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Abstract

The celebrated Boltzmann-Gibbs (BG) entropy SBG = −k
∑
i pi ln pi

and associated statistical mechanics are essentially based on hypothesis
such as ergodicity, in other words, when ensemble averages (i.e., averages
on the initial conditions of the entire system) coincide with time aver-
ages. This dynamical simplification occurs in classical systems (and in
their quantum counterparts) whose microscopic evolution is governed by
a positive largest Lyapunov exponent (LLE). Under such circumstances,
relevant microscopic variables behave as (nearly) independent from the
probabilistic viewpoint. Many phenomena exist, however, in natural, ar-
tificial and social systems that violate ergodicity, typically because of im-
portant space-time correlations between the elements of the system. Such
is the case when the LLE approaches zero. This appears to be, for relevant
dynamical degrees of freedom, the case of many geophysical, astrophys-
ical, biophysical, economical systems, among several others. To cover a
(possibly) wide class of such systems that, in one way or another, exhibit
asymptotic scale-invariance, a generalization of the BG theory was pro-
posed in 1988. This generalization is currently referred to as nonextensive

statistical mechanics, and is based on the entropy Sq = k
1−

∑
i p
q
i

q−1
(the

index q is a real number, and S1 = SBG). This entropy is nonadditive
for q 6= 1. In the present paper we comment some central aspects of
this theory, and briefly review typical predictions, verifications and ap-
plications in geophysics and elsewhere, as illustrated through theoretical,
experimental, observational and computational results.

∗Invited review to appear in Statistical Mechanics in Earth Physics and Natural Hazards,
Special Issue of Acta Geophysica, edited by P. Vallianatos and L. Telesca (2011).
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1 Introduction

Statistical mechanics constitutes, together with electromagnetism — basically
Maxwell equations —, and classical — basically Newton’s law —, quantum —
basically Schroedinger equation — and relativistic mechanics — basically Ein-
stein special and general relativity —, one the pillars of contemporary physics.
As its name indicates, statistical mechanics is essentially constructed from two
ingredients, namely mechanics (including the electro-magnetic forces) and the-
ory of probabilities: see Fig. 1. From this level, which is to be considered as from
first principles, we may construct concepts such as energy and entropy, includ-
ing their operational mathematical expressions. How to find the expressions for
the energy is indicated in all good textbooks of mechanics (classical, quantum,
relativistic). In what concerns a similar task for the entropy, it has proved along
140 years (since the 1860-1870’s, when Clausius and Boltzmann first focused on
this issue) to be a particularly delicate effort. In principle it goes like this.
Guided by thermodynamics, we would like the entropy S of a macroscopic sys-
tem to be extensive , i.e., S(N) ∝ N (N →∞), N being the number of elements
of the system. We expect this entropic extensivity to be valid for both short-
and long-range interactions. For short-range interactions, it is well known that
it should be so, as explained in any good textbook of thermodynamics. The
question is more subtle for long-range interactions, for which the total energy
U becomes nonextensive (more precisely, U(N) is expected to increase faster
than N for large N). But even in this case, the thermodynamic entropy should
remain extensive, as lengthily argued and verified in the literature (see, for in-
stance, Section 3.3.1 of [1]). Accepting this general thermodynamic demand,
the next relevant question is what mathematical connection between S and its
probabilistic expression (in terms of the admissible microscopic configurations)
adequately takes into account the correlations existing between the N elements
of the system in such a way that S(N) is extensive. Let us illustrate this crucial
point in what follows.

Assume that we have a system whose total number W (N) of admissible
microscopic configurations are equally probable, and satisfies

W (N) ∝ µN (N →∞, µ > 1). (1)

Such hypothesis corresponds to probabilistic independence (or quasi-independence)
of the N elements of the system, since W (N + 1) ∼ µW (N).

We know of course that the Boltzmann-Gibbs (BG) entropy is given (for
discrete variables) by

SBG = −k
W∑
i=1

pi ln pi (

W∑
i=1

pi = 1) , (2)

hence, for equal probabilities, we have

SBG = k lnW . (3)
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If we introduce expression (1) in Eq. (3), we obtain

SBG(N) = k lnW (N) ∝ N. (4)

In other words, the BG formula precisely yields the desired extensivity for the
entropy.

Let us assume now a system whose elements are strongly correlated in such
a way that the number of equally probable admissible configurations (i.e., con-
figurations whose probability is nonzero) satisfies

W (N) ∝ Nρ (N →∞, ρ > 0). (5)

We cannot use SBG in this case, since it implies SBG(N) ∝ lnN , which vio-
lates thermodynamics. But we may consider instead the following generalized
expression [8]:

Sq = k
1−

∑W
i=1 p

q
i

q − 1
= −k

W∑
i=1

pqi lnq pi = k

W∑
i=1

pi lnq
1

pi

( W∑
i=1

pi = 1
)
, (6)

where lnq z ≡ z1−q−1
1−q (ln1 z = ln z). We straightforwardly verify the S1 = SBG,

and also that, for equal probabilities,

Sq = k lnqW . (7)

If we introduce, within this entropy, expression (5), we obtain

Sq(N) = k
[W (N)]1−q − 1

1− q
∝ Nρ(1−q) . (8)

Consequently, if we choose

q = 1− 1

ρ
, (9)

we obtain S1− 1
ρ
(N) ∝ N , in agreement with thermodynamics. This is the basic

reason why the BG entropy must be adequately replaced in cases where strong
correlations exist in the system. It is appropriate to mention here that all kinds
of asymptotic mathematical behaviors can in principle exist for W (N). For
those, other entropic functionals become necessary in order to have extensiv-
ity. In the present work, however, we focus on (5), which represents in fact a
quite wide class of natural, artificial and social systems, as we shall see later on.
Verifications on other probabilistic and physical models do exist in the literature
which illustrate the fact that Sq is extensive for special values of q, which char-
acterize the universality class of the system: see [2, 3, 4]. In Fig. 2 we exhibit
that special value of q for fully quantum-entangled pure and random magnetic
systems.

Let us close this section by emphasizing that nonextensivity must be well
distinguished from nonadditivity [5]. Indeed, an entropy is said additive if, for
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Figure 1: Schematic and non exhaustive connections that exist related with
statistical mechanics. In red we have what we may call the first-principles or
microscopic level, from where we can, in one or another, derive the concepts of
energy and entropy (in orange). These concepts lead to statistical mechanics
(in green), which, in turn, connects to thermodynamics or macroscopic level (in
blue) for large systems. Many mesoscopic levels exist as well, of which we have
indicated here only the most common ones.
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Figure 2: Dependence of qent on the central charge c of pure [4] and random [?]
one-dimensional magnets undergoing quantum phase transitions at zero tem-
perature, where the entire strongly entangled N -system is in its ground state
(hence corresponding to a vanishing entropy since the ground state is a pure
state), in contrast with the L-subsystem which is in a mixed state (hence corre-
sponding to a nonvanishing entropy). For this value of q, the block nonadditive
entropy Sq is extensive, whereas its additive BG entropy is nonextensive. Notice
that, for the pure magnet, we have that qent ∈ [0, 1], whereas, for the random
magnet, we have that qent ∈ (−∞, 1]. Both cases recover, in the c → ∞ limit,
the BG value qent = 1. These examples definitively clarify that additivity and
extensivity are different properties. The only reason for which they have been
confused (and still are confused in the mind of not few scientists!) is the fact
that, during 140 years, the systems that have been addressed are simple, and
not complex, thermodynamically speaking. For such non-pathological systems,
the additive BG entropy happens to be extensive, and is naturally the one that
should be used.
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two probabilistically independent systems A and B, we verify that S(A+B) =
S(A) + S(B). We can easily establish that

Sq(A+B)

k
=
Sq(A)

k
+
Sq(B)

k
+ (1− q)Sq(A)

k

Sq(B)

k
. (10)

Therefore SBG is additive, whereas, for q 6= 1, Sq is nonadditive.

2 Extremization of Sq and q-generalized central
limit theorems

Let us now focus on the case where the random variable x is a continuous
dimensionless D-dimensional one. The q-entropy is then given by 1

Sq = k
1−

∫
dx [p(x)]q

q − 1
= −k

∫
dx [p(x)]q lnq p(x)

= k

∫
dx p(x) lnq

1

p(x)

(∫
dx p(x) = 1

)
. (11)

We further assume that we have a cost function E(x) (e.g., the Hamiltonian of
the total system in mechanical systems), and that we know the q-mean value
(which characterizes the width of the distribution p(x) even when its standard
mean value 〈E(x)〉1 diverges [6, 7]) of this cost function, i.e.,

〈E(x)〉q ≡
∫
dxE(x)[p(x)]q∫
dx[p(x)]q

. (12)

Notice that this quantity is finite up to the same value of q for which the norm∫
dx p(x) itself is finite.

If our system is a dynamical one with a physically relevant stationary state (a
frequent case), this state is the one which, under the constraint (12), extremizes
Sq. It is quite straightforward to verify that the maximizing distribution is given
by [8, 9, 10]

pq(x) =
e
−βE(x)
q∫

dx e
−βE(x)
q

(β > 0) , (13)

where ezq (ez1 = ez) is the inverse function of lnq z, i.e., ezq ≡ [1 + (1 − q)z]
1

1−q
+ ,

with [z]+ = z if z ≥ 0, and zero otherwise.
If x is a D = 1 continuous variable x, and E(x) ∝ x, the constraint (12)

becomes the value of 〈x〉q, hence

pq(x) =
e−β1x
q∫

dx e−β1x
q

(β1 > 0) . (14)

1We should naturally have in mind that this type of expression can not be used in ther-
mostatistics for extremely low temperatures, where the quantum nature of natural systems
must be taken into account. In other words, if p(x) is too thin, i.e., too close to a Dirac delta
δ(x− x0), expression (11) will become negative (∀q), which is inadmissible for an entropy.
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This distribution is normalizable for q < 2, and has a finite mean value 〈x〉1 for
q < 3/2. For q ≥ 1 it has an infinite support, whereas it is finite for q < 1.

If 〈x〉q = 0, and we happen to know 〈x2〉q, this quantity becomes the con-
straint (12), and can be used to characterize the width. The extremization of
Sq then yields

pq(x) =
e−β2x

2

q∫
dx e−β2x2

q

(β2 > 0) , (15)

which from now on will be referred to as q-Gaussian distribution 2. It is nor-
malizable for q < 3, and has a finite variance 〈x2〉1 for q < 5/3 3.

For q ≥ 1 it has an infinite support, whereas it is finite for q < 1. For q > 1,
q-Gaussians asymptotically decay as power-laws (more precisely like x−2/(q−1)).
However, they are quite different from the Lévy distributions, which also de-
cay like power-laws (the only case in which q-Gaussians and Lévy distributions
coincide is for q = 2, which corresponds to the Cauchy-Lorentz distribution).
Quite frequently in the literature, any distribution decaying like a power-law
is referred to as a “Lévy distribution”, which constitutes a rather regrettable
mistake.

Let us mention at this stage an interesting mesoscopic property of q-exponentials
and q-Gaussians. We consider the following nonlinear diffusion-relaxation equa-
tion:

∂p(x, t)

∂t
= D

∂2[p(x, t)]2−q

∂x2
−R [p(x, t)]q

(∫
dx p(x, 0) = 1

)
, (16)

where D and R are constant phenomenological coefficients. If D = 0 we have

p(x, t) = p(x, 0) e−R tq (∀x) , (17)

which has the form (14) with β1 = R. If we have instead R = 0 we obtain
[14, 15] the form (15):

p(x, t) ∝ e−β2(t)x
2

q (18)

where β2 is related with D. In other words, q-exponentials and q-Gaussians are
exact solutions of basic nonlinear diffusion-relaxation equations. They can be
shown to also provide exact stationary states of similar though inhomogenous
equations [16].

We have briefly reminded above that these distributions appear simultane-
ously as those which optimize (maximize for q > 0, and minimize for q < 0),

2Since long known in plasma physics under the name suprathermal or κ distributions [11]
if q > 1, and equal to the Student’s t-distributions [12] for special rational values of q > 1; for
special rational values of q < 1 coincides with the so-called r-distributions [12]. They are also
occasionally referred to as generalized Lorentzians [13].

3If x is a D-dimensional real vector, normalizability mandates that
∫∞
0 dx xD−1 e−βx

2

q

converges, hence q < D+2
D

. If, in addition to that, the system has a density of states

φ(x) which diverges like xδ for x → ∞ (a quite frequent case), then normalizability

mandates
∫∞
0 dx xD−1 φ(x) e−βx

2

q converges, hence q < D+δ+2
D+δ

. Similarly, the finiteness of

the second moment mandates that
∫∞
0 dx xD+1 φ(x) e−βxq converges, hence q < D+δ+4

D+δ+2
.
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under appropriate constraints, the nonadditive entropy Sq, and as those which
exactly solve nonlinear/inhomogeneous diffusion-relaxation equations. Let us
conclude by mentioning another remarkable property, namely that q-Gaussians
constitute attractors in the sense of the classical central limit theorem (CLT).

This theorem basically states that, if we consider the sum SN =
∑N
i=1Xi of N

independent (or nearly independent in some sense) random variables {Xi}, each
of them having a finite variance, this sum converges for N →∞, after appropri-
ate centering and rescaling, to a Gaussian. This most important theorem can be
proved in a variety of manners and under slightly different hypothesis. One of
those standard proofs uses the Fourier transform, which has been q-generalized
[17, 18].

Around 2000 [19], q-Gaussians have been conjectured (see details in [20])
to be attractors in the CLT sense whenever the N random variables that are
being summed are strongly correlated in a specific manner. The conjecture
was recently proved in the presence of q-independent variables [17, 18]. The
proof presented in [17] is based on a q-generalization of the Fourier transform,
denoted as q-Fourier transform, and the theorem is currently referred to as the
q-CLT. The validity of this proof has been recently challenged by Hilhorst [21].
His criticism is constructed on the inexistence of inverse q-Fourier transform for
q > 1, which he illustrates with counterexamples. The inverse, as used in the [17]
paper, indeed does not exist in general, which essentially makes the proof in [17]
a proof of existence, but not of uniqueness. The q-generalization of the inverse
Fourier transform appears then to be a quite subtle mathematical problem if
q 6= 1. It has nevertheless been solved recently [22], and further considerations
are coming [?] related to q-moments [6, 7, 23]. Work is in progress attempting
to transform the existence proof in [17] (and also in [18]) into a uniqueness
one. It is fair to say that, at the present moment, a gap exists in the complete
proof (not necessarily in the thesis) of the q-CLT as it stands in [17]. In the
meanwhile, several other forms [24, 25] of closely related q-generalized CLT’s
have already been published which do not use the inverse q-Fourier transform.
See Fig. 3.

Probabilistic models have been formulated [26, 27] which, in the N → ∞
limit, yield q-Gaussians. These models are scale-invariant, which might sug-
gest that q-independence implies (either strict or asymptotic) scale-invariance,
but this is an open problem at the present time. However, definitively, scale-
invariance does not imply q-independence. Indeed, (strictly or asymptotically)
scale-invariant probabilistic models are known [28] which do not yield q-Gaussians,
but other limiting distributions instead, some of which have been proved to be
amazingly close to q-Gaussians [29].

Some of the predictions, verifications and applications of this q-generalized
theory are briefly reviewed in the rest of the present paper, which is based in
fact on various previous books and reviews [1, 30, 31, 32, 33], parts of which are
here followed/reproduced for simplicity and self-completeness.
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Figure 3: Central limit theorems (CLT) for q ≥ 1: N1/[α(2−q)]-scaled attractor
F (x) when summing N → ∞ identical q-independent random variables with
symmetric distribution f(x) with σQ ≡

∫
dxx2[f(x)]Q /

∫
dx [f(x)]Q (Q ≡ 2q−

1). All the attractors of these theorems asymptotically decay as power-laws,
excepting for the the classical CLT. See details in [17, 18].
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3 Applications

In this Section we briefly, and non exhaustively, review various predictions, veri-
fications and applications of q-exponentials and q-Gaussians through analytical,
experimental, observational and computational methods in natural, artificial
and social systems that are available in the literature (see [34] for full bibliog-
raphy). The present list enriches the one recently presented in [33]. Several
of these applications concern, as it can be checked in what follows, geophysical
phenomena, very especially earthquakes and similar ones.

(i) The velocity distribution of (cells of) Hydra viridissima follows a q-
Gaussian probability distribution function (PDF) with q ' 3/2 [35]. Anoma-
lous diffusion has been independently measured as well [35], and an exponent
γ ' 4/3 has been observed (where the squared space x2 scales with time t like
tγ). Therefore, within the error bars, the prediction γ = 2

3−q [15] is verified in
this system.

(ii) The velocity distribution of the point defects in in defect turbulence, as
well as its corresponding anomalous diffusion, have been measured [36]. The
results suggest a q-Gaussian PDF with q ' 3/2, and γ ' 4/3, which constitutes
another verification of the prediction γ = 2

3−q [15].

(iii) The velocity distribution of cold atoms in a dissipative optical lattice
was predicted [37] to be a q-Gaussian with q = 1 + 44ErU0

, where Er and U0 are
parameters related to the optical lattice potential. This prediction was verified
three years later, both in the laboratory and with quantum Monte Carlo tech-
niques [38].

(iv) Computational simulations of the velocity distribution, and of the asso-
ciated anomalous diffusion, during silo drainage suggest q ' 3/2 and γ ' 4/3
[39, ?], once again satisfying the prediction γ = 2

3−q [15].

(v) The velocity distribution in a driven-dissipative 2D dusty plasma was
found to be of the q-Gaussian form, with q = 1.08± 0.01 and q = 1.05± 0.01 at
temperatures of 30000K and 61000K respectively [40].

(vi) The spatial (Monte Carlo) distributions of a trapped 136Ba+ ion cooled
by various classical buffer gases at 300K was verified to be of the q-Gaussian
form, with q increasing from close to unity to about 1.9 when the mass of the
molecules of the buffer increases from that of He to about 200 [41].

(vii) The distributions of price returns and stock volumes at the New York
and NASDAQ stock exchanges are well fitted by q-Gaussians and q-exponentials
respectively [42, 43]. The volatilities predicted within this approach fit well the
real data. Various other economical and financial applications are available
[44, 45, 46, 47, 48, 49, 50], including those associated with extreme values and
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risk[51].

(viii) The Bak-Sneppen model of biological evolution exhibits a time-dependence
of the spread of damage which is well approached by a q-exponential with q < 1
[52].

(ix) The distributions of returns in the Ehrenfest’s dog-flea model exhibit a
q-Gaussian form [53].

(x) The distributions of returns in the coherent noise model are well fitted
with q-Gaussians where q is analytically obtained through q = 2+τ

τ , τ being the
exponent associated with the distribution of sizes of the events [54].

(xi) The distributions of returns of the avalanche sizes in the self-organized
critical Olami-Feder-Christensen model, as well as in real earthquakes exhibit a
q-Gaussian form [55].

(xii) The distributions of angles in the HMF model approaches as time
evolves towards a q-Gaussian form with q ' 1.5 [56].

(xiii) Experimental measurements of the turbulence in pure electron plasma
are analytically reproduced with q = 1/2 [57].

(xiv) The relaxation in various paradigmatic spin-glass substances through
neutron spin echo experiments is well reproduced by q-exponential forms with
q > 1 [58].

(xv) The fluctuating time dependence of the width of the ozone layer over
Buenos Aires (and, presumably, around the Earth) yields a q-triplet with qsen <
1 < qstat state < qrel [59].

(xvi) Diverse properties for conservative and dissipative nonlinear dynamical
systems are well described within q-statistics [60, 61, 62, 63, 64, 65, 66, 67, 68,
69, 70, 71, 72].

(xvii) The degree distribution of (asymptotically) scale-free networks is nu-
merically calculated and is well approached by a q-exponential distribution [73].

(xviii) The tissue radiation response follows a q-exponential form [74].

(xix) The overdamped motion of interacting particles in type II supercon-
ductors is analytically shown to follow, at vanishing temperature, a q-Gaussian
with q = 0. Moreover, the entropy is the nonadditive one associated with this
value of q [75].
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(xx) Experimental and simulated molecular spectra due to the rotational
population in plasmas are frequently interpreted as two Boltzmann distribu-
tions corresponding to two different temperatures. These fittings involve three
fitting parameters, namely the two temperatures and the relative proportion of
each of the Boltzmann weights. It has been shown [76] that equally good fittings
can be obtained with a single q-exponential weight, which has only two fitting
parameters, namely q and a single temperature.

(xxi) High energy physics has been since more than one decade handled
with q-statistics [77]. During the last decade various phenomena, such as the
flux of cosmic rays and others, have been shown to exhibit relevant nonexten-
sive aspects [78, 79]. The distributions of transverse momenta of hadronic jets
outcoming from proton-proton collisions (as well as others) have been shown to
exhibit q-exponentials with q ' 1.1. These results have been obtained at the
LHC detectors CMS, ATLAS and ALICE [80, 81, 82], as well as at SPS and
RHIC in Brookhaven [83]. Predictions for the rapidities in such experiments
have been advanced as well. These results stimulate an interesting possible di-
alog between nonextensive statistics and quantum chromodynamics (QCD).

(xxii) Various astrophysical systems exhibit nonextensive effects [84, 85, 86,
87].

(xxiii) Analysis of the magnetic field in the solar wind plasma using data
from Voyager 1 and Voyager 2 strongly suggests nonextensive effects [88, 89].

(xxiv) Various geophysical applications exhibit nonextensive effects [90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101].

(xxv) Nonlinear generalizations of the Schroedinger, the Klein-Gordon and
the Dirac equations have been implemented which admit q-plane wave solu-

tions as free particles, i.e., solutions of the type e
i(kx−ωt)
q [102], with the energy

given by E = ~ω and the momentum given by ~p = ~~k, ∀q. The nonlinear
Schroedinger equation yields E = p2/2m (∀q), and the nonlinear Klein-Gordon
and Dirac equations yield the Einstein relation E2 = m2c4 + p2c2 (∀q).

(xxvi) Phenomena in linguistics such as Zipf law and the frequency of words
in various languages and literary styles [103].

(xxvii) Statistics of citations of scientific and technological papers [104, 105].

(xxviii) Processing of medical signals such as those emerging in epileptic cri-
sis [106, 107].

(xxix) Processing of medical and other images [108, 109, 110].
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(xxx) Global optimization algorithms generalizing Simulated Annealing and
others [111, 112, 113].

(xxxi) Diversified applications in theoretical chemistry [114, 115, 116, 117,
118, 119, 120, 121, 122].

(xxxii) Cognitive psychology in relation with learning and remembering
[123, 124, 125].

(xxxiii) Astronomical systems [126].

The systematic study of metastable or long-living states in long-range ver-
sions of magnetic models such as the finite-spin Ising [127] and Heisenberg [128]
ones, or in hydrogen-like atoms [129, 130], might provide further hints and ap-
plications.

4 Final remarks

The Boltzmann-Gibbs entropy and exponential weight have been generalized,
during the last two decades, in various manners [131, 132, 133, 134] (see further
details in [1]). These various manners follow essentially from the 1988 proposal
that we have focused on in this brief review. The corresponding entropy is
noted Sq and it is nonadditive; it should be extensive for a special value of
the index q, which reflects the class of strong correlations that the elements of
the system have. The corresponding thermostatistics is currently referred to as
nonextensive statistical mechanics (the word nonextensive stands here to reflect
the fact that those systems typically have an internal energy which grows faster
than the number of elements N).

The applicability of these concepts has been illustrated in the previous Sec-
tion through analytical, numerical, experimental and observational results. Nev-
ertheless, very many interesting questions still remain as opened issues. For
example: Under what conditions q-independence and scale-invariance co-exist?
Under what conditions the present generalized thermostatistics is compatible
with classical thermodynamics? How well can be described with a q-exponential
density matrix the mixed state of the block whose entropy has been discussed
in [4])? Further analysis of these and other points would be very welcome. Fi-
nally, since the present special issue is also dedicated to natural hazards, let us
suggest that the (all important) evaluation of their risks could perhaps benefit
from analysis done along the lines that have proved useful for financial systems,
as illustrated in [51].
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