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The possible distinction between inanimate and living matter has been of interest to humanity for thousands of years.
Clearly, such a rich question can not be answered in a single manner, and a plethora of approaches naturally do exist.
However, during the last two decades, a new standpoint, of thermostatistical nature, has emerged. It is related to the
proposal of nonadditive entropies in 1988, in order to generalise the celebrated Boltzmann–Gibbs additive functional,
basis of standard statistical mechanics. Such entropies have found deep fundamental interest and uncountable applications
in natural, artificial and social systems. In some sense, this perspective represents an epistemological paradigm shift.
These entropies crucially concern complex systems, in particular those whose microscopic dynamics violate ergodicity.
Among those, living matter and other living-like systems play a central role. We briefly review here this approach, and
present some of its predictions, verifications and applications.

Keywords: inanimate matter; living matter; complex systems; nonadditive entropies; nonextensive statistical mechanics

1. Introduction

In 1865, the German physicist and mathematician Rudolf
Julius Emanuel Clausius introduced the concept of entropy
(noted S, apparently in honour of the French military en-
gineer and physicist Nicolas Léonard Sadi Carnot, whom
Clausius admired) in order to complete the formalism of
thermodynamics. It was defined on macroscopic grounds, in
relation to that part of energy that cannot be transformed into
work. In the 1870s the Austrian physicist and philosopher
Ludwig Eduard Boltzmann, in a genius insight, connected
entropy with the microscopic world. Later on, theAmerican
physicist and mathematician Josiah Willard Gibbs refined
and extended the connection. The Boltzmann–Gibbs (BG)
entropic functional SBG expresses Clausius thermodynamic
entropy in terms of the probabilities (noted {pi }, and sum-
ming up to unity) of occurrence of the possible microscopic
configurations compatible with our macroscopic knowledge
of the system. In its virtually most simple form, namely
corresponding to W discrete possibilities, it is given by

SBG = −k
W∑

i=1

pi ln pi

(
W∑

i=1

pi = 1

)
, (1)

k being a conventional constant (usually taken as k = 1
in information theory, or equal to the Boltzmann constant
kB in thermal physics). In theory of communications, this
functional is frequently called Shannon entropy.

∗Email: tsallis@cbpf.br

This expression becomes, for the particular instance when
all probabilities are equal, i.e. pi = 1/W ,

SBG = k ln W, (2)

carved in stone on Boltzmann’s grave in the Central
Cemetery in Vienna. In spite of its formidable simplicity,
this expression represents one of the most subtle physi-
cal concepts. It is conceivable to think that this, together
with Newton’s F = ma, Planck’s ε = hν and Einstein’s
E = mc2, constitutes an important part of the irreducible
core of contemporary physics.

Interestingly enough, the BG expression for entropy plays,
as we shall see, a key role in a possible distinction between
inanimate and living matter. Also, it is at the heart of what
some consider as a paradigm shift, in the sense of Thomas
Kuhn. Indeed, during over one century, that entropy ex-
pression has been considered by physicists as universal.
For example, we are nowadays accustomed to the fact that
energy is not universal. Indeed, the kinetic energy of a truck
is, due to its mass, much larger than that of a fly. Moreover,
the Einstein expression for the energy sensibly generalises
the Newtonian one. Nothing like this has emerged in physics
during more than one century in what concerns the en-
tropy.1 This fact has somehow become embedded in the
spirit of many physicists, and other scientists, that Equation
(1) (hence Equation (2)) is universal, in the sense that it ap-
plies to all systems. We intend to argue here that it is not so.

© 2014 Taylor & Francis
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2 C. Tsallis

Indeed, we shall argue that the physical entropic functional
connecting the thermodynamic entropy to the microscopic
world is not unique, but depends instead on wide univer-
sality classes of (strong) correlations within the elements of
the system.

To provide some intuition to the viewpoint that we shall
develop here, let us start through a geometrical analogy.
Consider the surface of a glass covering a table. Let us
consider it, to a first approximation, as an Euclidean plane.
What is its volume? Clearly zero since it has no height!
A simple answer to a kind of irrelevant question. What is
its length? Clearly infinite, since an infinitely long curve is
necessary to entirely cover it! Once again, a simple answer
to another kind of irrelevant question. Let us now formulate
a relevant question: What is the area of the surface? It is
say two square meters, a finite number, not zero not infinity.
What determines the interesting question – the area – to
be addressed in this example? Is it us? Clearly not: it is
instead the geometrical nature of our system. As a second
illustration along the same lines, let us focus on the triadic
Cantor set shown in Figure 1. If we ask say its length,
the answer is zero. But if we ask its measure in 0. 6309...
dimensions, we obtain a much more informative answer,
namely (10 cm)0.6309... = 4.275... cm0.6309.... As before, it
is the specific geometrical structure of the system which
determines the useful question to be raised. It is precisely
in this sense that the class of dynamical/geometrical corre-
lations between the elements of our system determines the
appropriate entropic functional which is to be used. Not that
we cannot calculate other functionals, but there is one which
is by far the most appropriate and most informative form to
use. More specifically, if the system is to be connected with
thermodynamics, the appropriate entropic functional is that
one which is extensive. In the next section we further discuss
this point by focusing on the crucial distinction between
additivity and extensivity. Then in Section 3 we discus
the time evolution of entropy. In Section 4 we comment
on extensions of the classical Central Limit Theorem. In
Section 5 we present some selected applications, and we
finally conclude in Section 6 with some specific epistemo-
logical considerations.

Figure 1. A triadic Cantor set, whose Hausdorff or fractal
dimension is d f = ln 2/ ln 3 = 0.6309....

2. Additive and nonadditive entropic functionals and
how they can make the macroscopic entropy to be
thermodynamically extensive

Let us start by adopting Penrose’s definition of entropic
additivity [1]. An entropy S is said to be additive if, for any
two probabilistically independent systems A and B (i.e. such
that pA+B

i j = pA
i pB

j , ∀(i, j)), we have that

S(A + B) = S(A) + S(B). (3)

Otherwise it is said to be nonadditive. It is straightforward
to verify from Equation (1) that SBG is additive.

Let us introduce now two different nonadditive general-
isations of SBG, namely Sq [2–12] and Sδ [10,13,14].

2.1. The nonadditive q-entropy

The q-entropy is defined through

Sq ≡ k
1 −∑W

i=1 pq
i

q − 1
= −k

W∑
i=1

pq
i lnq pi

= k
W∑

i=1

pi lnq
1

pi

(
q ∈ R;

W∑
i=1

pi = 1; S1 = SBG

)
,

(4)

where the q-logarithmic function is defined as follows:

lnq z ≡ z1−q − 1

1 − q
(z > 0; ln1 z = ln z), (5)

whose inverse function is defined as follows:

ez
q ≡ [1 + (1 − q)z] 1

1−q (ez
1 = ez). (6)

This definition of the q-exponential function applies if 1 +
(1 − q)z ≥ 0; otherwise it vanishes.

The functional form (4) has been shown to satisfy unique-
ness under appropriate axioms, which generalise, in [15]
and [16] respectively, those traditionally assumed in the
Shannon theorem and in the Khinchin theorem. These in-
teresting generalised theorems, together with the fact that
Sq corresponds to the simplest admissible functional which
is linear in

∑W
i=1 pq

i , and to the facts that it is both concave
and Lesche-stable for q > 0 (see details in [10]) make this
entropy quite interesting a priori.

It can be easily verified that, if A and B are any two
probabilistically independent systems,

Sq(A + B)

k
= Sq(A)

k
+ Sq(B)

k
+ (1 − q)

Sq(A)

k

Sq(B)

k
,

(7)
hence

Sq(A + B) = Sq(A) + Sq(B) + 1 − q

k
Sq(A)Sq(B). (8)

We see then that, unless q = 1, Sq is nonadditive (subad-
ditive for q > 1, and superadditive for q < 1). We also
see that the q → 1 limit is equivalent to the k → ∞ one.
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Contemporary Physics 3

Therefore we expect q-statistics to become q-independent,
hence coincide with BG statistics, in the limit of infinitely
high temperatures (we recall that the temperature T always
appears in the form kT ). This property is of the same na-
ture which makes the BG canonical and grand-canonical
ensembles to asymptotically coincide with the BG micro-
canonical one at high temperatures; and also the Fermi–
Dirac and Bose–Einstein statistics to recover, in the same
limit, the simple Maxwell–Boltzmann statistics. We also see
from Equation (8) that Sq is composable, in the sense that,
once we know Sq(A), Sq(B) and the index q , we do not
need to know microscopic details about the states of A and
B to calculate Sq(A + B). Not many entropic functionals
have this remarkable property.

If all probabilities are equal we have that

Sq = k lnq W, (9)

which generalises Equation (2).
If we are dealing with continuous variables, we have

Sq ≡ k
1 − ∫

dx [p(x)]q

q − 1
= −k

∫
dx [p(x)]q lnq [p(x)]

= k
∫

dx p(x) lnq

[
1

p(x)

] (∫
dx p(x) = 1

)
.

(10)

If we are dealing with quantum operators, we have

Sq ≡ k
1 − T r [ρq ]

q − 1
= −kT r [ρq lnq ρ]

= kT r

[
ρ lnq

1

ρ

]
(T rρ = 1), (11)

ρ being the density matrix. The q = 1 particular case
recovers S1 = −kT rρ ln ρ, currently referred to as the von
Neumann entropy.

2.2. The nonadditive δ-entropy

The δ-entropy is defined through

Sδ ≡ k
W∑

i=1

pi

[
ln

1

pi

]δ
(

δ ∈ R;
W∑

i=1

pi = 1; S1 = SBG

)
.

(12)
If all probabilities are equal we have that

Sδ = k[ln W ]δ, (13)

which generalises Equation (2), though in a different sense
than that of Sq . The expressions of Sδ for the continuous
and quantum cases are self-evident.

It can be easily verified that, if A and B are any two
probabilistically independent systems,

Sδ(A + B) = k
WA∑
i=1

WB∑
j=1

pA
i pB

j

[
ln

1

pA
i

+ ln
1

pB
j

]δ

	= k
WA∑
i=1

pA
i

[
ln

1

pA
i

]δ

+ k
WB∑
j=1

pB
j

[
ln

1

pB
j

]δ

= Sδ(A) + Sδ(B) (δ 	= 1). (14)

For the particular case of equal probabilities, more precisely
pA

i = 1/WA (∀i) and pB
j = 1/WB(∀ j), we obtain

Sδ(A + B) = k
[
ln(WAWB)

]δ =
{
[Sδ(A)]1/δ + [Sδ(B)]1/δ

}δ

	= k
[
ln WA

]δ + k
[
ln WB

]δ
= Sδ(A) + Sδ(B) (δ 	= 1). (15)

This exhibits that, unless δ = 1, Sδ is nonadditive
(subadditive if δ < 1, and superadditive if δ > 1).

2.3. The nonadditive (q, δ)-entropy

Equations (4) and (12) can be unified as follows [13,17]:

Sq,δ ≡ k
W∑

i=1

pi

[
lnq

1

pi

]δ

(q ∈ R, δ ∈ (R)). (16)

We straightforwardly verify that S1,1 = SBG, Sq,1 = Sq ,
and S1,δ = Sδ . Clearly, unless (q, δ) = (1, 1), Sq,δ is
nonadditive.

There are several other two-parameter entropic function-
als available in the literature, e.g. the Borges–Roditi
entropy [18], the Schwammle–Tsallis entropy [19], the
Hanel–Thurner entropy [20,21]. Each of them has its own
(interesting) motivation. However, the latter deserves a spe-
cial comment: it has been obtained as the most general
trace-form entropy which satisfies the first three axioms of
Khinchin.2

It is given by

Sc,d ≡ k

{
e
∑W

i=1 �(1 + d, 1 − c ln pi )

1 − c + cd

− c

1 − c + cd

}
(c ∈ R, d ∈ R), (17)

where � denotes the incomplete Gamma function. This
entropic functional should in principle be, in one way or
another (typically asymptotically in some thermodynam-
ical sense), directly related to Sq,δ and to the other two-
parameter entropies. Also, from group-theoretical
arguments it has been recently shown [22] that wide classes
of entropies are isomorphic to Dirichlet series. In particu-
lar, Sq corresponds to the Riemann zeta function. It seems
reasonable to expect that all these two-parameter entropies
correspond to various Dirichlet series. This remains how-
ever to be exhibited explicitly.
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4 C. Tsallis

Figure 2. At the time of Thutmosis I, the North was named, by astronomers and everybody else, ‘along the stream’, and the South ‘against
the stream’, making of course reference to the highly important river Nile. But great amazement arrived to the Egyptians when, invading
Mesopotamia, they found the Eufrates, which runs basically from North to South. Back to Egypt, they registered on an obelisk ‘That
strange river that, when one goes along the stream, one goes against the stream’ (free translation). This extreme confusion was caused by
the ignorance that the flow of rivers has nothing to do with the motion of the stars. They were understandably misled by the fact that they
had never before seen any other river than the Nile. We intend to metaphorically illustrate here why most physicists have, along almost
one century and a half, been confusing entropic additivity and extensivity, misled by the fact that they were basically focusing on systems
whose W grows exponentially with N . Images: Colossal sandstone of an 18th dynasty pharaoh [left] © User: Captmondo/Wikimedia
Commons/CC-BY-SA-3.0. Map [top right] re-used with the permission of Dr. Craig Koester and Luther Seminary, St Paul, MN, USA.
Court of the 4th Pylon - Obelisk of Thutmose I [bottom right] © User: Kurohito/Wikimedia Commons/CC-BY-SA-3.0.

2.4. Entropic extensivity

Extensivity is a property completely different from additiv-
ity. We will say that an entropy S(N ), N being the number
of elements of the system, is extensive if S(N ) ∝ N for
N → ∞, i.e. if 0 < limN→∞ S(N )/N < ∞. Additivity
only depends on the mathematical form of the entropic func-
tional, whereas extensivity depends on that and on the na-
ture of the correlations between the elements of the system.
Consequently, it is trivial to check whether a given entropic
functional is additive, whereas it can be enormously difficult
to check whether a given entropy applied to a given system
is extensive.

Let us address now various important classes of sys-
tems. We start with those satisfying, in the N → ∞ limit,
W (N ) ∝ μN (μ > 1), i.e. those whose elements are inde-
pendent or quasi-independent. Equation (2) yields
SBG(N ) ∝ N , consistently with thermodynamics. In other
words, for this class, SBG is extensive and it is therefore the
one to be used to study its thermostatistics.

In contrast, strong correlations frequently yield, in the
N → ∞ limit, that the number W of microscopic possi-
bilities whose probability is nonzero increases as W (N ) ∝
Nρ (ρ > 0). For such systems, SBG(N ) ∝ ln N , which
is thermodynamically inadmissible. Instead, Equation (9)

Figure 3. The block BG entropy SBG(L) ∝ ln L for all finite
values of the central charge c, thus violating thermodynamical
extensivity, whereas, for the special value of q indicated here,
Sq (L) ∝ L , i.e. it satisfies one-dimensional extensivity, thus
enabling the use of all the relations present in any good textbook
of thermodynamics. See details in [24].

implies Sq=1− 1
ρ
(N ) ∝ N , in agreement with classical ther-

modynamics.
As one more interesting class of correlations, we might

have, in the N → ∞ limit, that the number W of micro-
scopic possibilities whose probability is nonzero increases
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Contemporary Physics 5

Figure 4. The time-dependence of the entropy Sq for typical values of the index q for a = 2 and a = 1.6. The relevant (finite) slope is
in this case given by K1 ≡ limt→∞ limW→∞ limN→∞ SBG(t)/t , where N is the number of initial conditions {x0} that have been used
in order to perform the numerical computation, and W is the number of windows within which the N values of xt evolve in the interval
[−1, 1]. The Lyapunov exponent for a = 2 equals ln 2 � 0.69. Reproduced by permission of C. Tsallis. See details in [27].

Figure 5. The first 1018 digits of the value of the entropic index q which characterises the sensitivity to the initial conditions and the
entropy production per unit time of the logistic-map at the Feigenbaum point a∞ (accumulation point of the successive bifurcations).
It has been calculated, through Equation (26), by using the 1018 digits of the Feigenbaum universal constant αF freely available at
http://pi.lacim.uqam.ca/piDATA/feigenbaum.txt.

as W (N ) ∝ νNγ
(ν > 1, 0 < γ < 1). For this class, there

is no value of q which makes Sq extensive. But, through
Equation (13), we have that Sδ=1/γ (N ) ∝ N [13], i.e. it is
extensive and it is therefore the one to be used to address the
thermostatistics of the system (for instance, possibly, black
holes).

These considerations are clearly based on the require-
ment that, in all circumstances, the thermodynamic entropy

should be extensive: see Table 1 (and also Figure 2). Why
that? This is a crucially important point by itself, but we
shall not address it here in detail because of lack of space.
Nevertheless, the main reasons for this (kind of intuitive but
by no means trivial) requirement can be seen in [13,23]. In
[13] we summarize a strong thermodynamical reason, based
essentially in the Legendre transformations that charac-
terise thermodynamics. In [23] we illustrate, with a specific
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6 C. Tsallis

Table 1. Additive and nonadditive entropic functionals and classes of systems for which the entropy is extensive. W (N ) is the number
of admissible microscopic configurations of a system with N elements; only configurations with nonvanishing occurrence probability are
considered admissible.

Figure 6. Time-dependence, at the Feigenbaum point (weak
chaos), of the entropy Sq (t) and of the sensitivity to the initial
conditions ξ(t), with q = 0.24448... given by Equation (26). For
details see [29] (Reproduced by permission of A. Robledo).

model, the large-deviation-theory reason. Both reasons are
consistent among them, as their detailed analysis can show.

For some details concerning the Legendre-transform reason
the reader might look at [10].

We notice that, in the limit N → ∞, μN � νNγ �
Nρ , which essentially means that the occupancy of the
exponential class yields a finite Lebesgue measure, typical
of ergodicity in full phase space (as imagined by Boltzmann
himself consistently with his molecular chaos hypothesis,
as well as by Gibbs), whereas the occupancy of both the
stretched-exponential and the power-law classes yield a
zero Lebesgue measure, typical of systems which are non-
ergodic in full phase space. It is through this viewpoint
that a crucial distinction emerges between inanimate mat-
ter (typically corresponding to the exponential class) and
complex systems (typically corresponding to classes such
as the stretched-exponential and power-law ones), within
which we find living matter.

2.5. Calculation of q from first principles

The entropic index q is to be calculated from the geo-
metric/dynamical nature of the occupancy of phase space.
For example, if we have a many-body Hamiltonian
system, q is determined by the Hamiltonian itself (more
precisely, by the universality class of the Hamiltonian),
i.e. from first principles. This calculation is by no means a
mathematically easy task, and in many cases it is practically
intractable.Afew examples have, nevertheless, been analyt-
ically worked out. Such systems are addressed in [24]. Let us
consider a strongly quantum-entangled system constituted
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Contemporary Physics 7

Figure 7. Diagram for the Equation (27) for β̄ = 1. It was conjectured in [33,34] that the various types of solutions of the FPE
would precisely correspond to the attractors (in probability space) of the CLT and its extensions (in red and green). The (q, α)-attractor
corresponds to globally correlated variables and divergent q-variance, whose precise definitions are given in [35,36]. The conjecture of
the correspondence between the solutions of the FPE and the attractors of the CLT has proved valid in all the cases that have been checked:
it remains to be checked for the generic (q, α)-attractors (this is under progress now).

by N elements with no frustrated interactions. Let us further
assume that, at the N → ∞ limit, it exhibits a T = 0 critical
point, i.e. that it undergoes a quantum phase transition.
Being at T = 0, its quantum state is a pure one, hence
its entropy – calculated through any reasonable entropic
functional – vanishes. If we denote by ρN its density matrix,
we have that T rρ2

N = T rρN = 1. If we select now L of its
N elements and trace out (N − L) elements, i.e. if we define
ρL ,N ≡ T rN−LρN , we will generically have a mixed state
because T rρ2

L ,N < T rρL ,N = 1. We have then here, due to
quantum nonlocality, the very curious, nonclassical, situa-
tion where the entropy, say the q-entropy for any fixed value
of q , of a subsystem, called sometimes block entropy, is
positive, hence larger than the entropy of the entire system,
which vanishes! To be more precise, in such situations we
have that the limiting entropy limN→∞ Sq [ρN ] vanishes,
whereas Sq(L) ≡ limN→∞ Sq [ρL ,N ] is positive and de-
pends on L . It would of course be extremely convenient if a
special value of q exists such that Sq(L) ∝ L . Indeed, sat-
isfaction of the thermodynamical extensivity requirement
will allow us to freely use all the relations that appear in any
good textbook of thermodynamics! The peculiar situation
that we have described here indeed occurs for the follow-
ing Hamiltonian of spins-1/2 interacting ferromagnetically
between first-neighbours along a linear chain:

H = −
N−1∑
j=1

[
(1+γ )σ x

j σ x
j+1+(1−γ )σ

y
j σ

y
j+1

]
−2λ

N∑
j=1

σ z
j ,

(18)
λ being a transverse field, and the σ ’s being Pauli matrices;
|γ | = 1 corresponds to the Ising ferromagnet (whose central
charge c equals 1/2,3 as is well known), 0 < |γ | < 1
corresponds to the anisotropic XY ferromagnet, belonging
to the same universality class of the Ising model, and γ = 0
corresponds to the isotropic XY ferromagnet, a different
universality class (whose central charge c equals unity, as

is well known). The particular case that is being focused on
is the (T, λ) = (0, 1) quantum critical point. By extending
the arguments to the generic two-dimensional universality
classes characterised by a central charge c ≥ 0, it has been
analytically established that the special value of q which
produces an extensive nonadditive block entropy Sq(L) is
given by [24]:

q = (9 + c2)1/2 − 3

c
. (19)

This entropic index monotonically increases from zero to
the BG value q = 1 when c increases from zero to infinity:
see Figure 3. Another example (though only numerical)
of q(c) producing an extensive Sq(L) can be seen, for a
different magnetic system, in [25].

It is at this point worthy to mention that here and there
q-statistics is occasionally criticized by stating that the in-
dex q is nothing but a fitting parameter with no physical
or mathematical meaning whatsoever. As we have above
illustrated, such statements are the mere consequence of
pure ignorance. The situation might be seen as analogous
to Newtonian mechanics. Indeed the actual orbit of Mars
has not been analytically obtained from first principles, not
because classical mechanics is an incomplete theory, but
just because of the impossibility of having all the initial
positions and velocities of all masses of the planetary system
(and even if we did have them, we would not have access to
a computer powerful enough to handle all this information
in a gigantic set of nonlinear Newtonian equations). What
astronomers then do is to use the correct (at first approxi-
mation) Keplerian mathematical form (namely an ellipse),
that has been deduced within Newtonian mechanics, and
then establish the rest of the parameters through fitting
good-quality astronomical data. In the handling of actual
data of many complex systems, it is appropriate to use
the q-exponential mathematical form, q being established
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8 C. Tsallis

through fitting just because either the precise dynamics of
the system is unknown, or, even when it is known, it is
mathematically intractable, not because q-statistics is an
incomplete theory (it is thinkable that, like any other theory,
it could be wrong, but definitively not incomplete!).

3. Time evolution of the entropy

The entropy of a given dynamical system generically de-
pends on both the number N of its elements and time t . In
the previous section we have discussed on how it depends
on N . Let us now discuss on how it depends on t . We
will see that the t-dependence is totally analogous to the
N -dependence, t and N playing a strongly analogous role
(see also [26]). We shall here illustrate the main concepts
on a simple example, the well known logistic map:

xt+1=1−ax2
t (t = 0, 1, 2, . . . ; −1 ≤ xt ≤ 1; 0 ≤ a ≤ 2).

(20)
This is a one-dimensional dissipative map which, de-

pending on the value of the control parameter a, the (unique)
Lyapunov exponent λ1 can be positive (strong chaos), zero
or negative (the meaning of the subindex 1 will soon be-
come transparent), λ1 being defined a few lines here below.
For increasing a < a∞ = 1.401155189..., the attractors
undergo successive bifurcations which accumulate when
approaching the value a∞. At a = a∞, λ1 = 0 (weak
chaos); at a = 2, the system achieves its most chaotic point
(i.e. its largest possible value for λ1), for which λ1 = ln 2 =
0.6931.... For this value of a and for a smaller one, the
time-dependence of the entropy Sq is as shown in Figure 4
(from [27]). The W → ∞ limit of Sq(t) is a monotonically
increasing function whose t → ∞ slope diverges for q < 1,
vanishes for q > 1, and is finite for q = 1, i.e. for SBG. It is in
this manner that the system itself determines what entropic
functional to use in order to most efficiently quantify its
degree of disorder or uncertainty. The finite slope is referred
to as the entropy production per unit time and is denoted K1
(this concept quite generically coincides with the so-called
Kolmogorov–Sinai entropy rate).

Let us now define precisely the Lyapunov exponent. The
divergence of two infinitely close initial conditions is char-
acterised by the sensitivity to the initial conditions ξ(t) ≡
limx(0)→0[x(t)/x(0)]. Whenever the system is
strongly chaotic we verify

ξ = eλ1 t , (21)

where λ1 > 0 is the Lyapunov exponent. We verify in the
logistic map case a Pesin-like identity, namely

K1 = λ1, (22)

if λ1 > 0, and zero otherwise (more precisely if λ1 ≤
0). Since, for N � W � t � 1, we have that SBG ∝
t , we may measure time in terms of bits. This provides
a novel manner for thinking the concept of time and the

Figure 8. Top: q-Gaussian distribution of velocities of Hydra
viridissima cells. Bottom: Anomalous diffusion of the same cells.
The scaling prediction γ = 2/(3 − q) of [32] is verified. See
details in [74] (Reproduced by permission of J. Glazier).

possible time reversibility (or irreversibility) of the ‘most
microscopic law of nature’.4

Instead of focusing on a = 2 and other values of a for
which λ1 > 0, let us focus now on a = a∞ (the so-called
Feigenbaum point), for which λ1 vanishes, hence K1 = 0.
We verify that [28,29]

ξ = e
λk

q tk
q , (23)

where q is a special value (given in Figure 5), and the set
{λk

q} is related to 1/(1 − q) as indicated in Figure 6 [29].
We also verify that, in the asymptotic t → ∞ limit, Sq(t)
has zero (infinite) slope for all values of q different from
that one, whereas, for that value of q , it has finite slopes K k

q
satisfying precisely the following q-generalised Pesin-like
identity:

K k
q = λk

q . (24)
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Contemporary Physics 9

Figure 9. Time-averaged velocity distribution for large values of
time. Top: α = 0.9 (long-range interactions); Bottom: α = 2
(short-range interactions). Reproduced by permission of C. Tsallis.
See details in [76].

This unique value of q has been shown [30] to satisfy

1

1 − q
= 1

αmin
− 1

αmax
, (25)

where αmin and αmax are respectively the small and large
values ofα at which the multifractal function f (α)vanishes.
From this relation it straightforwardly follows that

q = 1 − ln 2

ln αF
, (26)

where αF is the well-known Feigenbaum universal constant.
As we see, it is only Sq for this special value of q that

satisfies Sq ∝ t , and which therefore enables one (similarly
to what happens with SBG for those values of a whose
Lyapunov exponent is positive) to measure time in terms
of bits. The entropy SBG(t), although computable, is, in
this sense, useless.

The present value of q in Figure 5 and that of Equation
(19) constitute two paradigmatic examples of analytical
calculation of the q-index from first principles, the first
one corresponding to a low-dimensional-phase-space dis-
sipative (classical) system, and the second one to a high-
dimensional-phase-space conservative (quantum) system.

Figure 10. The q-index exhibiting that, for α small enough (long-
range interactions), the time-averaged velocity distribution is, for
large values of time, quite well approached by q-Gaussians with
q > 1, whereas, for α large enough (short-range interactions),
the distribution is Maxwellian. The fact that the crossing does not
occur precisely at α = 1 is believed to be a finite-size effect. The
red dots correspond to the kinetic temperature (proportional to the
variance of the velocities). The two sets of triangles correspond
to a (unique) different temperature (sometimes referred to as
the effective temperature, and characterizing the width of a non-
Gaussian distribution), normalized in two different manners. In the
thermodynamic limit (N → ∞), one expects the kinetic and the
effective temperatures to coincide for α > 1, and to be different for
0 ≤ α < 1. However, at the present stage, this remains as an open
point. Reproduced by permission of C. Tsallis. See details in [76].

4. Central limit theorem and related questions

4.1. The q-generalised central limit theorems (CLT) and
Fokker–Planck equations (FPE)

It is interesting to consider the following quite general
Fokker–Planck-like equation:

∂β̄ p(x, t)

∂t β̄
= Dq,α

∂α[p(x, t)]2−q

∂|x |α
(t ≥ 0; 0 < β̄ ≤ 1; 0 < α ≤ 2; q < 3), (27)

Dq,α being a generalised diffusion coefficient. This co-
efficient will, from now on, be incorporated into time t ;
consequently, without loss of generality we can consider
|Dq,α| = 1 (q 	= 2). We have therefore three relevant
variables, namely (q, α, β̄). For our present purposes, we
shall only consider the case β̄ = 1, and p(x, 0) = δ(x),
where δ(x) denotes the Dirac delta.

If (q, α) = (1, 2) we have Fourier’s well-known heat
transfer equation, whose solution is p(x, t) ∝ e−x2/(2t). If
q = 1 and α < 2 we have p(x, t) given by Lévy’s distri-
butions, which asymptotically decay as 1/|x |α+1. If α = 2

and 1 < q < 3 we have [31,32] p(x, t) ∝ e
−βq x2/t2/(3−q)

q
with βq > 0 (β1 = 1/2), which asymptotically decay as
1/|x |2/(q−1). For the generic case q ≥ 1 and α ≤ 2, we
expect the (q, α)-stable distributions (to be mentioned later
on) which recover all the previous distributions as particular
instances, in particular Lévy distributions for q = 1 and
α < 2, and q-Gaussians for α = 2 and q ≥ 1. See
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10 C. Tsallis

Figure 11. The stationary-state space distribution for kinetic
temperature T = 0 in the presence of an external confining
harmonic potential is analytically proved to be a q-Gaussian with
q = 0. For increasing values of T the distribution gradually
approaches a Gaussian form, which precisely corresponds to the
T → ∞ limit. In all cases, the molecular-dynamical data confirm
the analytical results. From [78] (Reproduced by permission of
F.D. Nobre).

Figure 7. It is important to realise that there is an impor-
tant connection between Fokker–Planck-like equations and
entropic forms. More specifically, if we impose the validity
of the H-theorem (directly related to the validity of second
principle of thermodynamics), we obtain a strict relation be-
tween the functions that are present in the partial derivative
equation and the functional form of the entropy (details can
be seen in [14,17,37–42]). One of the remarkable – and very
desirable – consequences of this intimate relation is the fact
that the stationary state of the Fokker–Planck-like equation
in the presence of any confining potential precisely coin-
cides with the distribution which is obtained by extremizing,
under appropriate constraints, the corresponding entropy.

The attractors in the same sense (i.e. after centring and
rescaling of sums of an infinitely large number N of random

variables) of the classical CLT have been proved to follow
the same scenario (see Table 2) as the solutions of the FPE.

4.2. q-triplet

Let us briefly address here a concept – the
q-triplet or q-triangle – that frequently emerges in the anal-
ysis of complex systems. Consider the following differential
equation:

dy

dx
= ay (y(0) = 1), (28)

the solution being y = ea x . This equation can be gener-
alised as follows:

dy

dx
= ayq (y(0) = 1), (29)

the solution being y = ea x
q . These simple facts can be given

at least three different physical interpretations, namely re-
lated to sensitivity to the initial conditions (characterised
by qsen), distribution of the stationary state (characterised
by qstat), and relaxation (characterised by qrel) [43]. Within
BG statistical mechanics we typically have qsen = qstat =
qrel = 1. See Table 3.

The first verification of the existence of the q-triplet in
nature came from NASA Goddard Space Flight Center [44]
by using data of the spacecraft Voyager 1 on the solar wind.
Many more have since then been shown in very wide classes
of natural and artificial systems. The q-triplet in [44] is
given by (qsen, qstat, qrel) = (−0.6 ± 0.2, 1.75 ± 0.06,

3.8 ± 0.3). These values have been dealt with
(qsen, qstat, qrel) = (−1/2, 7/4, 4) in [45] as central el-
ements of an infinite algebra constructed by the additive
duality q → (2 − q) and the multiplicative duality q →
1/q; the case q = 1 represents the fixed point of both dual-
ities. By defining ε ≡ 1 − q , we obtain (εsen, εstat, εrel) =
(3/2,−3/4,−3) [46]. These values satisfy amazing rela-
tions [46], namely

εstat = εsen + εrel

2
(arithmetic mean), (30)

εsen = (εstat εrel)
1/2 (geometric mean), (31)

and
1

εrel
= 1

εsen
+ 1

εstat
(harmonic mean), (32)

the three Greek classical means! This fact remains up to
now without any physical interpretation. These relations
are not verified in other q-triplets available in the literature.
Therefore they seem to characterise some unknown special
conditions, perhaps related to some symmetry properties.

Another interesting q-triplet also is available, namely for
the logistic map at its edge of chaos: (qsen, qstat, qrel) =
(0.24448..., 1.65 ± 0.05, 2.249784109...). Once again,
Baella heuristically found a remarkable relation [47]:

εsen + εrel = εsen.εstat. (33)

This relation implies qstat = εdel−1
1−εsen

= 1.65424, which

compares remarkably well with 1.65 ± 0.05. Once again,
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Contemporary Physics 11

Table 2. Schematic synopsis of the various extensions of the classical CLT. See details in [35,36]. Notice that, excepting the Gaussians, all
cases asymptotically yield power-laws, the Lévy distributions being only one of them. There are in fact infinitely many forms of probability
distributions that asymptotically behave as power-laws. It is therefore a strong, though widely spread in the literature, confusion to refer
to all of them as Lévy distributions.

Table 3. Top: BG statistical mechanics, related to the differential equation (28). Bottom: Nonextensive statistical mechanics, related to
the differential equation (29). Typically we verify qsen ≤ 1 ≤ qstat ≤ qrel. Reproduced by permission of C. Tsallis. See details in [43].

x a y(x)

Boltzmann–Gibbs statistical mechanics (SBG)

Thermal equilibrium distribution Ei −β Z p(Ei ) = e−βEi

Sensitivity to initial conditions t λ ξ(t) ≡ x(t)
x(0)

= eλt

Typical relaxation of observable O t −1/τ �(t) = O(t)−O(∞)
O(0)−O(∞)

= e−t/τ

Nonextensive statistical mechanics (Sq )

Stationary state distribution Ei −βqstat Zqstat p(Ei ) = e
−βqstat Ei
qstat (typically qstat ≥ 1)

Sensitivity to initial conditions t λqsen ξ(t) = e
λqsen t
qsen (typically qsen ≤ 1)

Typical relaxation of observable O t −1/τqrel �(t) = e
−t/τqrel t
qrel (typically qrel ≥ 1)

relation (33) eludes any physical/mathematical interpreta-
tion up to now.

These examples illustrate that, for a given thermostatisti-
cal system, there exist not one but an infinite set of q-indices,
each of them characterizing a certain class of properties,

the most relevant among them being those appearing in the
q-triplet. Only very few of those indices, say a couple of
them, are independent, all the others most probably being
functions of those few. These general functions constitute
nowadays an important open point. Several important hints

D
ow

nl
oa

de
d 

by
 [

C
B

PF
 -

 C
en

 B
ra

si
le

ir
o 

D
e 

Pe
sq

ui
sa

s 
Fi

si
c]

, [
C

on
st

an
tin

o 
T

sa
lli

s]
 a

t 1
4:

48
 3

0 
A

pr
il 

20
14

 



12 C. Tsallis
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Figure 12. The space distributions for typical values of times t for kinetic temperature T = 0 in the presence of an external confining
harmonic potential are analytically proved to be q-Gaussians with q = 0. In all cases, the molecular-dynamical data confirm the analytical
results. One of the panels exhibits perfect data collapse in linear-linear representation as well as in (q = 0)-logarithmic – quadratic
representation. From [80] (Reproduced by permission of F.D. Nobre).

are nevertheless available in the literature, whose detailed
description is beyond the scope of the present overview.

5. Applications

A vast variety of predictions, verifications, applications are
available in the literature for natural, artificial and social sys-
tems, through analytical, experimental, observational and
computational efforts.Aregularly updated bibliography can

be accessed at [48]. Here we will restrict ourselves to a few
selected such applications. Many more can however be seen
in [49–73].

(i) The first experimental verification of q-statistics
concerned a living organism, namely Hydra viridi-
ssima [74]: the velocity distribution was found to
be non-Maxwellian, more precisely a q-Gaussian
with q � 1.5. Moreover, anomalous diffusion
was also measured with x2 scaling like tγ with γ
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Contemporary Physics 13

Figure 13. The velocity distributions for typical values of times t for kinetic temperature T = 0 through molecular dynamics. One of
the panels exhibits visible data collapse in linear–linear representation as well as in (q = 0)-logarithmic – quadratic representation. This
result neatly exhibits a non-Boltzmannian behaviour which, for all Hamiltonian systems, yields a Gaussian form (q = 1). From [80]
(Reproduced by permission of F.D. Nobre).

satisfying, within error bars, the predicted scaling
law γ = 2/(3 − q) [32]. See Figure 8.

(ii) A recent numerical illustration of how ergodic-
ity and nonergodicity are crucially relevant to the
validity or violation of BG statistical mechanics
is available. It concerns the effects of long-range
interactions in classical many-body Hamiltonian
systems [75,76]. The system which is focused is
a one-dimensional chain (i.e. d = 1) of N planar

rotators interacting through attractive interactions
decaying as 1/rα (α ≥ 0). The potential is in-
tegrable for α > 1, and nonintegrable otherwise.
It has long been shown (numerically) that, in the
N → ∞ limit, the maximal Lyapunov exponent
is positive for α > 1 and vanishes for 0 ≤ α ≤ 1
[77]. At very large times, the ensemble-averaged
velocity distribution is Gaussian for all values of α.
In remarkable contrast, the time-averaged velocity
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14 C. Tsallis

Figure 14. The distribution of hadronic transverse momenta in
various experiments of proton–proton collisions. The data are
taken from [97]. The continuous curves are simple q-exponentials.
From the region with probability close to one on, the present
q � 1.1 curves depart from the BG (q = 1) ones. If we start count-
ing from that point on, the remarkable agreement continues along
14 decades. Reproduced by permission of C. Tsallis. From [98].

Figure 15. The Newtonian and relativistic expressions for the
kinetic energy E of a free particle of mass m as functions of
the momentum p. From the region with E p/mc2 − 1 close to
one, the Einstein curves depart from the Newtonian ones. If we
start counting from that point on up to the energies of the most
energetic observed cosmic rays, the relativistic curves have been
experimentally verified along 11 decades.

distribution is Maxwellian (q-Gaussian with q>1)

for α large (small) enough: see Figures 9 and 10.
(iii) Another interesting recent application concerns a

many-body dissipative system which mimics the
overdamped motion of (repulsively) interacting
vortices in type-II superconductors [42,78–82].

Figure 16. A thinking scenario to represent inanimate versus
living matter. The entropy Sq,δ recovers Sq for δ = 1, Sδ for
q = 1, and SBG for (q, δ) = (1, 1). The values of the indices
(q, δ) are chosen in such a way that thermodynamics is satisfied,
i.e. Sq,δ(N ) ∝ N , or equivalently Sq,δ(L) ∝ Ld , where d is the

integer or fractal dimension of the system (with N ∝ Ld ), L being
a linear size of the system. Sq,δ appears to be thermodynamically
equivalent to Sc,d given by Equation (17). Inanimate matter –
basically ergodic – is primarily linked to the additive entropy
SBG. In contrast, living matter – basically nonergodic – appears
to be primarily linked to nonadditive entropies (Sq , Sδ, Sq,δ
with (q, δ) 	= (1, 1)) whenever a thermodynamical approach
is appropriate for a specific aspect, but it is kind of natural to
imagine that, for other aspects, a non-thermodynamical realm
might be necessary. In such a (considerable simplified) view,
inanimate matter strictly refers say to a crystal, or to a simple
fluid, not to a glass or amorphous or granular matter, whose
very slow and intricate evolution makes them to be somehow
better described as a complex, living-like system. Analogously,
the evolution of a language or of an economical system surely
has many common aspects with living matter. Developments in
non-equilibrium thermodynamics from a different standpoint have
been reviewed in [116].

Both the distribution of positions and that of
velocities are described, at zero kinetic tempera-
ture T (though nonzero effective temperature θ ),
by q-Gaussians with q = 0, in strong contradic-
tion with the Maxwellian distribution of velocities
(q = 1) expected within BG statistical mechan-
ics. See the respective anomalous distributions in
Figures 11, 12 and 13. Furthermore, the validity of
the Carnot cycle has been recently established in
terms of the effective temperatures in such systems
[83]. The efficiency is proved to be η = 1−(θ2/θ1)

[83], where θ1 and θ2 represent the effective tem-
peratures associated with the hotter (higher vortex
density) and colder (lower vortex density) heat
reservoirs.

(iv) A considerable amount of papers have explored
the fact that high-energy collisions of elementary
particles or heavy ions at LHC/CERN (CMS,
ALICE, ATLAS detectors) and RHIC/Brookhaven
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Contemporary Physics 15

(STAR, PHENIX detectors) yield results that are
quantitatively consistent with q-statistics [84–96].
This is particularly so for the transverse momenta
distributions of hadronic jets resulting from proton-
proton collisions: see Figure 14.

As we see the quantitative agreement holds along
amazing 14 decades for the probabilities! In order
to make some sort of comparison, and given the
fact that very few phenomena in nature can be
observed along so many decades, we have checked
how many experimental decades are available
nowadays for the Einstein expression for the
kinetic energy E = (m2c4 + p2c2)1/2, depart-
ing from Newton expression E = p2/2m: see
Figure 15.

(v) A typical (3+1)-dimensional black-hole would in
principle be expected to have an entropy propor-
tional to L3, L being its characteristic linear size.
There is however a vast literature [99–113] stat-
ing that the black-hole entropy is (intriguingly)
proportional to L2. There are indeed many (quite
convincing) physical arguments, for instance those
related to the holographic principle, that lead to
SBG ∝ L2. To solve this puzzle, it has been re-
cently advanced [13] that this non-thermodynamic
behaviour can be overcome if we adopt, as ther-
modynamic entropy, not the BG functional, but
the Sδ one for δ = 3/2. In this case, we recover
standard entropic extensivity, since we verify that
Sδ=3/2(L) ∝ L3. In a recent paper [114] various
physical consequences associated with this non-
additive entropy have been shown. One of them is
that, in contrast with SBG, Sδ appears to imply that
the concept of ‘dark energy’ might be not neces-
sary in order to explain the present cosmological
observations of the accelerating expansion of the
universe.

6. Concluding remarks on how entropy reflects the
inanimate or living nature of matter

We may summarize the present overview as follows. The
systems which we may strictly consider as inanimate matter
(e.g. a crystal, a simple fluid) typically visit, along time,
nearly all the states of the appropriate phase space (or a
finite fraction of those) with equal frequency, i.e. they are
ergodic in a region of phase space with finite Lebesgue
measure. As such, they relatively quickly approach their
thermal equilibrium whenever isolated or in contact with
a thermostat. Their thermal equilibrium is well described
by the BG entropy and its associated statistical mechanics.
Its macroscopic behaviour is nearly the same starting from
any initial condition, i.e. the initial condition of the system
is quickly forgotten.

Living (e.g. a bacteria, an animal) or living-like (e.g.
a language, an urban organisation) matter is definitively
different. It is basically nonergodic, and either it is in a
stationary (or quasi-stationary) state or it slowly approaches
such a state (generically quite different from a thermal equi-
librium). The initial condition is either not forgotten or
forgotten extremely slowly, even if for a wide class of initial
conditions the individual differences are relatively mod-
est. The system lives in a subset of phase space with zero
Lebesgue measure (e.g. a multifractal). The corresponding
stationary or quasi stationary states are frequently well de-
scribed by nonadditive entropies such as the q-entropy and
the δ-entropy and their associated statistical mechanics. In
spite of the individual differences being modest, they can
be important at the level of the evolution. Indeed, there can
be no evolution without diversity.

The reader may allow us to appeal to a metaphor – ‘of
all things the greatest’, according to Aristotle! –. If we have
say a ‘super-fly’ traveling around the world in Brownian
motion, its trajectory will eventually cover the entire planet
with nearly uniform probability. This distribution will be
the same for different starting points of the flights. The
Lebesgue measure will roughly be the area of the planet
surface, conceived as an Euclidean quasi-sphere. This is
the dynamical-geometrical scenario for Boltzmann–Gibbs
entropy and statistical mechanics. If we consider instead
the flights of Air France, they constitute an hierarchical
structure that never forgets that it is centred in Paris, its most
important hub.Analogously Iberia is centred in Madrid, and
British Airways in London. They are all different in what
concerns their centres and the regions they cover, but they
are all quite similar in what concerns their dynamics and ge-
ometry. Their Lebesgue measure is zero (if we consider the
airports as points). This is the scenario for the nonadditive
entropies Sq , Sδ , Sq.δ , and their corresponding statistical
mechanics.

In other words, within the present statistical-mechanical
context, the game ‘inanimate versus living’ is somehow the
game ‘thermal equilibrium versus slowly evolving quasi-
stationary state’. The first one surely is adequately described
in terms of the BG entropy, whereas the second mandates
nonadditive entropies like Sq or Sδ or even Sq,δ . If (and,
paraphrasing Darwin [115], oh what a big if) it would be
possible to classify on entropic grounds very rich concepts
such as complexity, or usefully distinguish inanimate from
living matter, we might imagine, at least as a schematic
scenario, something like Figure 16.
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Notes

1. There are of course the important contributions by Claude
Shannon in the context of the theory of communications, and
by John von Neumann in the context of quantum systems. But
none of them modifies the basic logarithmic nature of the BG
measure of lack of information.

2. The four Khinchin axioms essentially are (i) Entropic is con-
tinuous in its probability variables; (ii) Entropy is maximal for
equi-distribution; (iii) Adding a zero-probability event does
not modify the entropy; (iv) Entropy is additive with regard
to the appropriate set of entropy and conditional entropy of
two (not necessarily independent) systems A and B.

3. The central charge c is a nonnegative real number which
plays an important role in Virasoro algebra and conformal
quantum field theory by determining the form of the corre-
lation functions. In the interval (0, 1) c takes discrete values
which accumulate at c = 1, and which characterise critical
universality classes for two-dimensional classical models;
above c = 1, it varies continuously up to infinity, where
quantum effects (hence quantum nonlocality) disappear.

4. This and related issues have been the object of historical
philosophical debates between A. Einstein and H. Bergson,
among many others. For example, I. Prigogine states that
‘Nature’s real equation must not be invariant with regard to
time inversion’ (see his articles with I. Stengers, as well as
his book From Being to Becoming). Einstein, for example,
states the opposite. The question has been focused on by
many others, such as P. Langevin, H. Poincaré, G. Deleuze,
F. Guattari, B. Latour.
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