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Abstract As early as 1902, Gibbs pointed out that systemssivity [5-20]. We frequently read and hear claims that the
whose partition function diverges, e.g. gravitation, li#-o entropy of the black hole is proportional to the area of its
side the validity of the Boltzmann-Gibbs (BG) theory. Con-boundary instead of being proportional to the black-hole
sistently, since the pioneering Bekenstein-Hawking tssul volume. To discuss this interesting question within a ther-
physically meaningful evidence (e.g., the holographiopri modynamically proper context, let us first remind a typi-
ciple) has accumulated that the BG entr@gy of a(3+1)  cal form of the thermodynamical ener@yof a generiad-
black hole is proportional to its ardZ (L being a charac- dimensional systen?fl]:

j[erisFic linear length), and not to its volume. Similarly GV, T,p, i H, .. ) =U(V,T,p, i, H, .. )+

it exists thearea law, so named because, for a wide class

of strongly quantum-entangletidimensional systems§gs 1 Vs TP K HL ) PV = UN(V, T, p i Ho )4 (1)
is proportional to I if d =1, and toL9 1 if d > 1,in- —HMV,T,pu,H,...)—---,

stead of being proportional id" (d > 1). These results vi- whereT, p, 4, H are the temperature, pressure, chemical po-
olate the extensivity of the thermodynamical entropy of ential, external magnetic field, attl S,V,N,M are the in-
d-dimensional system. This thermodynamical inconsistencysnal energy, entropy, volume, number of particles (imtur
disappears if we realize that the thermodynamical entrépy Sroportional to the number of degrees of freedom), magne-
such nonstandard systemsi® to be identified withthe BG iz ation. We identify three classes of variables, namaly (i
additiveentropy but with appropriately generalizadnad-  hose that are expected to always be exten&\é N, M, ...),
ditive entropies. Indeed, the celebrated usefulness of the B, | scaling withV = L9, whereL is a characteristic lin-
entropy is founded on hypothesis such as relatively weaka, dimension of the system (cleaty,0 AY(-1) where
probabilistic correlations (and their connections to €igo A s the area), (ii) those that characterize the externalicond
ity, which by no means can be assumed as a general rule gfns under which the system is placdd g, u,H....), scal-

nature). Here we introduce a generalized entropy which, foirng with L, and (iii) those that represent energi€s ),
the Schwarzschild black hole and the area law, can solve tr?caling withLe. It trivially follows

thermodynamic puzzle.
e=0+d. (2

1 Introduction If we divide Eq. ) by L9 and consider the large limit
(i.e., the thermodynamical limit), we obtain

The entropy of a black hole presents intriguing aspects that , T p U H T p u H

are being currently discussed since several decades.dndeé’(@a Le'ieLe ) = U(Fa Le'ie e --)+

since the pioneering works of Bekenstein 2] and Hawk- T /T p u H p

ing [3, 4], it has become frequent in the literature the (ex- — FS<F’ ARG F?"') + FJF ©)

plicit or tacit) acceptance that the black-hole entropynis-a g /T p p H H T p u H

malous in the sense that it violates thermodynamical exten- |6 n(ﬁ’ CACANCA ) e m(ﬁ’ CANCE F"") -
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the scalings appearing in this equation has been profusetiie entropy of a black hole. Indeed, if the system is to be
verified in the literature for (both short- and long-range in physically considered & — 1)-dimensional one, then the
teracting) thermald2-2§], diffusion [29] and geometrical (additive) entropyssc certainly is to be identified as its ther-
(percolation) systems3p, 31]. modynamical entropy. But if the system is to be physically
Next, let us illustrate relatior?f through four different considered a-dimensional one, thefss cannot be iden-
physical situations. First, for a standard thermodynamicdified as its thermodynamical entropy, and, as we shall soon
system (e.g., a real gas, a simple metal) we Itaye0 (i.e., see, a nonadditive entropic functional is needed to plaly tha
usual intensive variables), ared= d (i.e., usual extensive role.
variables). This is the answer that is found in the textbooks Fourth, a2+ 1)-dimensional “black hole" has been dis-
of thermodynamics. cussed as well41-43]. It has been shown that the energy
Second, for a classical many-body Hamiltonian systenscales likeL?, hencee = 2 and, using Eq.3) once again,
with two-body long-range (attractive) interactions asyotp
ically decaying with distance like 1/r (0 < a < d) we
have indeed42-32 6 = d —a, hence, using relatior?),  This case provides an event horizon which is one-dimen-
€ =2d - a. These peculiar scalings are a consequence froig o) £ due to this fact, this black hole is to be consider
the fact that.such p?otentlal |sd nlot |Or{1te.grable, i.e., from th 4 genuined = 1 system, ther® = 1, which corresponds to
fact that the integraegnganrr™ 1~ diverges, and there- the(2+ 1) version of BH scaling, i.eT OL Méﬁz. Indeed,

f.ore.the Bgltzmann-Glpbs (BG) canonical partmor.\ funC_this is precisely the scaling that has been obtaiddd43]
tion itself diverges. In his 1902 bodkementary Principles o : .

in Statistical Mechanicé33. Gibbs hi if haticall for this simplified system. If, however, this black hole is to
in Statistical Mechanic§3g], Gibbs himself emphatically be considered asth= 2 system, we havé = 0, and, in this

points out that whenever the partition function diverges, t . . . . .
S u 2~~~ case,T is expected to be an intensive variable. Consistently,
BG theory can not be used (in his words “the law of distribu-.
if we assume the system to b&a 1 one, then clearlsg

tion becomes illusory"). As an illustration of his remark he . . .
o . o plays the role of its thermodynamical entropy, siSge [ L
refers specifically to the case of Newtonian gravitati®f.[ . . o
. . . . (as obtained in41-43]). But, similarly to the(3+ 1) case
Third, for a Schwarzschild3+ 1)-dimensional black . . I
discussed above, if we consider it to bel a 2 one, then

hole, the energy scales like the ma4g, (where bh stands . . : . :
o . once again a nonadditive entropic functional is needed to
for black holg, which in turn scales with. [37-39], hence :
play the thermodynamical role.

€ =1, hence, using Eq2J, The physical system we primarily focus on in the present
0—1—-d. (4) Ppaper is a(3+ 1) black hole like that of Schwarzschild.
As emphasized above, if we are to consider it as a gen-
If the black hole is physically identified with its event hori- uined = 2 system, thesg = kg InW [ L? corresponds in-
zon surface, then it is to be considered as a gendige2  deed to the (extensive) thermodynamical entrSpthe BH
system, ther® = —1, which precisely recovers the usual scalingT [0 1/Mp,is to be expected, and there are no contro-
Bekenstein-Hawking (BH) scaling01/L O 1/Myn. If how-  versial or intriguing facts to be further analyzed. If howgv
ever the black hole is to be considered as a gendire  this black hole is to be considered a genuine 3 system,
3 system (which makes sense given that the corresponthen Ssg can not be the thermodynamical entropysiice
ing space-time is (3+1)-dimensional), thén= —2, i.e., T the latter must scale like*> while Sz scales likel.2. Within
scales like L% 0 1/M§h, in variance with the BH scaling. this standpoint, a crucial question then arises, namndigat
This is a manner for understanding why such a puzzle exs then the microscopic mathematical expression of the ther
ists since decades related to the entropy of a black hole. Letodynamical entropy S of this 3-dimensional systdine
us be somewhat more specific. Wide and physically mearpurpose of the present paper is to provide a thermodynami-
ingful evidence (e.g., the holographic principle) existatt cally admissible answer to this important question.
theBoltzmann-Gibbsntropy (for quantum systems, alsore-  From a historical perspective, we observe that, strangely
ferred to azyon Neumanentropy)Sss = ksInW O L2, and  enough, Gibbs’s crucial remark and the dramatic theotetica
more generally thaSsg = —ksTrplnp 0 L2, W being the features to which it is related are often overlooked in text-
total number of internal configurations, andbeing the den-  books. Similarly, the thermodynamical violation related t
sity matrix. For strongly quantum-entanglédiimensional the arealaw frequently is, somehow, not taken that sesousl
systems we similarly have what is currently referred to asndeed, not few authors seem inclined to consider that, for
thearea law[4Q], i.e., the fact thaBsg = —kgTrplnp fre-  such complex systems, the entropy is not expected to sat-
quently scales witth 91 ford > 1, and with I ford =1,  isfy thermodynamical extensivity. However, various physi
instead of scaling, fod > 1, with L9. This fact also gener- cal and mathematical facts exist which reveal such stand-
ates a closely related intriguing question. The above rksnar point as kind of bizarre. The specific goal of the present
might be considered the heart of the ongoing discussion fquaper is to address this important issue and develop a path

0=2-d. 5)



along which the difficulty can be overcome. The fact (repeaton the nonadditive entropy
edly illustrated in various manners for strongly entangled
systems, black holes and, generically speaking, for syste 1- ZV!l p! i 1 y

> ’ ’ =kg—==—=ks ) pilng— (ae% H pi=1]|,
satisfying the above mentioned area law) that the Boltzmann g-1 & pi =
-Gibbs-von Neumann (additive) entropyrist proportional (6)
to the volume_? precisely shows that, for such strongly cor- ) .
related systems (hence the total number of admissiblesstat¥/ith INqz = \sz 9-1)/(1—q) (In1z=In2). & recovers
in phase space is sensibly reducetily thermodynamical S8c= —ks¥i=ipilnpiforg— 1.If AiﬂgB are t[\BNoproba-
entropy can not be identified with the usual one but with dilistically independensystems (i.e.p;;™ = ppf, (i, 1)),

substantially different (nonadditive) one definition () implies
An argument reinforcing the correctness of using non-$4(A+B)  §(A) n S(B) - )SJ(A) &(B) @
additive entropic forms in order to re-establish the eritrop ke ks ks g ks kg °

extensivity of the system can be found in the results aclieve|, giner words, according to the definition of entropic addi-

by Hanel and Thurnenf4, 45] by focusing on the Khinchine ity in [62), S, is additive ifq = 1, and nonadditive other-
axioms and on complex systems with surface-dominant stgyise.

tistics. If probabilities are all equal, we straightforwardly olstai
A further indication we can refer to is the analogy with
the timet dependence of the entropy of simple nonlinear = kelngW. (8)

dynamical systems, e.g., the logistic map. Indeed, for thef we extremize 6) with a (finite) constraint on the width of

parameter values for which the system has positive Lyathe probability distribution{p;} (in addition to its normal-

punov exponent (i.e., strong chaos and ergodicity), we Velization), we obtain

ify Sgg [ t (under appropriate mathematical limits), but BE,

for parameter values where the Lyapunov exponent vanish S _ € | (9)

(i.e., weak chaos and breakdown of ergodicity), it is a non- Z\szl engEJ

additive entropy &, discussed below) the one which grows ) . o o

linearly witht (see i6-55] and references therein), and con- & being the inverse of the-logarithmic function, i.e.¢f =

sistently provides a generalized Pesin-like identity. & w .[1"‘ (1—(1)?]1/(.17(” (¢f = €); {Ei} are the energy levelg,

take into account that, in many such dynamical systems, IS an effective inverse temperature.

plays a role analogous t in thermodynamical systems, Complexity frequently emerges in natural, artificial and

we have here one more indication which aligns with the exSocial systems. It may be caused by various geometrical-

tensivity of the entropy for complex systems. dynamical ingredients, which include non-ergodicity,den
Finally, one more recent result exis&5[58], related to term memory,multifractality, and other spatial-tempdoaly-

the so called Large Deviation Theory in theory of proba-_range correlations between the elements of the system. Dur-

bilities, which also is consistent with the extensivity bet N9 the last two decades, many such phenomena have been

entropy, even in the presence of strong correlations betwees.ugcelssfullﬁ approgchgld n the fra.\fr.ne _Of nonedxten§|ve sta-
the elements of the system. tistical mechanics. Predictions, verifications and vasiap-

plications have been performed in high-energy phy€8s [
72), spin-glasses3], flux of cosmic rays T4], turbulence
in pure-electron plasm& §, self-organized criticality in bi-
ological evolution 7€], cold atoms in optical latticesr[],

trapped ionsT8], anomalous diffusion]9-84], dusty plas-

Let us now turn onto the fact that entropies generalizing tha"@s B3, solar physics§6-8§), relativistic and nonrelativis-

of BG become necessary in order to recover thermodynamfi nonlinear quantum mechani@g-91], among many oth-
extensivity for nonstandard systems. Let us first describ&": . . _

briefly an entropic functional fornt,, generalizing that of If a physical sys.tem is constituted tby.ellements, anq
BG, which has been successfully applied for many Comple)t(hese elements are independent (or quasi-independentin so
systems, as illustrated below. After that we shall addrass a M S€Nse), we have that

other such generalizatioB; (see Eq16), which constitutes  W(N) ~ AEN (A>0;& > 1;N — o). (10)

in fact one of the contributions of the present work. . le. foN ind dent coi have — oN
As a possibility for addressing complexities such as tho—( or example, foN independent coins, we haVeé = 2°.)

se illustrated above, it was proposed in 1986 [(see also Therefore, by illustrating the present point for the paitac

[32, 60, 61]) a generalization of the BG theory, currently case of equal probabilities, we immediately verify that
referred to as nonextensive statistical mechanics. ltsetha Sgg(N) = kgInW(N) ~ kg(INnE)NON (N — o), (11)

2 Nonadditive entropies



available in the literature (footnote of page 6932]), namely,

S5k5§‘pi (In%)é (6>0). (16)

The case = 1 recoversssg. This entropy is, likeg; for g >
0, concave for < 6 < (1+InW). And, also likeS; for q #
1, it is nonadditive ford # 1. Indeed, for probabilistically
independent systems andB (henceW”B = WAWE), we
verify S5(A+ B) # Ss(A) + Ss(B). For equal probabilities
we have

S5 = kaIn®W, (17)

hence, ford > 0,

- {E Y w

3.010 It is easily verified that, itV(N) satisfies 14), S5(N) is ex-
tensive ford = 1/y. This is in fact true even if

Fig. 1 EntropySs as a function of the inde& and the probabilityp

NY .
of a binary variableW = 2). Concavity is lost fod > 1+In2. W(N) ~ @(N)v™ (v>1,0<y<1), (19)

@(N) being any function satisfying lif,e 'n?\ﬂ# =0, for
hence thermodynamical extensivity is satisfied. This recorexamplep(N) = BN'. Let us now unify&; (Eq. (6)) andSs
firms that, for such systems, the thermodynamically admis(Ed. (16)) as follows:

sible entropy is precisely given by the additive 08gg, as w 1\%

well known. If, however, strong correlations are presefit (0,5 = ks Zpi <|nq —_) : (20)

the type assumed in tliegeneralization of the Central Limit i= b

and Lévy-Gnedenko Theoreng? 93)), we can have S.1 and S, 5 respectively recove®; and S;; Sy 1 recovers
Ssc. Obviously this entropy is nonadditive unle@g d) =

W(N) ~BN" (B>0;T>0;N — ). (12)  (1,1), and it is expansible (see, for instancé?]j, Vq > 0,
¥& > 0. It is concave for alty > 0 and 0< & < (qwd—1 —

In this case, we straightforwardly verify that, fge=1—2, 1) /(q— 1). In the limitW — o, this condition becomes @
0<1/(1-q),vqe (0,1), and anyd > 0 for g > 1; see

S(N) =keIngW(N) N (N — o), (13) Figs.l/:Ede.)For eqlEaI p)robabilities we have

which satisfies thermodynamical extensivity, in contragtw S5 = kB(lan)é- (21)

Ssa(N) OInN, which violates it. Probabilistic and physical
models which belong to this class are respectively availabl ~ The above results for the equal-probabilities case may
in [61] and [94, 95). be summarized as follows. If we have

Itis clear that, folN > 1, expression12) becomes in-
creasingly smaller tharL().

However there are cases which are described neither I, 5 is extensive (i.e $; s 0N, for N — ) for (g,8) = (1,1)

W(N) ~BN'VN (B>0;7>0;v>1;,0<y<1), (22)

Eq. 10) nor by Eq. (2). Such is the case if if (y,7) = (1,0) (notice thatr > 0 is inadmissible ify =1,
Y since no occupancy of phase space can be larger than full
W(N) ~Cv™ (C>0;v>10<y<1), (14)  occupancy), foftg,5) = (1—1/1,1) if y=0andr > 0, and

for (q,0) = (1,1/y)if0 <y< 1.

Let us mention at this point that several two-parameter
entropic functionals different frong, s are in fact avail-
BN < CvN' < AEN (N>>1;A>0;B>0; able in the literature (see, for instancé4[45, 96, 97]; see
(15)  also Pg)). In particular the asymptotic behaviours §f 5

in the thermodynamic limit coincide, for all values(af, 9),

The entropy associated with — 1 is of courseSsg.  with those of the recently introduced Hanel-Thurner engrop

What about 0< y < 1 ? A simple answer is in fact already S q[44, 45 for appropriate values df,d).

which also becomes increasingly smaller thid) ((though
larger than {2)). More precisely, we have

C>0;§>1v>11>00<y<1).



- Ay being the event horizon area. It is important to stress
that Eq. 5) hasnot been imposed in aad hocmanner
just to transform_9-1 into L9 it has been derived from a
new entropic functional, namel$s. This entropySs has
concave been defined under the assumption that the current black-
hole result I'W [0 Ay is correct. Also, by using the fact
thatd/(d—1) > O, we verify thatS;_g,q_1) increases
monotonically withSgy. This is consistent with the second
principle of thermodynamics, namely that wheneSgy in-
creases with time, so do&§_s, (and the same happens in
general WithS5:d/(d,1)).
At the present state of knowledge we cannot exclude
the possibility of extensivity 0§, 5 for other special values
, of (g,0), particularly in the limitd — co.
| non concave For a block of ad = 1 gapless fermionic system, it has
' ' been analytically proved®H] the extensivity ofS, for a spe-
0 1 d/(d-1) 2 0 3 cific value ofq < 1 which depends on the central charge of
the universality class that is being focused on (see &5p [
Fig. 2 Parameter space, 0) of the entropy&, 5. Atthe point(1, 1) we  for a different type ofd = 1 system). For a = 2 gapless

recover the Boltzmann-Gibbs entrofiys. At d =1 (Q= 1) we recover . . -
the nonadditive entropgg, (Ss). For any fixedW there is a frontier bosonic system, it has been numerically fousd] [that,

q(8) such that, ford values at its left, the entropg, s is concave, ~ONCE again, it is; (with a value ofg < 1) the entropy which
and, at its right, it neither concave nor convex. Whe= 2 andW — is extensive and consequently satisfies thermodynamics. Th

o frontiers are indicated in the plot. The entrofy is concave for  kind of scenario might be present in madydimensional

0< 4 <1+InW. If we impose the extensivity d&, 5 for the class of : : :
systems represented by E49), it mustbhed =1/y > 1. If §, 5 is used physical systems for which W(N) O'Inz_¢N (i.e., OInL

for other purposes, the region05 < 1 is accessible as well. ford =1, andd L% *ford > 1).
Summarizing, classical thermodynamics and the ther-

_ _ _ mostatistics of a wide class of systems whose elements are
3 Discussion and conclusion strongly correlated (for instance, through long-rangerint
actions, or through strong quantum entanglement, or both,

We can address now the area law. It has been verified faf;, .y a5 plack holes, quantum gravitational dense systems,
those anomalout-dimensional systems that essentially yield,, gthers) can be reconciled (along lines similar to those

InW(L) U Ldfl.(d > 1), which implies thaW(L) is of the  jysirated in B, 61, 94] for simple cases). It is enough,
type indicated in19), more precisely that for such complex systems, to identify the thermodynami-
oy (L8 @D/ cal entropy with nonadditive entropies suchSgg, and not

= (L) (23) necessarily with the usual Boltzmann-Gibbs-von Neumann
one, which correspondstp= & = 1. This statement is by no
means in conflict with the well accepted relation that, for a
Schwarzschild3+ 1)-dimensional black holesgg O area

1d
0

W(L) ~ gLV
ThereforeS; =S, 5 for 6 =d/(d — 1) is extensive, thus sat-
isfying thermodynamics. For equal probabilities, we gfin&i
forwardly verify that

Ss—d/(d-1) . (Sae) ¢/(d-1)
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