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Abstract As early as 1902, Gibbs pointed out that systems
whose partition function diverges, e.g. gravitation, lie out-
side the validity of the Boltzmann-Gibbs (BG) theory. Con-
sistently, since the pioneering Bekenstein-Hawking results,
physically meaningful evidence (e.g., the holographic prin-
ciple) has accumulated that the BG entropySBG of a (3+1)
black hole is proportional to its areaL2 (L being a charac-
teristic linear length), and not to its volumeL3. Similarly
it exists thearea law, so named because, for a wide class
of strongly quantum-entangledd-dimensional systems,SBG

is proportional to lnL if d = 1, and toLd−1 if d > 1, in-
stead of being proportional toLd (d ≥ 1). These results vi-
olate the extensivity of the thermodynamical entropy of a
d-dimensional system. This thermodynamical inconsistency
disappears if we realize that the thermodynamical entropy of
such nonstandard systems isnot to be identified with the BG
additiveentropy but with appropriately generalizednonad-
ditiveentropies. Indeed, the celebrated usefulness of the BG
entropy is founded on hypothesis such as relatively weak
probabilistic correlations (and their connections to ergodic-
ity, which by no means can be assumed as a general rule of
nature). Here we introduce a generalized entropy which, for
the Schwarzschild black hole and the area law, can solve the
thermodynamic puzzle.

1 Introduction

The entropy of a black hole presents intriguing aspects that
are being currently discussed since several decades. Indeed,
since the pioneering works of Bekenstein [1, 2] and Hawk-
ing [3, 4], it has become frequent in the literature the (ex-
plicit or tacit) acceptance that the black-hole entropy is ano-
malous in the sense that it violates thermodynamical exten-
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sivity [5–20]. We frequently read and hear claims that the
entropy of the black hole is proportional to the area of its
boundary instead of being proportional to the black-hole
volume. To discuss this interesting question within a ther-
modynamically proper context, let us first remind a typi-
cal form of the thermodynamical energyG of a genericd-
dimensional system [21]:

G(V,T, p,µ ,H, . . .) =U(V,T, p,µ ,H, . . .)+

−TS(V,T, p,µ ,H, . . .)+ pV− µN(V,T, p,µ ,H, . . .)+

−HM(V,T, p,µ ,H, . . .)−·· · ,

(1)

whereT, p,µ ,H are the temperature, pressure, chemical po-
tential, external magnetic field, andU,S,V,N,M are the in-
ternal energy, entropy, volume, number of particles (in turn
proportional to the number of degrees of freedom), magne-
tization. We identify three classes of variables, namely (i)
those that are expected to always be extensive (S,V,N,M, . . .),
i.e., scaling withV = Ld, whereL is a characteristic lin-
ear dimension of the system (clearly,V ∝ Ad/(d−1), where
A is the area), (ii) those that characterize the external condi-
tions under which the system is placed (T, p,µ ,H, . . .), scal-
ing with Lθ , and (iii) those that represent energies (G,U),
scaling withLε . It trivially follows

ε = θ +d . (2)

If we divide Eq. (1) by Lθ+d and consider the largeL limit
(i.e., the thermodynamical limit), we obtain

g
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H
Lθ , . . .

)

−·· · ,

(3)

whereg≡ limL→∞ G/Lθ+d, u≡ limL→∞ U/Lθ+d, s≡ limL→∞ S/Ld,
n≡ limL→∞ N/Ld, m≡ limL→∞ M/Ld. The correctness of all

http://arxiv.org/abs/1202.2154v2


2

the scalings appearing in this equation has been profusely
verified in the literature for (both short- and long-range in-
teracting) thermal [22–28], diffusion [29] and geometrical
(percolation) systems [30, 31].

Next, let us illustrate relation (2) through four different
physical situations. First, for a standard thermodynamical
system (e.g., a real gas, a simple metal) we haveθ = 0 (i.e.,
usual intensive variables), andε = d (i.e., usual extensive
variables). This is the answer that is found in the textbooks
of thermodynamics.

Second, for a classical many-body Hamiltonian system
with two-body long-range (attractive) interactions asymptot-
ically decaying with distancer like 1/rα (0 ≤ α < d) we
have indeed [22–32] θ = d−α, hence, using relation (2),
ε = 2d−α. These peculiar scalings are a consequence from
the fact that such potential is not integrable, i.e., from the
fact that the integral

∫ ∞
constantdr rd−1 r−α diverges, and there-

fore the Boltzmann-Gibbs (BG) canonical partition func-
tion itself diverges. In his 1902 bookElementary Principles
in Statistical Mechanics[33], Gibbs himself emphatically
points out that whenever the partition function diverges, the
BG theory can not be used (in his words “the law of distribu-
tion becomes illusory"). As an illustration of his remark he
refers specifically to the case of Newtonian gravitation [34].

Third, for a Schwarzschild(3+ 1)-dimensional black
hole, the energy scales like the massMbh (where bh stands
for black hole), which in turn scales withL [37–39], hence
ε = 1, hence, using Eq. (2),

θ = 1−d . (4)

If the black hole is physically identified with its event hori-
zon surface, then it is to be considered as a genuined = 2
system, thenθ = −1, which precisely recovers the usual
Bekenstein-Hawking (BH) scalingT ∝ 1/L ∝ 1/Mbh. If how-
ever the black hole is to be considered as a genuined =

3 system (which makes sense given that the correspond-
ing space-time is (3+1)-dimensional), thenθ = −2, i.e.,T
scales like 1/L2 ∝ 1/M2

bh, in variance with the BH scaling.
This is a manner for understanding why such a puzzle ex-
ists since decades related to the entropy of a black hole. Let
us be somewhat more specific. Wide and physically mean-
ingful evidence (e.g., the holographic principle) exists that
theBoltzmann-Gibbsentropy (for quantum systems, also re-
ferred to asvon Neumannentropy)SBG ≡ kB lnW ∝ L2, and
more generally thatSBG ≡ −kBTrρ lnρ ∝ L2, W being the
total number of internal configurations, andρ being the den-
sity matrix. For strongly quantum-entangledd-dimensional
systems we similarly have what is currently referred to as
thearea law[40], i.e., the fact thatSBG ≡ −kBTrρ lnρ fre-
quently scales withLd−1 for d > 1, and with lnL for d = 1,
instead of scaling, ford ≥ 1, with Ld. This fact also gener-
ates a closely related intriguing question. The above remarks
might be considered the heart of the ongoing discussion for

the entropy of a black hole. Indeed, if the system is to be
physically considered a(d− 1)-dimensional one, then the
(additive) entropySBG certainly is to be identified as its ther-
modynamical entropy. But if the system is to be physically
considered ad-dimensional one, thenSBG cannot be iden-
tified as its thermodynamical entropy, and, as we shall soon
see, a nonadditive entropic functional is needed to play that
role.

Fourth, a(2+1)-dimensional “black hole" has been dis-
cussed as well [41–43]. It has been shown that the energy
scales likeL2, henceε = 2 and, using Eq. (2) once again,

θ = 2−d . (5)

This case provides an event horizon which is one-dimen-
sional. If, due to this fact, this black hole is to be considered
a genuined = 1 system, thenθ = 1, which corresponds to

the(2+1) version of BH scaling, i.e.,T ∝ L ∝ M1/2
bh . Indeed,

this is precisely the scaling that has been obtained [41–43]
for this simplified system. If, however, this black hole is to
be considered as ad = 2 system, we haveθ = 0, and, in this
case,T is expected to be an intensive variable. Consistently,
if we assume the system to be ad = 1 one, then clearlySBG

plays the role of its thermodynamical entropy, sinceSBG ∝ L
(as obtained in [41–43]). But, similarly to the(3+ 1) case
discussed above, if we consider it to be ad = 2 one, then
once again a nonadditive entropic functional is needed to
play the thermodynamical role.

The physical system we primarily focus on in the present
paper is a(3+ 1) black hole like that of Schwarzschild.
As emphasized above, if we are to consider it as a gen-
uined = 2 system, thenSBG = kB lnW ∝ L2 corresponds in-
deed to the (extensive) thermodynamical entropyS, the BH
scalingT ∝ 1/Mbh is to be expected, and there are no contro-
versial or intriguing facts to be further analyzed. If however,
this black hole is to be considered a genuined = 3 system,
thenSBG can not be the thermodynamical entropy S, since
the latter must scale likeL3 while SBG scales likeL2. Within
this standpoint, a crucial question then arises, namely,what
is then the microscopic mathematical expression of the ther-
modynamical entropy S of this 3-dimensional system?The
purpose of the present paper is to provide a thermodynami-
cally admissible answer to this important question.

From a historical perspective, we observe that, strangely
enough, Gibbs’s crucial remark and the dramatic theoretical
features to which it is related are often overlooked in text-
books. Similarly, the thermodynamical violation related to
the area law frequently is, somehow, not taken that seriously.
Indeed, not few authors seem inclined to consider that, for
such complex systems, the entropy is not expected to sat-
isfy thermodynamical extensivity. However, various physi-
cal and mathematical facts exist which reveal such stand-
point as kind of bizarre. The specific goal of the present
paper is to address this important issue and develop a path
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along which the difficulty can be overcome. The fact (repeat-
edly illustrated in various manners for strongly entangled
systems, black holes and, generically speaking, for systems
satisfying the above mentioned area law) that the Boltzmann-
-Gibbs-von Neumann (additive) entropy isnot proportional
to the volumeLd precisely shows that, for such strongly cor-
related systems (hence the total number of admissible states
in phase space is sensibly reduced),the thermodynamical
entropy can not be identified with the usual one but with a
substantially different (nonadditive) one.

An argument reinforcing the correctness of using non-
additive entropic forms in order to re-establish the entropic
extensivity of the system can be found in the results achieved
by Hanel and Thurner [44, 45] by focusing on the Khinchine
axioms and on complex systems with surface-dominant sta-
tistics.

A further indication we can refer to is the analogy with
the time t dependence of the entropy of simple nonlinear
dynamical systems, e.g., the logistic map. Indeed, for the
parameter values for which the system has positive Lya-
punov exponent (i.e., strong chaos and ergodicity), we ver-
ify SBG ∝ t (under appropriate mathematical limits), but
for parameter values where the Lyapunov exponent vanishes
(i.e., weak chaos and breakdown of ergodicity), it is a non-
additive entropy (Sq, discussed below) the one which grows
linearly witht (see [46–55] and references therein), and con-
sistently provides a generalized Pesin-like identity. If we
take into account that, in many such dynamical systems,t
plays a role analogous toN in thermodynamical systems,
we have here one more indication which aligns with the ex-
tensivity of the entropy for complex systems.

Finally, one more recent result exists [56–58], related to
the so called Large Deviation Theory in theory of proba-
bilities, which also is consistent with the extensivity of the
entropy, even in the presence of strong correlations between
the elements of the system.

2 Nonadditive entropies

Let us now turn onto the fact that entropies generalizing that
of BG become necessary in order to recover thermodynamic
extensivity for nonstandard systems. Let us first describe
briefly an entropic functional form,Sq, generalizing that of
BG, which has been successfully applied for many complex
systems, as illustrated below. After that we shall address an-
other such generalization,Sδ (see Eq.16), which constitutes
in fact one of the contributions of the present work.

As a possibility for addressing complexities such as tho-
se illustrated above, it was proposed in 1988 [59] (see also
[32, 60, 61]) a generalization of the BG theory, currently
referred to as nonextensive statistical mechanics. It is based

on the nonadditive entropy

Sq = kB
1−∑W

i=1 pq
i

q−1
= kB

W

∑
i=1

pi lnq
1
pi

(

q∈ R;
W

∑
i=1

pi = 1

)

,

(6)

with lnqz ≡ (z1−q − 1)/(1− q) (ln1z = lnz). Sq recovers
SBG=−kB∑W

i=1 pi ln pi for q→ 1. If A andB are twoproba-
bilistically independentsystems (i.e.,pA+B

i j = pA
i pB

j , ∀(i, j)),
definition (6) implies

Sq(A+B)

kB
=

Sq(A)

kB
+

Sq(B)

kB
+(1−q)

Sq(A)

kB

Sq(B)

kB
. (7)

In other words, according to the definition of entropic addi-
tivity in [ 62], Sq is additive ifq= 1, and nonadditive other-
wise.

If probabilities are all equal, we straightforwardly obtain

Sq = kB lnqW . (8)

If we extremize (6) with a (finite) constraint on the width of
the probability distribution{pi} (in addition to its normal-
ization), we obtain

pi =
e
−βqEi
q

∑W
j=1e

−βqE j
q

, (9)

ez
q being the inverse of theq-logarithmic function, i.e.,ez

q ≡

[1+(1−q)z]1/(1−q) (ez
1 = ez); {Ei} are the energy levels;βq

is an effective inverse temperature.
Complexity frequently emerges in natural, artificial and

social systems. It may be caused by various geometrical-
dynamical ingredients, which include non-ergodicity, long-
term memory, multifractality, and other spatial-temporallong-
range correlations between the elements of the system. Dur-
ing the last two decades, many such phenomena have been
successfully approached in the frame of nonextensive sta-
tistical mechanics. Predictions, verifications and various ap-
plications have been performed in high-energy physics [63–
72], spin-glasses [73], flux of cosmic rays [74], turbulence
in pure-electron plasma [75], self-organized criticality in bi-
ological evolution [76], cold atoms in optical lattices [77],
trapped ions [78], anomalous diffusion [79–84], dusty plas-
mas [85], solar physics [86–88], relativistic and nonrelativis-
tic nonlinear quantum mechanics [89–91], among many oth-
ers.

If a physical system is constituted byN elements, and
these elements are independent (or quasi-independent in so-
me sense), we have that

W(N)∼ Aξ N (A> 0; ξ > 1; N → ∞) . (10)

(For example, forN independent coins, we haveW = 2N.)
Therefore, by illustrating the present point for the particular
case of equal probabilities, we immediately verify that

SBG(N) = kB lnW(N)∼ kB(lnξ )N ∝ N (N → ∞) , (11)
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W = 2
kB

0.0

0.5

1.0
p

0.0
1.0

2.0
3.0

δ

0.5

1.0

Sδ

Fig. 1 EntropySδ as a function of the indexδ and the probabilityp
of a binary variable (W = 2). Concavity is lost forδ > 1+ ln2.

hence thermodynamical extensivity is satisfied. This recon-
firms that, for such systems, the thermodynamically admis-
sible entropy is precisely given by the additive one,SBG, as
well known. If, however, strong correlations are present (of
the type assumed in theq-generalization of the Central Limit
and Lévy-Gnedenko Theorems [92, 93]), we can have

W(N)∼ BNτ (B> 0; τ > 0; N → ∞) . (12)

In this case, we straightforwardly verify that, forq= 1− 1
τ ,

Sq(N) = kB lnqW(N) ∝ N (N → ∞) , (13)

which satisfies thermodynamical extensivity, in contrast with
SBG(N) ∝ lnN, which violates it. Probabilistic and physical
models which belong to this class are respectively available
in [61] and [94, 95].

It is clear that, forN ≫ 1, expression (12) becomes in-
creasingly smaller than (10).

However there are cases which are described neither by
Eq. (10) nor by Eq. (12). Such is the case if

W(N)∼CνNγ
(C> 0;ν > 1; 0< γ < 1) , (14)

which also becomes increasingly smaller that (10) (though
larger than (12)). More precisely, we have

BNτ ≪CνNγ
≪ Aξ N (N ≫ 1; A> 0; B> 0;

C> 0; ξ > 1; ν > 1; τ > 0; 0< γ < 1) .
(15)

The entropy associated withγ → 1 is of courseSBG.
What about 0< γ < 1 ? A simple answer is in fact already

available in the literature (footnote of page 69 in [32]), namely,

Sδ = kB

W

∑
i=1

pi

(

ln
1
pi

)δ
(δ > 0) . (16)

The caseδ = 1 recoversSBG. This entropy is, likeSq for q>

0, concave for 0< δ ≤ (1+ lnW). And, also likeSq for q 6=

1, it is nonadditive forδ 6= 1. Indeed, for probabilistically
independent systemsA andB (henceWA+B = WAWB), we
verify Sδ (A+B) 6= Sδ (A) +Sδ (B). For equal probabilities
we have

Sδ = kB lnδ W , (17)

hence, forδ > 0,

Sδ (A+B)
kB

=

{

[

Sδ (A)
kB

]1/δ
+

[

Sδ (B)
kB

]1/δ
}δ

. (18)

It is easily verified that, ifW(N) satisfies (14), Sδ (N) is ex-
tensive forδ = 1/γ. This is in fact true even if

W(N)∼ φ(N)νNγ
(ν > 1; 0< γ < 1) , (19)

φ(N) being any function satisfying limN→∞
lnφ(N)

Nγ = 0, for
exampleφ(N) = BNτ . Let us now unifySq (Eq. (6)) andSδ
(Eq. (16)) as follows:

Sq,δ = kB

W

∑
i=1

pi

(

lnq
1
pi

)δ
. (20)

Sq,1 andS1,δ respectively recoverSq andSδ ; S1,1 recovers
SBG. Obviously this entropy is nonadditive unless(q,δ ) =
(1,1), and it is expansible (see, for instance, [32]), ∀q> 0,
∀δ > 0. It is concave for allq > 0 and 0< δ ≤ (qWq−1−

1)/(q−1). In the limitW → ∞, this condition becomes 0<
δ ≤ 1/(1− q), ∀q ∈ (0,1), and anyδ > 0 for q ≥ 1; see
Figs.1 and2. For equal probabilities we have

Sq,δ = kB(lnqW)δ . (21)

The above results for the equal-probabilities case may
be summarized as follows. If we have

W(N)∼ BNτ νNγ
(B> 0; τ ≥ 0; ν > 1; 0≤ γ ≤ 1) , (22)

Sq,δ is extensive (i.e.,Sq,δ ∝ N, for N→∞) for (q,δ ) = (1,1)
if (γ,τ) = (1,0) (notice thatτ > 0 is inadmissible ifγ = 1,
since no occupancy of phase space can be larger than full
occupancy), for(q,δ ) = (1−1/τ,1) if γ = 0 andτ > 0, and
for (q,δ ) = (1,1/γ) if 0 < γ < 1.

Let us mention at this point that several two-parameter
entropic functionals different fromSq,δ are in fact avail-
able in the literature (see, for instance, [44, 45, 96, 97]; see
also [98]). In particular the asymptotic behaviours ofSq,δ
in the thermodynamic limit coincide, for all values of(q,δ ),
with those of the recently introduced Hanel-Thurner entropy
Sc,d [44, 45] for appropriate values of(c,d).
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q

δ

1/d

d/(d−1)

concave

SBG

Sδ

Sq
W = 2

 0

 1

 2

 3

 0  1  2  3

non concave
W → ∞

Fig. 2 Parameter space(q,δ ) of the entropySq,δ . At the point(1,1) we
recover the Boltzmann-Gibbs entropySBG. At δ = 1 (q= 1) we recover
the nonadditive entropySq (Sδ ). For any fixedW there is a frontier
q(δ ) such that, forδ values at its left, the entropySq,δ is concave,
and, at its right, it neither concave nor convex. TheW = 2 andW →
∞ frontiers are indicated in the plot. The entropySδ is concave for
0< δ ≤ 1+ lnW. If we impose the extensivity ofSq,δ for the class of
systems represented by Eq. (19), it must beδ = 1/γ ≥ 1. If Sq,δ is used
for other purposes, the region 0< δ < 1 is accessible as well.

3 Discussion and conclusion

We can address now the area law. It has been verified for
those anomalousd-dimensional systems that essentially yield
lnW(L) ∝ Ld−1 (d > 1), which implies thatW(L) is of the
type indicated in (19), more precisely that

W(L)∼ φ(Ld)νLd−1
= φ(Ld)ν(Ld)

(d−1)/d

(23)

Therefore,Sδ =S1,δ for δ = d/(d−1) is extensive, thus sat-
isfying thermodynamics. For equal probabilities, we straight-
forwardly verify that

Sδ=d/(d−1)

kB
∝
(

SBG

kB

)d/(d−1)

(d > 1). (24)

Moreover, for such anomalous systems, the entropySδ=d/(d−1)

is expected to be extensive for arbitrary density matrices,
and not only for the simple equal-probability case. Ford= 3,
it can be connected with the well-known Bekenstein-Hawking
entropySBH through

Sδ=3/2

kB
∝
(

SBH

kB

)3/2

, (25)

where

SBH =
kB

4
AH

Gh̄/c3 , (26)

AH being the event horizon area. It is important to stress
that Eq. (25) hasnot been imposed in anad hocmanner
just to transformLd−1 into Ld : it has been derived from a
new entropic functional, namelySδ . This entropySδ has
been defined under the assumption that the current black-
hole result lnW ∝ AH is correct. Also, by using the fact
that d/(d− 1) > 0, we verify thatSδ=d/(d−1) increases
monotonically withSBH. This is consistent with the second
principle of thermodynamics, namely that wheneverSBH in-
creases with time, so doesSδ=3/2 (and the same happens in
general withSδ=d/(d−1)).

At the present state of knowledge we cannot exclude
the possibility of extensivity ofSq,δ for other special values
of (q,δ ), particularly in the limitδ → ∞.

For a block of ad = 1 gapless fermionic system, it has
been analytically proved [94] the extensivity ofSq for a spe-
cific value ofq< 1 which depends on the central charge of
the universality class that is being focused on (see also [95]
for a different type ofd = 1 system). For ad = 2 gapless
bosonic system, it has been numerically found [94] that,
once again, it isSq (with a value ofq< 1) the entropy which
is extensive and consequently satisfies thermodynamics. This
kind of scenario might be present in manyd-dimensional
physical systems for which lnW(N) ∝ ln2−d N (i.e., ∝ lnL
for d = 1, and∝ Ld−1 for d > 1).

Summarizing, classical thermodynamics and the ther-
mostatistics of a wide class of systems whose elements are
strongly correlated (for instance, through long-range inter-
actions, or through strong quantum entanglement, or both,
such as black holes, quantum gravitational dense systems,
and others) can be reconciled (along lines similar to those
illustrated in [60, 61, 94] for simple cases). It is enough,
for such complex systems, to identify the thermodynami-
cal entropy with nonadditive entropies such asSq,δ , and not
necessarily with the usual Boltzmann-Gibbs-von Neumann
one, which corresponds toq= δ = 1. This statement is by no
means in conflict with the well accepted relation that, for a
Schwarzschild(3+1)-dimensional black hole,SBG ∝ area.
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