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Abstract
In a paper by Umarov et al (2008 Milan J. Math. 76 307-28), a generalization
of the Fourier transform, called the g-Fourier transform, was introduced and
applied for the proof of a g-generalized central limit theorem (¢-CLT). Sub-
sequently, Hilhorst illustrated (2009 Braz. J. Phys. 39 371-9; 2010 J. Stat.
Mech. P10023) that the g-Fourier transform for ¢ > 1, is not invertible in the
space of density functions. Indeed, using an invariance principle, he con-
structed a family of densities with the same g-Fourier transform and noted that
‘as a consequence, the ¢g-CLT falls short of achieving its stated goal’. The
distributions constructed there have compact support. We prove now that the
limit distribution in the ¢g-CLT is unique and can not have a compact support.
This result excludes all the possible counterexamples which can be constructed
using the invariance principle and fills the gap mentioned by Hilhorst.

Keywords: g-central limit theorem, g-Fourier transform, g-Gaussian, invar-
iance principle

1. Introduction

The g-central limit theorem (¢-CLT), proved in [1] (see also [2]), deals with sequences of
random variables of the form
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Sv — N,u

ZN = —161
N2wz=9

where Sy = X; + -+ + Xy, the random variables X, ... Xy being identically distributed and

g-independent, 4, = f x[f(x)]9dx, and 1 € ¢ < 2. Here f (x) is the density function of the

random variable X;. Without loss of generality one can assume that y, = 0. Three types of g-

independence were discussed in paper [1]. Namely, identically distributed random variables
Xy are g-independent (see [1]) if

Typel: KX+ - 4+ Xy](©) = FIX](E) @ ... ©4F[XN](©); 2
Typell: KX + - 4+ Xy](§) = FIX](6) @ ... @4 F[Xy](E); 3

Type III: KX + -+ + Xv](©) = F [X](E) @y, ... @4 F [XN1(©),  (4)

) ey

if these relationships hold for all N > 2 and £ € (—o0, o0); ¢, = H—Z Here the operator F,

33—
is the g-Fourier transform (¢-FT) defined as

o Y f(x)dx
RO =4 @ f—oo [1+i(l — @xfa 'l

with ¢ > 1. If ¢ — 1 + 0, then F,[X;]1(&) — F[X1(§) = fj; f (x)e™dx, coinciding with
the Fourier transform of f.

The g-CLT states that if Xj ,...X)y are identically distributed and g-independent random
variables, then the sequence Zy in (1) weakly converges to a random variable with the
q_,-Gaussian density; see [1] for details.

The invertibility of ¢-FT in the class of g-Gaussian densities is established in [3] and in
the space of hyper-functions in [4, 5]. However, using a specific invariance principle Hilhorst
[6, 7] showed that ¢-FT is not invertible in the entire space of densities. He constructed a
family of densities containing the g-Gaussian and with the same ¢g-FT. Any density of this
family except the g-Gaussian has a compact support. In the present note we establish that a
limit distribution in ¢g-CLT can not have a compact support. This fact implies that all the
distributions with compact support in Hilhorst’s counterexamples can not be a limiting dis-
tribution in the ¢-CLT, except the g-Gaussian density. However, deformations used in the
invariance principle with functions H (£), H (0) = 0, lead to distributions, which have non-
compact support and share the same asymptotic behavior at infinity as the g ,-Gaussian.
We prove that the limit distribution Z,, and any of its H-deformation has the same
(2g — 1)-variance if and only if the deforming function H (&) is identically zero. Using this
fact and intrinsic properties of g-independent random variables we prove the uniqueness of
the distribution of the scaling limit of g-independent random variables. This fact rules out all
the possible counterexamples indicated by Hilhorst in his paper [6]. Thus, the ¢-FT is used
only for the existence of limiting distribution, while intrinsic properties of g-independent
random variables supply the uniqueness of this limiting distribution. We note that the inverse
g-FT is nowhere required in the present proof.

Now let us recall some facts about g-algebra, g-exponential and g-logarithmic functions.
By definition, the g-sum of two numbers is defined as x &, y = x + y + (I — ¢)xy. The ¢-
sum is commutative, associative, recovers the usual summing operation if ¢ =1 (i.e.
X @ y = x + ), and preserves 0 as the neutral element (i.e. x ¢, 0 = x). The g-product for

&)

x, y is defined by the binary relation x ®, y = [x'77 4 y!=9 — 1]77. This operation also
commutative, associative, recovers the usual product when ¢ = 1, and preserves 1 as the unity.
The g-product is defined only when x!~¢ 4 y!=¢ > 1. The g-exponential and g-logarithmic
functions are respectively defined as (see for instance [1])
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exp, () = [1 + (1 — @x[T7 (exp,(x) = e,

and

I—q
In, (x) = xl—ql, x>0 (In(x) = Inx).

It is easy to see (see [1]) that for g-exponential, the relations exp,(x ®, y) = exp,(x)exp,(y) and
exp,(x +y) = exp,(x) ®, exp,(y) hold. In terms of g-log these relations can be equivalently
rewritten as follows: In,(x ®, y) = Ingx + Ingy, and Ing(xy) = In,x &, In,y. It follows from
the definition of g-logarithm that if 1 < ¢, < g,, then

ql_

In, () >

1
In, (x) for all x > 1. 6)
g, — 1 !

For ¢ > 1 the g-exponential is defined for all x < ﬁ and blows up at the point x = %1
The g-exponential can also be extended to the complex plane and it is bounded on the
imaginary axis: |exp,(iy)| < 1. Moreover, [exp,(iy)| — 0 if |y| — co. Using the g¢-

exponential function, the ¢-FT of f can be represented in the form
L©= [ femexp,Gelf @1 @)

We refer the reader to the papers [1, 2, 8—16] for various properties and applications of the g-
FT. Also, functions of the form equ(—ﬁxz) (6 > 0) will be hereafter referred to as g-
Gaussians.

At this point, before addressing the technical aspects of the present problem, let us
remind why the g-CLT may be very relevant in physics and other disciplines. It is common
belief that the ubiquity of Gaussians in nature and elsewhere is due to the classical CLT.
Indeed, this theorem provides a mathematical basis for observing the Gaussian attractors
under quite general circumstances involving many independent (or quasi-independent) ran-
dom variables. Analogously, also g-Gaussians emerge ubiquitously in nature and elsewhere,
which strongly suggests the existence of a wide class of many correlated random variables
whose corresponding attractors are g-Gaussians instead of Gaussians. Such experimental and
theoretical examples include anomalous diffusion in type-II superconductors [17] and gran-
ular matter [18], non-Gaussian momenta distributions for cold atoms in optical lattices [19-
21], dirty plasma [22], trapped atoms [23], area-preserving maps [24], high-energy physics
[25], probabilistic models [26], to mention but a few (see [27]).

2. On the support of the limit distribution

For the sake of simplicity we consider a continuous and symmetric about zero density function f
of a random variable X). Other cases can be considered in a similar manner with appropriate care.
Denote A (x) = x[f (x)]9~ !, where 1 < g < 2. Since fis symmetric, it suffices to consider A (x)
only for positive x. Suppose the maximum value of X is m and x,, > 0 is the rightmost point
where \ attains its maximum, i.e. m = maxg <, {X[f ()19} = x, [f ()19 L Let

1 .
. prpm— if0 < g <2,
0, ifg=1.
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Proposition 2.1. Let f be a continuous symmetric density function with supp f C [—a, al.
Then the q-FT of f satisfies the following estimate

|J~2(77 o 17—)' < equ(meqT)v (8)
where 1 € (=00, <), T < T, My = max[o,a]{[f(x)]q’l}, and x,, is the rightmost point

where xf9~ attains its maximum m.

Proof. For f with supp f C [—a, a], equation (5) takes the form

2 f () dx
Ty ® = f— [1+i(l — gxefe )T

©)

Let{ = i — i where 7 = SR (§) is the real part of £ and —7 = J(&) is its imaginary part. We
Then for the denominator of the integrand in

assume that n € (—oo, 0o) and |7] <
(9) one has

[14i(1 — @x(n — infr @It = [1+i(l — ) x 7f9 @) + (1 — @)rfr ) o
1 —q) xnfs ') |77
1+ (1 — @maf ' (x)

A—qg) <l )
L+ —gnfe ') ) -

m(g—1)"

=[1+( - q>7qul(x)]ﬁ—l[1 +i

= (exp, (7f 4~ (@))) ! (equﬁ
(10)

Using the inequality |equ (iy)] < 1valid for all y € (—o0, o0) if ¢ > 1, it follows from (10)
that

11 +1i(0 — @x(n — i) T @7 > (exp, (mef 71 (@)Y,

or
11 +i(l — Qx(p — infr ' @I < (exp, (xf 171 (x))). 1n
Now, (9) together with (11) and f (x) being a density function, yield (8). O

Remark 2.2. Proposition (2.1) can be viewed as a generalization of the well known Paley—
Wiener theorem. Indeed, if ¢ = 1 then (8) takes the form

|7 — iD)| < explalT), n + it € C, (12)

which represents the Paley—Wiener theorem for continuous density functions.

Inequality (12) can be used for estimation of the size of the support of f. Consider an
example with f(x) = (2a) Z;_, 4 (x), where Zj_,,(x) is the indicator function of the
interval [—a, a]. The Fourier transform of this function is f(¢) = (a&) !sin(af),
M, = M; = 1, and x,, = a. Therefore, we have |F(=iT)| < e*, 7 > 0. The latter yields

2a 2 2 sup M’
>0 T
which gives an estimate from below for the size d (f) = 2a of the support of f. This idea can
be used to estimate the size of the support of fusing the ¢g-FT and proposition 2.1. Namely,
inequality (8) with = O implies
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Ing| 7, (—ir)]

T

2
d(f) =2a > 2x, > ﬁsup0<7'<7'* (13)

q

We notice that the integrand in the integral

[ f ()dx
hen=], (1~ (¢~ Dm0l

is strictly grater than f (x) if 7 > 0, implying |fq(—i7)| > 1, since f'is a density function.
Therefore, the right-hand side of (13) is positive and gives indeed an estimate of the size of
the support of f from below.

Let fy (x) = f;, (x) be the density function of Sy = X; + --- + Xy, where Xi, ..., Xy are
g-independent random variables with the same density function f= f; whose support is
[—a, a]. We show that the g-independence condition can not reduce the support of fy to an
interval independent of N. More precisely, d (f,) increases at the rate of N when N — oo.

Theorem 2.3. Let Xy, ..., Xy be g-independent of any type I-1Il random variables all having
the same density function f with supp f C [—a, al. Then, for the size of the density f, of Sy,
there exists a constant K, > 0 such that the estimate

Ing|f (—i7)]
d(fy) > K,N sup —L—— (14)
0<7< Ty T
holds.
Proof. Using formula (13) one has
In | (fy), (=i7)]
d(fy) > —— sup ——0 (15)
g,NO<T<T T

where M, v = maxX,c(_nq, Nalf,flfl (x). It is clear from probabilistic arguments that M,y < M,
for all N > 2. Therefore, it follows from (15) that

In,| (/) (—ir)
iG> 2 sup VDL

qO0<T< Ty T

(16)

Let X be g-independent of type I (see (2)). Making use of the inequality |z — r| > |z] — r,
which holds true for any complex z and positive integer number r, one has

|0, (=D =17, (—i7) © .. 9, F, (=i7)]
=| IN(F,(=ir))! 1 = N — DI
>[N |, (—in[=¢ — (N — D™
=7, (=0 ® . ® |, (=iT)].

Taking g-logarithm of both sides in this inequality and using the property In,(g ®, h) =
In,g + In,h, one obtains

In, [(f),(—i)] = N Ing |, (=i7)]. (17
Now estimate (14) follows from inequalities (16) and (17).

5
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Similarly, for random variables independent of type III, we have

In [(f),(—i0] = N, |F, (~in)l. (18)

For random variables Xy, independent of type II, equation (17) takes the form

Ing, [(£), (=i = Nn, |7, (=ir)]. (19)

3—q

Since 1 < ¢ < g, and Z;ll = making use of inequalitiy (6), and taking into account
-

that |E}?NJ)q(iT)| > 1, one has

— . 3 - —
Ing, 1733, (<im0l = E= L, 1G5, (=inl,
2 q
which implies
— 2N T
Ing [(fy), (17| = ﬁlnqlf;l(_”—)l- (20)
Both (18) and (20) obviously imply estimate (14). O

Corollary 2.4. Let X, ...,Xy be g-independent of any type I-1Il random variables all having
the same density function f with supp f C [—a, a). If the sequence Zy has a distributional
limit random variable in some sense, then this random variable can not have a density with
compact support. Moreover, due to the scaling present in Zy, the support of the limit variable
is the entire set of real numbers.

The proof obviously follows immediately from (14) upon letting N — oc.

3. On the variance and quasivariance of a limit distribution

Let 1 €< ¢ <2 and a random variable X with a density function f(x) has zero g-mean
(,uq (X) = 0) and a finite quasivariance

OV (X) = 12y 1X)0%, 100 = [(x = uPLf @ 1dr, b3))
where 12,1 (X), 1, and 05,1 (X) are defined as
ve= 1,0 = [1feNdx, p, = [*[f 0Py, (22)
and
[f @)Pe!

0y 1= 03y 1(X) = f(x — 1) dx. (23)

Vog—1

Note that if g=1 then 1, =1 and U%EFI = Var(X), the variance of X, implying

QV (X) = Var(X). As above, without loss of generality, we assume that ey = 0. If Xand Y

are g-independent (of any type I-III) random variables, then for their quasivariances the relation
OQVIX+7Y)=0VX) + oV(Y) (24)

holds. To see the validity of this fact one can use the formula (F;[X1)”(0) = —gQV (X) (see

[28]) and the definition of g-independence (2) and (3). Taking into account the fact that the

6
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density of aX for a constant a > 0 is a~'f (x/a), one can easily verify that [1]

02 1(aX) = a2ory 1 (X). (25)

Let X, be a random variable with the g-Gaussian density

\/B —Bx?

Gq(ﬁ’ -x):_eq ’ﬁ>0’
Cq

where C, is the normalizing constant [1]. The direct calculation shows that U%EF (X)) =87\
The sequence of identically distributed g-Gaussian variables Xj,...,Xy is g-independent of
type I if the density of X; 4+ --- + Xy is the G (N’ﬁﬁ, x)y; (see [1]). Using (25), one can see
that

03, (X + -+ Xy) = N7io3, (X)), (26)

and

1
03, 1(Zy) = N?agq,l(x1 + o+ Xy) =03, (X), forall N> 1. 27)

q

If g = 1 then (26) reduces to the known relationship Var(X; + --- + Xy) = NVar(X))
valid for variances of independent and identically distributed (i.i.d.) random variables
X1, ..., Xy. In this case (27) becomes Var(Zy) = Var(X), valid for rescaled sums of i.i.d.
random variables. In other words the equality

OV (Zy) = QV(X) (28)

holds if g = 1.
We notice that relations (24) and (26) imply

Vg1 (X1)
A

N>=4

Vg1 (Xp + -+ Xy) = (29)

Indeed, due to (24)

oviX + - + Xy)
Vg1 (X + -+ + Xy)
_OVX) + - OV (XN)
g1 (X + - +Xy)
_ NOV (X))
vag—1 (X + -+ +Xy)
V21X 03, (X))
Va1 + - +Xy)

a%qfl(Xl + +XN):

The latter and equality (26) imply (29).

In the case ¢ = 1 for any i.i.d. random variables 15, (X; + --- + Xy) = ffN (x)dx =1,
where f is the density function of the sum X+ --- + Xy. However, if g > 1 then
v2g—1(X; + -+ + Xy) does depend on N, and as relation (29) shows, the most natural
dependence on N can be given by the condition

7
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vag 106+ o+ Xy) ~ O(NET), N = o, (30)

Let us consider some examples. If ¢ = 1 then for any i.i.d. sequence of random variables the
relation (29) is reduced to the identity 1 = 1, thus satisfying condition (30). As the above
example states, for the type II g-i.i.d. g-Gaussian random variables relation (29) is valid, thus
again satisfying condition (30). One can verify that for ¢g-Gaussians independent of type I or
I condition (30) is also verified. Random variables studied in [29] also satisfy condition (30)
since they are asymptotically equivalent to g-indpendent random variables (see [29]). As is
shown in [30] random variables in [29] are variance mixtures of normal densities. This gives a
strong evidence of the fact that the subclass of variance mixtures of normal densities leading
to g-Gaussians will also satisfy (30). For connection of variance mixtures to superstatistics
developed by Beck and Cohen [31] see [30]. In our further considerations we assume
condition (30) for g-i.i.d. random variables X, ...,Xy.

The asymptotic expansion of the g-exponential function exp, (x) near zero implies that
(see proposition II.3 in [2], case a = 2)

FIXI© =1 = Z0VXE + (€, £ 0. 31
Making use of properties of the g-Fourier transform one can see that (see details in [1])
2
BlZy1(©) =1 - %QV(Xl)ﬁ2 + 0(%) N — oc, (32)

which shows that QV (Zy) = QV (X;), N = 1. Hence, relation (28) is valid not only for
g =1, but forall 1 < g < 2, as well. This immediately implies that if the limit distribution
Z., = limy_, ., Zy exists in some sense, then its quasivariance must be equal to QV (X)), i.e.

OV (Z.) = OV (Xy). (33)
The lemma below will be used in section 5.

Lemma 3.1. Let w(x) be a continuous function defined on [0, oo) such that

(a) w(1) =0,
(b) wx) >0 on (0, 1), and w(x) < 0 on (1, oc),

@ﬂwmm:fmwmx
Then

1 00
fx%mm<f 2w (x)]dx. (34)
0 1

Proof. Since x2 < 1 for x € (0, 1), one has

1 1
f x2w(x)dx < f w(x)dx. (35)
0 0
Similarly, for x > 1,
f w@mu<f 2w () |dx. (36)
1 1
Now condition (c) and estimates (35) and (36) imply (34). ]

8
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4. On the invariance principle and Hilhorst’s counterexamples

In this section first we recall the invariance principle used by Hilhorst [6] to construct
counterexamples which show that ¢-FT is not invertible. Then we apply the invariance
principle to the g-Gaussian and study properties of densities produced by the invariance
principle in this case. Let f (x), x € (—o00, o), be a symmetric density function, such that
A(x) = x[f (x)]9! restricted to the semiaxis [0, co) has a unique (local) maximum m at a
point x,. In other words A(x) has two monotonic pieces, A _(x), 0 < x < x,,, and
A(x), X, < x < oo. Let x(8), 0 < £ < m, denote the inverses of A.(x), respectively. Then
the ¢-FT (I < g < 2) of fcan be expressed in the form, see [6]

h©= [ Feemigde.

where
q—2...d [ 1 %
F(§) = §rT—|xa2(§) — xf (E)], § €10, m]. @37
g—1" d§L
Then the invariance principle yields
-2 ..d [ 4o a1
Fe =L1"Z¢h|x=@©) - X (E)], § € [0, m], (38)
g—1" d§L
where
XE© =20 + HE, (39)

with H (£) being a function defined on [0, m], and such that X (&) are invertible. Denote by
A(x) the function defined by the two pieces of inverses of X (£), namely

X2, if0 < x < X,
AH(x)—{ (), 1 X < Xy

XJ:I(x)’ if x > Xm,H>

2—q

where x,p = [(q — 1)% + H (m)] “'_ The function Ay(x) is continuous, since

X:I (xm,H) - XJ:I (xm,H)- Then

£ 00 = (@)_ (40)

defines a density function with the same ¢-FT as of f. The density f coincides with fif H (£)
is identically zero.
Now assume that f(x) is a g-Gaussian

C
=G,(x) = el o1 2, 41
) 7 () 0T @ et <gq< (41)

where C, is the normalization constant. Obviously, G, (x) is symmetric, and the function

q—1
C‘i

2{qg—1

Aq@) =x[G, (x)]?~! considered on the semiaxis [0, oc) has a unique maximum m =

attained at the point

X =g — D (42)
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Moreover, the functions x.(£) in this case take the forms

Co 4[R2 — 4(q — DE
xu(§) = <L —— - D
2(q =1

We denote the density f;, (x) and the function Ay (x) corresponding to the g-Gaussian by
G, (x) and Ay n(x), respectively. Hilhorst, selecting H(¢) = A > 0 constant, constructed a
family of densities

,0< &< m. (43)

1

-2 -2
Cq (xqfl — A)

1
1 q=2 Z% -7
14 (g - 1)(xrl —A)

which have the same ¢-FT as the g-Gaussian for all A. The following statement shows that
none of the densities G, 4 (x) can serve as the limit distribution in the g-CLT, except the one,
corresponding to A = 0, which coincides with the g-Gaussian, G, o(x) = G, (x).

Gya(x) = (44)

Proposition 4.1. Let H(0) > 0. Then the support of G, (x) is compact, and
g-1 g—1
supp Gy = | —(H (0=, (H () |

Proof. Since lim,_,ox(§) = +o0c, the largest value of X, is equal to limg_oX. (§) =
[H (O)]:%. Therefore, the inverse of X, is defined on the interval [xo, [H (0)]3%;], where

Xo > 0 is some number obtained by a shifting of x,, depending on H (/). On the other hand
the smallest value of x_ is zero, taken at & = 0. Therefore, the inverse of X_ is defined on the

interval [0, x¢]. Hence, by symmetry, G, 5 has the support [f[H (O)]Z_:;, [H (O)]Z_:;]. O

Remark 4.2. Note that H(0) can not be negative. In fact, if H(0) < 0, then either X is not
invertible or, if it is invertible, its inverse does not define a density function.

Proposition 4.1 implies that if H (0) > O then, due to corollary 2.4, G, 5 (x) can not be
the density function of the limit distribution in the ¢g-CLT. Thus none of the densities in
Hilhorst’s counterexamples®, except the g-Gaussian, can serve as an attractor in the ¢-CLT.

Only one possibility is left, namely H (0) = 0. The next proposition establishes that, in
this case, G, y (x) is asymptotically equivalent to G,(x) = G, (x).

Proposition 4.3. Let H(0) = 0. Then

G,
im —q’H(x) =1
|x|—00 Gq(_x)

Proof. Since H(0) = 0, then obviously

X _ (1 N H(f)) .
£-0 x(§)

lim
£-0 x,(§)

* See examples 2 and 3 in [6]. Example 4 is not relevant to the ¢g-CLT, since in this case, (2¢ — 1)-variance of the
2-Gaussian does not exist, and consequently the ¢-CLT is not applicable.

10
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Therefore, for inverses one has

X*l
lim *1(’“) —1
x—too X, (X)

This implies

. Guu(x) .
lim 2277 jim —
X—+400 Gq(x) x—4oo | X ()

O

Remark 4.4. Propositions 4.1 and 4.3 establish that G, i can identify a limiting distribution
in the ¢-CLT only if H(0) = 0. However, in this case, independently from other values
of H(&), the density G, u(x) is asymptotically equivalent to the ¢-Gaussian,
Le. Gy (x) ~ Gy(x) as |x| — oc.

The statement of the following proposition can be proved exactly as proposition 4.3,
replacing X (&), x.(&) by functions X (&), x (£), respectively.

Proposition 4.5. Let H(0) = 0. Then
G,
fim Zet & _
x—0 Gq(_x)

5. On the uniqueness of the limit distribution

Let X be a random variable with a symmetric density function G and let Gy be the density
function obtained from G by H-deformation, where H (£) is a continuous function such that
H (0) = 0 and does not change its sign on the interval (0, x,,). Denote by X, the random
variable corresponding to the density function G.

Lemma5.1. Let X and Xy be random variables with the respective densities G and Gy, and
let QV (X) = QV (Xyy). Then o3, (X) = 03, (Xy) if and only if H () is identically zero.

Proof. Sufficiency. Let U%qil(X ) = U%qil(XH) and assume that H (£) is not identically zero.
This equality together with QV (X) = QV (Xy) implies that 754 (X) = 14— 1(Xg). Due to
conditions on H (§) both densities, G and Gy, are symmetric, decreasing on the positive
semiaxis. Propositions 4.1 and 4.5 imply that G (0) = Gy (0) since H (0) = 0. Moreover,
since both G and Gy, are densities there is a point a > 0 such that G (a) = Gy (a). Depending
on the sign of H (£), we have either

G(x) > Gy (x) ontheinterval (0, a) and G(x) < Gy(x)
on the interval (a, 00), (45)

or
G(x) <Gyg(x) on (0,a) and G(x) > Gyg(x) on (a, o). (46)
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If necessary, switching the order of G and Gy we can always assume that condition (45)
holds. Notice, that the case G (x) = Gy (x) is obviously excluded, since H (§) is not
identically zero. Further, due to proposition 4.3, G and Gg share the same asymptotic
behavior at infinity: G (x) ~ Gy (x), x — oo. Since G and Gy are symmetric about the origin,
it suffices to consider these functions only for x > 0. Furthermore, it follows from (45) that
G2 '(x) > G} '(x) on the interval [0, a), and G* '(x) < G2 '(x) on the inter-
val (a, co).

Consider the function w(x) = a[G* '(ax) — Gfﬂfl(ax)]. This function is continuous
by construction. Moreover, w(l) = 0, w(x) > 0 if x € (0, 1), and w(x) < 0 if x > 1. The
existence of finite (2¢ — 1)-variances of X and X;; implies that fl - x2|w(x)|dx < oo. The
calculations below, where the symmetry of densities are taken into account, show that w (x)
satisfies condition (c) of lemma 3.1 as well:

2f01 w(x)dx:afjl (G2 (ax) — G¥ (ax))dx = £ (G¥ ' (x) — Gp* ' (x))dx
= [ @ rwa - [0 G W

= 1y 1(X) — f| GM I (dy [uqu(xm - f|

x| =

Gfﬂl(x)dx]

>

_ 1G24 (x) — G2~ (x)| dv = 2floo o () [dx.

lx|za

Here we have taken into account the equality 15, (X) = 1p4—1(Xy). It follows from
lemma 3.1 that

1 00
f 2w (x)dx — f 2w (x)|dx < 0, 47)
0 1
which is equivalent to
[ 26w - G lend - [T G @) - 6% ) <0, (48)
0 a

Inequality (48) is the same as QV (X) < QV (Xy). Switching the order of G and Gy in the
above analysis one can see that (46) implies QV (X) > QV (Xy). Both obtained relations
contradict to equality QV (X) = QV (Xy). Hence, our assumption on H (£) is wrong. Thus,
we conclude that H (§) = 0.

The necessity is obvious, since H(§) = 0 immediately implies Gy = G, which
consequently yielding O’%qil(X ) = O’%qil(XH). ]

Theorem 5.2. Let Xy be a g-i.i.d. random variables with zero gq-mean and finite
quasivariance. Then the sequence Zy defined in (1) has a unique limit distribution.

Proof. The existence of a limit distribution was proved in [1]. Suppose that there are two
limit distributions Z, and Z;; of the sequence Zy with respective distinct densities G (x) and
Gy (x). Due to (33), both distributions have the same quasivariance

OV (Z) = QV(Zy) = OV (X). (49)
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Moreover, due to condition (30),

= = ggqil(xl + o+ Xy)

X+ +X 1
U%ql(ZN):U%ql( ! N)

Nz ™
o1 NOV (X))
N7 vag—1 (X + -+ Xy)
1 oV (X)

=— CQV(X), asN — oc,
Nt vy 1 (X + - + Xy)

where C is a positive constant. This yields that U%qfl(Zoo) = U%CF1 Zy) =
Cryy 1 (X)) o2q—1(X)). Hence, all the conditions of lemma 5.1 are satisfied. Thus,
H (&) = 0, which implies Z,, = Zy, that is the uniqueness of the limit distribution. O

6. Conclusion

Concluding, we note that with the present results, the gap detected by Hilhorst [6, 7] in the ¢-
CLT [1], has been adequately filled. Naturally, this does not imply that other, more general,
theorems can not be thought of. For example, the requirement of strict g-independence for all
N can obviously be released, by only requiring asymptotic g-independence in the N — oc
limit. It might also be possible theorems similar to Lyapunov—Lindeberg type theorems [32],
or g-versions of CLT for weakly dependent random variables with various mixing conditions
[32-34]. The ¢-CLT assumes the finiteness of the quasivariance QV (X) < oc. The unique-
ness of the limiting g-Lévy processes studied in [2] which corresponds to the case
QV (X) = o¢, is also a challenging problem.Moreover, at the present stage, we can not
strictly refute existence of dependencies between the N random variables other than g-
independence, that could also exhibit g-Gaussians as attractors in the space of probability
distributions. Further efforts along these lines are of course welcome.
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