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Abstract. Nonextensive statistical mechanics was proposed in 1988 on the basis of the nonadditive entropy
S q = k [1 −

∑

i pq
i ]/(q − 1) (q ∈ R) which generalizes that of Boltzmann-Gibbs S BG = S 1 = −k

∑

i pi ln pi. This
theory extends the applicability of standard statistical mechanics in order to also cover a wide class of anomalous
systems which violate usual requirements such as ergodicity. Along the last two decades, a variety of applications
have emerged in natural, artificial and social systems, including high energy phenomena. A brief review of the
latter will be presented here, emphasizing some open issues.

1 Introduction

Standard statistical mechanics is based on the Boltzmann-
Gibbs (BG) entropy S BG = −k

∑W
i=1 pi ln pi (

∑W
i=1 pi =

1), where W is the number of microscopic configurations
of the system. This extremely powerful theory — one of
the pillars of contemporary physics — has exhibited very
many successes along 140 years, in particular through its
celebrated distribution for thermal equilibrium pi ∝ e−βEi ,
Ei being the energy of the corresponding microstate. How-
ever, as any other human intellectual construct, it has a re-
stricted domain of validity. For nonlinear dynamical many-
body systems the usual requirement is ergodicity, which
is guaranted by strong chaos (i.e., by a positive maximal
Lyapunov exponent for classical systems). For nonergodic
systems (typically for systems whose maximal Lyapunov
exponent vanishes), which is quite frequently the case of
the so-called complex systems, there is no general reason
for legitimately using the BG theory. For (some of) such
anomalous systems, a generalization of the BG theory has
been proposed in 1988 [1]. It is frequently referred to as
nonextensive statistical mechanics [2–4] because the total
energy of such systems typically is nonextensive, i.e., not
proportional to the total number of elements of the system.
This generalized theory is based on the entropy

S q = k
1 −∑i pq

i

q − 1
(q ∈ R; S 1 = S BG) (1)

It can be straightforwardly verified that, if A and B are
two probabilistically independent systems (i.e., if pA+B

i j =

pA
i pB

j ), then

S q(A + B)

k
=

S q(A)

k
+

S q(B)

k
+ (1 − q)

S q(A)

k

S q(B)

k
, (2)
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which exhibits that, in contrast with S BG which is additive,
the entropy S q is nonadditive for q , 1. This nonadditivity
will in fact enable it to be extensive (i.e., proportional to
the number of elements of the system) for various classes
of systems (see for instance [5,6]).

2 Connection to Thermodynamics

To generalize BG statistical mechanics for the canonical
ensemble (from [7]), we optimize S q with the constraints

W
∑

i=1

pi = 1 (3)

and
W
∑

i=1

PiEi = Uq , (4)

where

Pi ≡
pq

i
∑W

j=1 pq
i

( W
∑

i=1

Pi = 1
)

(5)

is the so-called escort distribution [8]. It follows that pi =
P1/q

i
∑W

j=1 P1/q
j

. There are various converging reasons for being

appropriate to impose the energy constraint with the {Pi}
instead of with the original {pi}. The full discussion of this
delicate point is beyond the present scope. However, some
of these intertwined reasons are explored in [2]. By im-
posing Eq. (4), we follow [7], which in turn reformulates
the results presented in [1,9]. The passage from one to the
other of the various existing formulations of the above op-
timization problem are discussed in detail in [7,10].

The entropy optimization yields, for the stationary state,

pi =
e
−βq(Ei−Uq)
q

Z̄q
, (6)
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with

βq ≡
β

∑W
j=1 pq

j

, (7)

and

Z̄q ≡
W
∑

i

e
−βq(Ei−Uq)
q , (8)

β being the Lagrange parameter associated with the con-
straint (4). Eq. (6) makes explicit that the probability dis-
tribution is, for fixed βq, invariant with regard to the arbi-
trary choice of the zero of energies. The stationary state
(or (meta)equilibrium) distribution (6) can be rewritten as
follows:

pi =
e
−β′qEi

q

Z′q
, (9)

with

Z′q ≡
W
∑

j=1

e
−β′qE j

q , (10)

and

β′q ≡
βq

1 + (1 − q)βqUq
. (11)

The form (9) is particularly convenient for many appli-
cations where comparison with experimental or computa-
tional data is involved. Also, it makes clear that pi asymp-
totically decays like 1/E1/(q−1)

i for q > 1, and has a cutoff
for q < 1, instead of the exponential decay with Ei for
q = 1.

The connection to thermodynamics is established in
what follows. It can be proved that

1
T
=
∂S q

∂Uq
, (12)

with T ≡ 1/(kβ). Also we prove, for the free energy,

Fq ≡ Uq − TS q = −
1
β

lnq Zq , (13)

where
lnq Zq = lnq Z̄q − βUq . (14)

This relation takes into account the trivial fact that, in con-
trast with what is usually done in BG statistics, the energies
{Ei} are here referred to Uq in (6). It can also be proved

Uq = −
∂

∂β
lnq Zq , (15)

as well as relations such as

Cq ≡ T
∂S q

∂T
=
∂Uq

∂T
= −T

∂2Fq

∂T 2
. (16)

In fact, the entire Legendre transformation structure of ther-
modynamics is q-invariant, which is both remarkable and
welcome.

3 Applications

3.1 In diverse systems

The nonadditive entropy S q and its associated nonetensive
statistical mechanics have been applied to a wide variety
of natural, artificial and social systems. Among others we
may mention (i) The velocity distribution of (cells of) Hy-
dra viridissima follows a q = 3/2 probability distribution
function (PDF) [11]; (ii) The velocity distribution of (cells
of) Dictyostelium discoideum follows a q = 5/3 PDF in the
vegetative state and a q = 2 PDF in the starved state [12];
(iii) The velocity distribution in defect turbulence [13]; (iv)
The velocity distribution of cold atoms in a dissipative op-
tical lattice [14]; (v) The velocity distribution during silo
drainage [15,16]; (vi) The velocity distribution in a driven-
dissipative 2D dusty plasma, with q = 1.08 ± 0.01 and
q = 1.05 ± 0.01 at temperatures of 30000 K and 61000 K
respectively [17]; (vii) The spatial (Monte Carlo) distribu-
tions of a trapped 136Ba+ ion cooled by various classical
buffer gases at 300 K [18]; (viii) The distributions of price
returns and stock volumes at the stock exchange, as well as
the volatility smile [19–22]; (ix) Biological evolution [23];
(x) The distributions of returns in the Ehrenfest’s dog-flea
model [24,25]; (xi) The distributions of returns in the co-
herent noise model [26]; (xii) The distributions of returns
of the avalanche sizes in the self-organized critical Olami-
Feder-Christensen model, as well as in real earthquakes
[27]; (xiii) The distributions of angles in the HMF model
[28]; (xiv) Turbulence in electron plasma [29]; (xv) The
relaxation in various paradigmatic spin-glass substances
through neutron spin echo experiments [30]; (xvi) Various
properties directly related with the time dependence of the
width of the ozone layer around the Earth [31]; (xvii) Var-
ious properties for conservative and dissipative nonlinear
dynamical systems [32–41]; (xviii) The degree distribu-
tion of (asymptotically) scale-free networks [42,43]; (xix)
Tissue radiation response [44]; (xx) Overdamped motion
of interacting particles [45]; (xxi) Rotational population in
molecular spectra in plasmas [46]. The systematic study
of metastable or long-living states in long-range versions
of magnetic models such as the Ising [47] and Heisenberg
[48] ones, or in hydrogen-like atoms [49–51] might pro-
vide further illustrations.

3.2 In high energy physics

Connections of nonextensive statistics with a specific area
of solar physics, astrophysics, high energy physics, and
related areas, were pioneered by Quarati and collabora-
tors (see [52], among others), who advanced the possi-
bility of this theory being useful in the discussion of the
flux of solar neutrinos. A few years later, it was realized
that the transverse momenta distribution of the hadronic
jets resulting from electron-positron annihilation are well
described by distributions associated with q-exponentials
[53,54]: see Figs. 1 and 2. The energy distribution of cos-
mic rays has been satisfactorily fitted in [55,56] with dis-
tributions related to q-exponentials: see Fig. 3. The distri-
butions of returns of magnetic field fluctuations in the solar
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wind plasma as observed in data from Voyager 1 [57] and
from Voyager 2 [58] has provided the values associated
with the so called q-triplet: see Figs. 4 e 5. Similar results
have been obtained in the study of interstellar turbulence
[59] (see Figs. 6 and 7), in X-ray-emitting binary systems
[60] (see Fig. 8), and in the distribution of stellar rotational
velocities in the Pleiades [61].

It is important to address here the fact that the distri-
bution of transverse momenta in high-energy collisions of
proton-proton, and heavy nuclei (e.g., Pb-Pb and Au-Au)
have received and are receiving great attention [62–68]: see
illustrative examples in Figs. 9-15. Several such data have
been summarized in [69]: see Fig. 16. We realize that for
such collisions the typical values of q are usually close to
1.10, apparently never above say 1.20-1.25. It remains as
a challenging problem to precisely understand why (Is it a
hadronization of quark matter in a sort of metastable state
before attaining ergodicity?). In any case, it was shown in
[71] that QCD calculations and q-statistical calculations
can be consistent for q ≃ 1.1: see Fig. 17.
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Fig. 1. Distributions of transverse momenta for four typical val-
ues of the collision energy. See details in [53].
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