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A unified theory of the Mercier-ballooning and the compensating-electron Alfvén eigenmodes
(CEAES in positive-shear tokamaks with large-orbit energetic ions is developed. It is shown that the
cross-field drift effect of electrons compensating the electric charge of energetic(tloms
compensating-electron effedieads to rotation of the Mercier-ballooning modes. If the Mercier
stability criterion is satisfied, the ballooning modes rotate in the direction of compensating-electron
frequency, while in violation of this stability criterion the unstable modes rotate against this
frequency. The compensating-electron effect also results in decreasing the growth rate of ballooning
modes, though their instability condition is unchanged. The Mercier and ballooning effects influence
both rotation and decay rate of the CEAEs, the ballooning effect being smaller than the Mercier
effect. As a result, rotation and damping of CEAEs increases/decreases in the case of magnetic
well/hill. © 2005 American Institute of PhysidDOI: 10.1063/1.1877519

I. INTRODUCTION effects on CEAEs. Discussion of the results and conclusions

Large-orbit energetic ions influence rather effectively thed€ given in Sec. V1.

Alfvén eigenmodes in tokamak discharg}é‘é.ln the case
of reversed shear they lead to the reversed-shear Alfvép STARTING EQUATIONS
eigenmodesRSAES (Refs. 1-3 whereas in the case of
positive shear, the compensating-electron Alfvén eigenmodes We work in the weak-ballooning approximation de-
(CEAES (Ref 4) appear. At the same time, it is known that scribed in Sec. 7.5 of Ref. 5. Then, fO”OWing Ref. 9, we
Mercier and ballooning modes can exist in tokamak plasma#itroduce the ballooning variable by formally replacingé
when the effect of large-orbit energetic ions is not relevant—Y, whereg is the poloidal angle, whilg, in contrast tod,
(see, e.g., Chap. 8 of Ref).5he goal of the present paper is runs over an infinite range. Formally, in the weak-ballooning
to develop a unified theory of Mercier-ballooning and Alfvén approximation, the ballooning representation looks like the
eigenmodes in positive-shear tokamaks with large-orbit entadial Fourier representation with the radial wave nuniqer
ergetic ions. connected with the ballooning variable by

The standard theory to describe the effect of energetic k.=nq'y, (1)
particles on magnetohydrodynamics modes, which we refer
to as energetic-particle modesheory, is rather well known Wheren is the toroidal mode numbeg, is the safety factor,
and widely employed. However, in a recent paper it has beefnd the prime is the radial derivative.
shown that this theory is not self-consistent and should be According to Sec. 8.5 of Ref. 5, neglecting the energetic
replaced by the CEAE theoi’y.:or the sake of completeness, ions and finiteness of the mode frequency, the current conti-
additional argumentation on the basic error of Refs. 6 and Uity equation, allowing for the Mercier-ballooning effects in
is presented in the Appendix, which also helps on underthe weak-ballooning approximation, is of the form
standing the motivation for appearance of the compensating- de U,
electron effect in the basic equations. " (1 +t2)a - (Uo+ 1 +t2)¢: 0. (2

The paper is organized as follows. In Sec. Il we present
the starting equations. Section Il is addressed to derivatiorere t=k,/k,, k,=ng/r, ther is the radial coordinates is
of the dispersion relations. In Sec. IV we study thethe electrostatic potential averaged over the metric oscilla-
compensating-electron effect on ballooning and Mercietions (see, in detail, Sec. 7.5 of Ref),8J, andU; are the
modes using the analytical theory of these modes with finitggarameters characterizing the Mercier and ballooning effects,
growth rates initially developed in Ref. 8 and then summa-espectively. In the case of weak shear and parabolic profile
rized in Ref. 5. Section V treats the Mercier and ballooningof the thermal plasma pressure, the valUgsandU, can be
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taken in the forn{see Eqs(8.17), (8.33, and(8.43 of Ref. d do | o? ( U )
| (1+)— |+ (1 +t)p+Qud— | Ug+ —= | =0.
5] ail & | g8 Qb= (Uor 5 )
4p.r? I
Up=- 82_35_2[1 —q2(1 B Bt 6efR>] 3 (19
R R This is our starting mode equation in the ballooniRgurien
and representation. Using the explanations of Sec. 8.5.3 of Ref.
) s 5, it can also be written in the coordinate representation.
_ 8B , 12 Then the term withJ, looks as a nonlocal one.
Us= ?&%(3‘*@ ] 23)- @

Here 3, is the poloidal betas=rq’/q is the shearR is the
major torus radiuse and r are the parameters characterizing lll. DERIVATION OF DISPERSION RELATIONS
the ellipticity and triangularity of the magnetic surfacesA. Solution of the mode equation in the inertialless
(their definitions can be found in Sec. 2.5.1 of Ref. 5 region

In addition to Eq(1), we can take from Ref. 2 an equa- Neglecting the inertial effect, i.e., the term wia‘zls?/wi,

tion for. the Alfvén eigenmodgs neglecting the Mercjer- Eq. (10) reduces formally to Eq8.44) of Ref. 5, i.e., to
ballooning effects and allowing for the compensating-

electron effect and finiteness of the mode frequency. In the d 249 | B b’ |_
coordinate representation, this mode equation has the form dt (1+19 dt v+l 1+t2 =0 (11)
[see Eq.55) of Ref. 2|

Here

d| [ ? 2) d¢ 2( w? 2) 4mrenwk, dny, .
—|=-K]—=|-K - -K|p+ ———2L—¢=0. v=-1/2 tia, (12
dr[(vf\ M) ar |79 2 ¢ cBy ar

(5) a=(Qn-Uo- 142, (13
Here w is the mode frequencithe time-dependence of the b=(-UpY2 (14)
perturbation is taken in the form expiwt), wheret means ]
time], v2=B2/ (4mMny) is the squared Alfvén velocit, is According to Sec. 8.5 of Ref. 5, the even and odd solu-

the equilibrium magnetic field averaged over the poloidaltions of Ed.(11), ¢=¢., are given by

oscillations,n. is the number density of the thermal iohd, v+b 1+v-b 1

is the thermal ions mas&;=(m/q-n)/R, m is the poloidal he=(1 +t2)_b/2|:<— - 3 ;5;—t2), (15)

mode numberg, is the electric charge of energetic ian, is

the number density of energetic ions, anis the speed of 1-1-b v—b 3

light. For a monotonig profile, Eq.(5) reduces to d_=(1 +t2)‘b’2F< 5 1+ 5 ;E;—tz), (16)
d{(a)z Az)dqﬁ} <w2 Az) . . . -
—|| = -%)—=|-|—=5-%X|¢-Qnp=0. (6)  whereF is the hypergeometrical function. Similarly to Egs.
dx\ wj dx] \wp (8.48—(8.50 of Ref. 5, takingt> 1 in Eqs.(15) and(16), we

find that the short-wavelength inertialless asymptotic of the

Here>“<:xky, X is the radial deviation from the corresponding ) ) ; i
solutions ¢, in the Fourier space is of the form

singular magnetic surfacepi=(sva/qR)? is the squared
characteristic Alfvén frequency, and, describes the G~ t(L+t7 2" DA,), (17)
compensating-electron effect and is given by

where
Qn= (4o, D A=fmbyio), (18
where wcg is the characteristic compensating-electron fre-
quency defined by f( b)—F(1+V_b)F(1+V+b>/
+\V,0) =
2 2
1 kywi nM¢
WCE= " -, (8) +b\ [-v+b
CET 40Ky MMy, {F<— V2 )F< V2 ; (19
where k,=dInn,/dr, €, is the cyclotron frequency of ener-
getic ions, andVl, is the energetic ion mass. v—b v+b
In the Fourier representation, E¢6) yields (see also f(v,0)=T|1+ > 1+ >
comments in the Appendjx
, {F<l—v—b>r<1—y+b)} 20
d d¢ w ’
—|1+)— |+ (1 +t?)p+Qup=0. 9 2 2
dt{( )dt] wf\( )¢+ Qn 9
Combining Egs(2) and(9), we arrive at the mode equation ) =L+ V2T (-v=-172), 29
of the form I' is the gamma function.
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B. Dispersion relation for the Mercier-ballooning d de
modes modified by the compensating-electron effect e (1 —ZZ)E +v(r+1)¢=0, (30)
For Imw>0 Eq.(10) in the inertial regiont>1) takes
the form where
d/ .d 2= Xwplw. (32
—<t2£) -[v(r+ 1) +\%%]¢p=0, (22) _ o _ . _
dt\ dt Equation(30) coincides with the similar mode equation of
Where Ref. 4 for generalization of the parameteby including the

Mercier effectU,, see Eqs(12) and (13). A peculiarity of
A= - 0w, (23)  this equation is that for Im=0 it has the singular points
. . ==x1.
finit:(z:a(txt)flo:gist%fstﬁg ff).r%ﬁAf of Ref. 5, solution of Hg2) Similarly to Ref. 4, we express solution of E@O) in
terms of the Legendre functiori?,(z) andQ,(2), so that
¢ ~ KN, (24)

¢=CpP,(2) + CoQ,(2). (32)

Here Cp=(C},CP,Cp), Co=(C,C3,Cp) are numerical co-
efficients and the superscripts,0,-) mean the regiong
>1, -1sz=<1, z<-1. Then, we find that foiz/>1 the
function ¢ has the asymptotitdetails of calculations can be
found in Ref. 4

wherek;,, is the Bessel function of the second kind of imagi-
nary argument. We assume Re-Im w, so that the solution
given by Eq.(24) decreases for— .

The asymptotic of Eq.(24) for At<1 (the long-
wavelength inertial asymptolids

&~ 1 +(\t/2)"@*Vf()]. (25)

, , , _ 1 2P (—igl(1 + )
Matching Eqgs(17) and(25) leads to the dispersion relation o~ 1+

which coincides formally with Eq(10.36 of Ref. 5, L)l ()
241 — 2 . Co\ (2,
(M2)27* 1= 2(0)/f.(v,b). (26) x(l —|7-rth7-ra—+Q>z @ +1>} , (33)
This dispersion relation describes both the ballooning and P
Mercier modes. where the ratid:’élc’g, satisfies the relation
+
C. Dispersion relation for the CEAEs modified by the iWEQ =-sgnw(l ¥ cosmv) * i sinav. (39
Mercier-ballooning effects P
1. Short-wavelength inertialless asymptotic in the In obtaining Eq.(34), it is necessary to allow for the Landau
coordinate space bypass rule of the points=+1. The upper/lower signs in the

As in the case Inw>0, in order to derive dispersion r_ight-hand side of Eq(34) correspond to the even/odd solu-
relation for the modes with Ine<0, we should match the tons. _
short-wavelength inertialless asymptotic solution with the ~ Requiring that Eqs27) and(33) are the same, we arrive
long-wavelength inertial one. In Ref. 4 the last asymptotic@t the dispersion refation
e o s o e o () Wb T 910 s
(17? feroomeihg Fouriger spagep to the coordin:ate space. Sucﬂ a fo(1,0) (i)l (1/2-ia)

o

transition can be performed using explanations of Sec. 6.3 of , %
Ref. 5. As a result, we arrive at the followin i X|1-imthma =7 ). (39
. 5. , g expression for ch
the short-wavelength inertialless asymptotic in the coordi-
nate space: This dispersion relation generalizes a similar dispersion rela-
ot AD 4 o201 tion of Ref. 4 by including the finiteness of the parameters
¢ ~ XTAL+X 1. (27) U, andU;.
Here the parametets? are defined by As in Ref. 4, we are interested in the case1. Then
h Eqg. (35) for the even modes reduces to
b ft(va)
A=A 00 (8 O eod T _1{ (1_9>+ (m)
) wn a TE N2 NG
— o—(2v+]1)
A=2 If(v), (29) 5 <}> +E+il_ ) .
the valuesf.(v,b) are given by Eqgs(19) and (20), while 4 4 2 2 sghe

f.(v,0) are these values fdy=0. ) . N .
where yg is the Euler constaniy=I"'/T" is logarithmic deri-

vation of the gamma function=1,2,3,.. . The dispersion
relation of the odd modes far<1 has a similar form with

Takingt>1 in Eq.(10) and transiting to the coordinate substitutions  ¥(1/4%b/2)— (3/4F b/2), W(1/4)
representation, we arrive at — i(314), wl2——ml2.

2. Solution of the mode equation in the inertial region
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IV. COMPENSATING-ELECTRON EFFECT v=—-1/2+8, (47)
ON BALLOONING AND MERCIER MODES

A. Ballooning modes far from the Mercier stability where § is a small positive number, 95<1, while g is

boundary defined by
According to Sec. 10.3.1 of Ref. See also Ref. )8 for = (1 SUs-0 )1/2 8
v not close to —1/2 and smatl-v—-1, Eq.(26) reduces to 4 0 <h)o
(22" = (b - v-1)cs, (37) It is assumed that fo@,,— 0 the parameteg is real, so that
where the Mercier stability criterion is satisfied.
As in Ref. 5, we transform Eg26) to the form similar
__v+l2 Nl L1 to Eq. (10.49 of Ref. 5:
CB_2771’2F(v+1)sm{77<1}+2>}r <v+2>. (39) )
MT_N gl s - o 2] | 122 49
For Uy=0, Q,=0 and 2/ ° B| 3D~y 2 1+p/6 (49)
b>1 (39) As in Ref. 5, we are interested in the modes with small
this dispersion relation describes aperiodically unstable balatio #/8. However, in contrast to Ref. 5, allowinQ, we
looning modesRe »=0) with the growth rate can not transit to the limiB— 0. Then we introduce
- 1 1/2
Imw= Q’I:E(b_l)wA- (40 '80:(4_1+U0> (50

Let us analyze the compensating-electron effect on thend, assuming Inv>Rew and |Q,|< 85, expandg in a
modes considered. Then we assu@gto be small but non-  series inQ;:
zero,Qp<<1, and, as before, takd,=0. As a result, it fol-

lows from Eq.(37) that B=PBo+ipB, (59
T wp where
=—(b-1 , 41
@=50-D 7 202/ (64w,) (49 o
Bi=- : (52
wi/wCE Bwcelo

Rew=wg=—=(b-1 . 42
YT OR 16( )1 +ﬂ2w,§/(64w(2:E) 42 As a result, we arrive at the same expressiondpas Eg.

10.50 of Ref. 5,
Hence it can be seen that the stability boundary of ballooniné 0

modes remains unchanged in the presence of compensating-
electron effect. The consequences of this effect are, first, de- @1~ 4“’AeXp<' 5 YE)' (53
creasing the growth rate, and second, appearance of a real
part of the mode frequency. These consequences are essengal following expression fowg:
for, qualitatively, )
w
wce < wp. (43) wR= m : (54)

According to Eq.(42), the modes rotate in the direction of )
compensating-electron frequenaye. We see from Eq(54) that, as in Sec. IV A, the modes rotate
For wee/ wpa<1, Egs.(41) and (22) reduce to in the direction ofwcg. The valuewcg should be sufficiently

) large compared withw, since otherwise the condition

32 < . id.
o= Z(b- l)mz, (44) wgr/ ;<1 would be invalid

a wp
wr=4b - wce. (45 C. Mercier modes neglecting the ballooning effects

We see that in this limiting case the growth rate is small Now we assume the ballooning effect to be negligible,
compared with the real part of mode frequency ash=0, and the Mercier stability criterion to be violated, 1/4
(wce/ wp)?. +U( <0, so that the Mercier modes are unstable. This means
that, in neglecting the compensating-electron effégt— 0,
the parameter is real. We designate this limiting value of

B. Ballooning modes near the Mercier stability the parameter as ao, So that

boundary ap= (- Ug— 1/4)12. (55)
Similar to Sec. 10.3.2 of Ref. 5, we now take Assuming |a]<1, we reduce Eq(26) for the even
b=1/2+6, (46) modes to the form of Eq5.50 of Ref. 5, i.e., to

Downloaded 23 Jun 2005 to 152.84.252.237. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



042507-5 Unified theory of Mercier-ballooning ... Phys. Plasmas 12, 042507 (2005)

N\ 2 _ 1 b. Since this contribution is small compared withak/ we
(E) =1+2al ¥(1) - ¢(Z> : (56)  neglect it below.
Assuming the ratiowcg/ wp to be small parameter, we
Similar to expansion of the parametgrin Sec. IVB, we  can use the method of successive approximations in the

expand the parameter in the series InQ,, assumingw, small parametefin(wa/ wcp) ]t Then we find
> wg. Then we have

_ wR= a)(RO) + wg), (64)
_ " | (] (57)
a = - .
0 8 WcE aR= CYS'), (65)
We transform the left-hand side of E6) to where
(i)zia_<ﬂ)2iao|:1+2aowR_ o) In(ﬂ) w(RO):(l"""UO)wCE: (66)
2 - 2(.0A (@] 4wCE 2(0A '
(1) 4772|2(1)CE
(58) WR = (67)
- : _ [In(16wx/ wg’)]
Substituting Eq(58) into Eq. (56) and following the proce-
dure of Sec. 5.1.3 of Ref. 5, we obtain that the growth rate of @ -
is g i = 68
the modes is given by Eq5.36) of Ref. 5, i.e., aR In(16/@?) (68)
| . . .
W = 16wAexp<— KL Yet 7—T>, (590  Sincel/4+Uy>0 it follows from Eq.(66) that the sign of
%o 2 the real part of the mode frequency 1dg# 0O is the same as
while the real part of the mode frequency is equal to for Up=0. This part of the mode frequency increases for
5 Uo>0 (the case of stabilizing curvature or, in other words,
__ T the case of magnetic wglnd decreases faf, <0 (the case
WR 2 - (60) . . .
8ajwce of destabilizing curvature or the case of magnetic) hill
Note that Eq.(60) can be obtained from the condition that Using Eqs.(64)-(68), Eq. (63) is transformed to
the second and third terms in the square brackets on the _ A2 69
right-hand side of Eq(58) are mutually canceled. @ = [In(leA/w(F?))P'wCE" (69)

It follows from Eqg. (60) that, in contrast to the balloon- ) ) )
ing modes(see Secs. IV A and IV B the Mercier modes According to Eq.(69), the damping of the CEAEs in-
rotate in the direction againsice. Similar to Eq.(54), Eq.  creasesin the case of magnetic welj,> 0, and decreases in

(60) is valid only for sufficiently largasce/ wa (the require-  the case of magnetic hill)o<<0. This result is in agreement
ment wg/ w, <1 should be satisfied with the general notion of the stabilizing/destabilizing role of

the magnetic well/hill.

V. MERCIER AND BALLOONING EFFECTS ON CEAES V1. DISCUSSIONS AND CONCLUSIONS

Now we assume that both the ballooning and Mercier  The gupject of our study was eigenmodes in a thermal
modes are staple and consider the role of the finite paramkiasma in positive-shear tokamaks in the presence of ener-
etersqo gnd U; in the problem of CEAEs. We' analyze Eq. getic ions under the assumption that the characteristic Lar-
(36) similarly to Ref. 4. Then we tak@=wg+iw, a=ar  mor radius of these iong, is large compared with the char-
*iay, wherewg and w; were introduced in Sec. IV A, while  5ceristic perpendicular wavelength of the modesy,> 1,
ag and o are real. According to Eqs7), (8), and(13), the 4 that direct effects of energetic ions can be neglected. Nev-

parameteiy, is related towg by ertheless, their presence is crucial for our analysis because of
1{ wg vz the presence of electrons compensating the equilibrium elec-
aR= E(w_CE -1- 4U0> : (61) tric charge of energetic ions. These electrons contribute into
the mode equation due to their cross-field drift effect called
It follows from Eq. (36) that, approximately, in our presentation as the compensating-electron effect. This
or ;{ il - 1[ (1 b) effe_cts causes appearance ofa family of the CEAE_s ppinted
—=l6exp-— -yt | ¥ -2 out in Ref. 4, which are damped eigenmodes rotating in the
wp aR 2 2 4 2 di . .
irection of the compensating electron frequerg.
1 b 1 In allowing for the Mercier-ballooning effects, i.e., phe-
* ¢<Z * 5) - 2¢<Z)]} (62 omena due to combined action of the equilibrium magnetic
field curvature and the thermal plasma pressure gradient, we
40 deal with two families of eigenmodes: the Mercier-
) :—|—|w<:E|- (63) ballooning ones and the CEAESs. It is known that, in the

absence of energetic ions and in neglecting the diamagnetic
In obtaining Eq.(62) we have used that contribution of the drift effect of the thermal plasma, the Mercier-ballooning
ballooning effect in this equation is real even for imaginaryeigenmodes are aperiodically unstable perturbations. We
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have developed an analytical theory allowing one to yieldtakes the form of Eq(9). Meanwhile, turning to Eq(l) of

benchmarks for problems what is influence of compensatingRef. 6 or to Eq.(2) of Ref. 7, we see that these equations in

electron effect on the Mercier-ballooning modes and what igshe same approximation are of the form

modification of the CEAEs in the presence of the Mercier-

ballooning effects. <_fﬂ + sz>5¢: 0. (A1)
According to our analysis, the compensating-electron ef- de de

fect leads to the appearance of the real part of the frequen . .

of the ballooning-Mercier modes, i.e., to rotation of thes;eq._y|ere 5‘?5 is the s_ameszas o_uﬁ, Q'S the same as our balloon-
unstable modes. It has been shown that, if the Mercier stad variabley, f=1+s*¢, i.e., in our definitions,

bility criterion is satisfied, the ballooning modes rotate in the =1 +t2, (A2)
direction of the compensating-electron frequeigy, while

in violation of this stability criterion the unstable modes ro- 2?=w?/ w3 (in neglecting the diamagnetic drift frequency of
tate againstwce. The compensating-electron effect resultsthe thermal plasmaThus, substitutingé — ¢, Eq.(Al) can
also in decreasing the growth rate of ballooning modesbe rewritten in the form

though the instability condition of them remains unchanged. do] w2

As for the CEAEs, the Mercier and ballooning effects influ- —[(1 +t2)—] +—(1 +t2)¢=0. (A3)
ence both real part of their frequency and decay rate. The dt wp

ballooning effects on the CEAEs proves to be small coms e see that the only difference between our @.and E
pared with the Mercier effect. The last leads to increasingyv y | 4

decreasing the rotation frequency in the cases of magnet A3) used by Refs. 6 and 7 is the term widh, in Eq. (9).
welllhill, Similarly, the magnetic wellhill lead to increasing/ 1< c/0'€: We should explain why EGA3) does not contain

. L . .this term.
decreasing of the CEAES. In principle, the described analyti- Now we elucidate which starting equation has been used

cal regularities of the Mercier-ballooning modes and CEAEs

; . in Refs. 6 and 7 for obtaining EGA1). Then we conclude
gggetfe studied numerically by means of the MISHKA-H that such a starting equation is Edj) of Ref. 10. Neglecting

As known (see, e.g., Chap. 21 of Ref),Ghe diamag- the toroidicity and the temperature effects of the thermal

netic drift effect also leads to rotation of the Mercier- plasma, this equation has the form

ballooning modes. Therefore, it seems reasonable to incorpo- - wzpmgz ¢85 X B+j X 6B). (A4)
rate the diamagnetic drift effect into the theory described

above. One more interesting problem is the generalization dfiere £ is the fluid displacement vector related to the per-
our theory for arbitraryk, pp,. In the scope of this problem, turbed perpendicular electric fiekE, =iw§Xx B/c, B is the
allowing for direct contribution of energetic ions into the €quilibrium magnetic fieldpy, is the mass density of the
mode equation seems to be necessary. Evidently, a simildpermal plasmaj is the equilibrium electric currengj and
program can also be of interest for reversed-shear tokamakégB are the perturbed electric current and the perturbed mag-
Thus, we believe that our paper, together with Refs. 1—4, caRetic field, respectively.

be considered as the first links in the chain of subsequent One can justify oneself that using Ee4) leads to Eq.
studies of Alfvén eigenmodes in tokamaks in the presence dfA3). Therefore, we should elucidate whether E44) is

energetic ions. valid for the description of the modes considered. Then we
allow for the following explanation of Ref. 6.
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APPENDIX: EXPLANATION OF THE ESSENCE 0 :%thS(kLPh)éEL oo, (AS5)
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where J, is the Bessel functionp,, is an effective Larmor
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