above
this value of ρ, a non diffusive process, reminiscent of the original, full density PD game, allows defectors to invade previously cooperative regions, thus
decreasing ρc .

intermediate densities the fraction of cooperators is larger. Differently from the COD dynamics, here the agents move
after the combat and thus carry part of their previous history along. This memory of their recent combat is important to
understand the mechanism responsible for the enhancement of cooperation. As an illustration, consider the case studied in
Ref. [13] in which a C dominated phase occurs for 0.18 . ρ . 0.73 for T = 1.4, S = 0 and m = 1 (top row of Fig. 12). For
the low densities close to ρ ≈ 0.18 the mechanism does not rely on the existence of a spanning cluster of agents. Indeed,
the largest occurrence is of single and two agent clusters. The transition rate rc with which defectors become cooperators
depends on the local neighborhood of the two agents at the moment in which their payoffs were collected (combat) and
has two main contributions: rc = Prob(K 1e1

1 , K 0e0
0 ) − Prob(K 0e1

1 , K 1e0
0 ), where the probabilities are the number of the given

encounter divided by the total number of active sites averaged over time in the beginning of the simulation (t ≤ 100). That
is, the number of cooperators increases when a C with one C neighbor (K 1e1

1 ) meets, after the jump, a D without C neighbors
(K 0e0

0 ) and decreases when a D also with one C neighbor (K 1e0
0 ) meets, after the jump, a C without other C neighbors (K 0e1

1 ).
In the bottom row, left side, of Fig. 12 we depict these processes, each one in the region in which it is dominant, along with
the curve showing that rc changes sign around the point at which the density of cooperators explodes. What changes from
one case to the other as ρ increases is that clusters with an increasing number of agents become more common and give
support to the stability of the CC pair.

This transition at low densities does not occur in the COD dynamics and is the mechanism that allows a C to leave a C
cluster and continue cooperating in the CDO dynamics.

The region in which the fraction of cooperators starts to decrease (ρ & 0.73) is above the percolation threshold,
the system is denser and it is much more likely that an individual has several neighbors. Consequently, the microscopic
process responsible for this decrease is different from the previous one. In effect, the observed decrease in the density of
cooperators as the lattice approaches full occupancy is rather general, non diffusive and reminiscent of them = 0 behavior
for increasing densities [6]. Indeed, as the number of empty sites decreases, irrespective of themobility, the number of active
sites increases, signaling that there is less defect-induced pinning in the system and cooperators become more vulnerable
to defectors. Themobilitym, also being a depinningmechanism, plays a role by shifting the transition to smaller values of ρ.
It should be noted that the main microscopic processes that drive a given transition are dependent on the values of T and S,
besides the system occupancy, because a change in ρ modifies the expected number of neighbors that each individual has. In
the particular case of Fig. 12, wemay also point that, differently from the low density transition, there aremanymicroscopic
processes that are relevant for increase of defectors. As an example, consider those associated with neighborhoods K 2e1

1 and
K 0e0
0 (D → C) or K 1e1

1 and K 3e0
0 (C → D). We show in the right part of Fig. 12, the order parameter that can be built from

these processes, rc = Prob(K 2e1
1 , K 0e0

0 ) − Prob(K 1e1
1 , K 3e0

0 ), and how it changes sign at the transition. There are, however,
other possible combinations of microscopic processes giving rise to order parameters changing sign in this region (although
not necessarily at the same precise value).

For the COD dynamics, it is also not easy to single out a few processes that are responsible for changing the amount of
cooperators.

As an example, we consider the case T = 1.4, S = 0 and very low mobility (m = 0.01) studied in Ref. [13]. The
larger the mobility, the larger is the density capable of supporting cooperation. For m → 0, this minimum density seems
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Fig. 13. Top: average fraction of cooperating individuals for the COD dynamics, m = 0.01, T = 1.4 and S = 0. The system presents a transition from
a cooperator-free phase to a coexistence phase near the percolation threshold ρ ≃ 0.59 for the square lattice. Below this density, the evaporation of C
clusters is not counterbalanced by any mechanism and diffusion is detrimental to the population. Bottom: order parameter associated with the leading
microscopic processes that localize the transition to the coexistence state. Notice that the processes depicted here are only a few of those existing at this
density (also explaining why the curve does not cross at the right value).

to approach the random site percolation threshold. Above the transition, in the phase presenting both cooperators and
defectors, there is a great chance that an individual has 2 or 3 neighbors. The main microscopic mechanisms responsible
for the transition are three encounters: K 2e1

1 and K 1e0
0 (D → C); K 1e1

1 and K 2e0
0 (C → D); K 0e1

1 and K 1e0
0 (C → D).

The latter corresponds to a C player leaving a C cluster and meeting a D. In Fig. 13, we show the order parameter rc =

Prob(K 2e1
1 , K 1e0

0 ) − Prob(K 1e1
1 , K 2e0

0 ) − Prob(K 0e1
1 , K 1e0

0 ), where the probabilities are calculated as above in the CDO case.
It takes the value 0 at ρ ≃ 0.56, slightly below the transition density. This small difference is due to the fact that

many other, less frequent processes have not been included in the order parameter. It should be noted that as the mobility
probability m increases, the evaporation of C clusters becomes greater and the transition is driven to higher values of ρ. At
these higher concentrations, many other microscopic processes become important to determine the value of ρ at which the
transition occurs.

3. Conclusions

We presented a systematic study of the Prisoner’s Dilemma and Snowdrift games, with and without random mobility,
when the evolution follows a non stochastic imitation rule in which all agents, in parallel, choose to follow their more
successful neighbor. Few attempts have been made in the literature [4,39,41,43,44,46] to present a comprehensive account
of the possible behaviors of such evolutionary games. Due to the large number of parameters and possible dynamical rules in
suchmodels, comparisons among them are difficult and the universality of the results difficult to access. The phase diagrams
and the corresponding transition lines are obtained by enumerating all possible local configurations, while the fraction of
cooperators in each phase is measured in Monte Carlo simulations. Some of the regions appearing in these phase diagrams
may also be obtained [46] from the analysis of the fundamental clusters growth conditions. However, when disorder is
present (for example, as dilution), there are finite size sample to sample fluctuations that depend on the random initial
conditions and the disorder realization. In this case, the cooperative fate of the population must be obtained through an
average over the disorder and initial states. Although here we only considered the stationary, asymptotic properties of
the model, it is interesting to notice that the different regions of the phase diagram may have their dynamic properties
characterized by a Lyapunov exponent [46], the active region where Cs and Ds coexist being mostly chaotic (positive
Lyapunov exponents).

Mobility, in its random flavor considered here, is a stochastic element that not only prevents the system from being
trapped in a frozen state but may also strongly enhance the amount of cooperation in the system, despite its tendency to
evaporate and disaggregate clusters. Besides exploring, in the universe of parameters of a particular version of these games,
the conditions under which cooperationmay be amplified by spatial andmobility factors, we also discussed themicroscopic
mechanisms responsible for such behavior. Whether a backbone of supporting agents is essential, actually depends on the
dynamics and the parameters involved. In fact, the parallel noiseless dynamics considered here tends to mask the role of
the percolating cluster [7]. An intriguing feature is that instead of smoothing out transitions, when compared with the
immobile system, a few extra transitions are indeed driven bymobility. Interestingly, the CDO case presents a new transition
separating the semi-planes S < 0 (PD) and S > 0 (SD). The other situation in which this transition appears is within mean
field. Thus, it differs from the other cases considered here in which the so called weak version of the PD game presents the
same behavior for both S = 0+ and S = 0−.

Assuming that the timescale for collecting the payoffs (the combat phase) and the interval between generating offspring
are of the same order, the order in which these steps are taken becomes relevant. In particular, the growth mechanism of
cooperating clusters differs whether the diffusive step is performed after or before the reproduction step. In the former
(COD), cooperators have no memory of their previous encounters, carry no payoff while diffusing and may be easily
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converted to defectors once they move away from the protective zone of cooperative clusters. However, diffusing defectors
may be assimilated by these clusters and this passive mechanismmay increase cooperation whenmobility is not extremely
high or density is not too low. In the latter case (CDO), on the other hand, the agents have memory of their previous location
and may carry a large payoff, thus enabling cooperators to actively invade regions away from the percolating cluster. The
amount of cooperation in this case is much larger than in the previous one.

In diffusive games, there are two competing parameters: density and diffusivity. While larger densities increase the
correlation between neighbors, the effect of random diffusion depends on the density and sometimes decreases correlation.
Itwould thenbe important to compare the results presentedherewith those using different updating anddiffusion (random)
rules, for example, by allowing multioccupation and position swapping [15,16] or different timescales of the selection and
fitness collection processes [20].

A caveat that must be emphasized concerns the phase diagrams and the fraction of cooperators measured in the
simulations. Although the transition lines are exact, the densities of cooperators depicted in the previous phase diagrams
may slightly change when larger system sizes and longer simulation runs are used. Finite size effects are usually not taken
into account once actual populations are finite both in time and space, but are of interest for a better understanding of the
model.

In summary, we presented a comprehensive study of the PD and SD games under a deterministic synchronous updating
rule in the presence of quenched and annealed defects. The different phases in the TS plane and the effects of dilution and
mobility were discussed along with the correspondingmicroscopic mechanisms. Under a wide range of conditions, we have
shown that mobility, even if random, may be responsible for a dramatic increase in the population of cooperators.
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