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Abstract
In this work, we have studied the transition from collisional to stochastic heating regime in a
RF inductively coupled plasma discharge, in which the exciting antenna is placed inside the
vacuum chamber. The electron and ion energy distribution functions are obtained using an RF
filtered electrostatic probe and a Faraday cup. The analysis of the energy distribution functions
as a function of the working pressure reveals the existence of two distinct discharge regimes,
which are governed by the heating processes. Our results show that while the electron
distribution function is Druyvesteyn-like for high pressures, p � 4.0 × 10−2 mbar, it becomes
bi-Druyvesteyn, and not bi-Maxwellian, as found in other works, for low pressures,
p � 1.0 × 10−2 mbar.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Investigation of the transition from the collisionless to the
collisional regime plays a pivotal role in the understanding
of the heating mechanism occurring in RF plasmas. To date,
several works concerning plasma heating process have been
reported in the analysis of the evolution of plasma parameters
in the E–H mode transition for inductively coupled discharge
[1–3] and capacitive coupled discharge [4, 5]. The plasma
parameters analysis is often based on electrostatic probing or
in optical emission spectroscopy (OES).

Electrostatic measurement, in particular using the
electrostatic probe originally developed by Mott-Smith and
Langmuir [6], constitutes one of the most reliable diagnostic
tool to determine local parameters in low-pressure weakly
ionized plasmas [7]. In spite of its intrusiveness, the technique
is capable of providing accurate measurements of the electron
density and temperature in different experimental setups
[8], with particular interest to dc, RF and laser produced
plasmas.

Traditional Langmuir probe I–V curve analysis use
several methods such as the classical Mott-Smith and

Langmuir analysis [6], the orbital motion theory of ion
collection [9], Bernstein–Rabinowitz–Laframboise theory of
ion collection [10] and Allen–Boyd–Reynolds radial motion
theory of ion collection [11]. Conventional probe theories
for electron and ion currents assume a Maxwellian electron
energy distribution function (EEDF). However, the EEDF,
in low-pressure discharges, is usually non-Maxwellian and
application of conventional procedures for processing probe
characteristics in non-Maxwellian plasmas may lead to
significant errors in the determination of basic plasma
parameters (see [12] for a detailed discussion). Alternatively,
the data analysis can be performed in a way to obtain the
EEDF using a method often based upon the determination
of the first and second derivatives of the experimental I–V

curve [13]. This method allows a direct determination of
the EEDF independent of the validity of the thermodynamic
equilibrium condition [14].

We use the second derivative method to study the transition
from the collisional to stochastic regime of an inductively
coupled plasma (ICP) using the RF antenna placed inside to
the chamber for a fixed RF power. We study this transition
based on the analysis of the EEDF shape as well as from the
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Figure 1. Plasma discharge: (a) before the introduction of the decoupling capacitor, and (b) after the introduction of the decoupling
capacitor.

parameters obtained from these distributions, e.g. density and
electron temperature.

The different heating mechanisms and the transition
between them have been intensively studied since the
pioneering work of Godyak and Rejak [4]. In the case of
ICP, the work carried out in the last decade was thoroughly
reviewed by Seo et al [15]. An interesting result of this
studies is the observation that the electron energy probability
function (EEPF) changes as a function of the pressure, evolving
from a bi-Maxwellian at low pressures, to a Maxwellian at
intermediate pressures, to a Druyvesteyn-like distribution at
high pressures. These results were confirmed by numerical
simulations [16]. Recently, experimental work carried out by
Lee et al [17] has shown that significant heating of low-energy
electrons can occur in the E mode, indicating the relevance of
collisionless heating in the plasma skin layer.

In this paper, we report some new results that contribute
to enlarge the data basis to better characterize the heating
mechanisms in ICP. Firstly, in our experimental configuration,
described in the next section, the RF antenna is placed inside
the metal vacuum chamber, as usual in RF heating of fusion
plasmas [20]. In this case, the ambiguity in the type of
coupling, introduced by the dielectric window, is obviated.
Indeed, in the capacitive coupling the discharge occurs mostly
between the antenna and the vacuum chamber, whereas in the
inductive coupling it occurs in the plasma bulk. We find that
indeed the EEDF changes with pressure; however, while it is
Druyvesteyn-like at high pressures, it is better described as a
bi-Druyvesteyn rather than a bi-Maxwellian at low pressures.
The transition is also observed in the ion energy measured by
a Faraday cup installed at the substrate holder.

2. Experimental set-up

The experimental apparatus consists of an ICP produced
by an RF antenna placed inside a cylindrical stainless steel
(316L) chamber. The antenna consists of three circular loops
concentric with the axis of the vacuum chamber and fed in
parallel. The diameter of the vacuum chamber is 10 cm and
that of the antenna loops is 6 cm. The RF power supply is based
on a push–pull oscillator designed with a variable output power
ranging from 10 to 500 W, operating at 13.56 MHz. The power

from the oscillator is fed to the antenna in a balance mode,
i.e. the central conductors of two coaxial cables are connected
to the antenna terminals through two blocking capacitors
(C = 470 nF) and the external conductors of the coaxial cables
are grounded to the metallic vacuum chamber. The internal
antenna configuration with balanced feeding yields always an
ICP, independent of the feeding power. Indeed, as can be seen
from figure 1, after the introduction of the decoupling capacitor
the discharge occurs in the plasma bulk, and not between the
antenna and the vacuum chamber.

The chamber is pumped to a base pressure of 10−7 mbar;
during operation it is filled with argon and the working pressure
is kept constant. The chamber has two separated retractile
manipulators facing each other, where both the Langmuir
probe and Faraday cup are placed on. The study was performed
for a fixed input RF power of 120 W, with the working pressure
varying from 2 × 10−3 to 3 × 10−1 mbar.

2.1. The EEDF measurement

For the EEDF determination a single spherical Langmuir probe
was constructed with a tungsten tip of 0.5 mm diameter brazed
to a glass tube head. A low band pass filter is placed inside
the tube and close to the probe tip to reduce RF distortion.
The glass head, glued to a stainless steel tube, is inserted
along the axis of the vacuum chamber and can be rotated and
displaced to allow a radial sweep. In the measurements, the
voltage applied to the probe together with the current output
was simultaneously measured by an ADC (USB6008, National
Instruments).

The EEDF was obtained following the standard
second derivative analysis of the I–V curve proposed by
Druyvesteyn [13],

Ie = 1

4

(
2e3

me

)1/2

A

∫ ∞

V

E1/2Fe(E)

(
1 − V

E

)
dE, (1)

where A is the area of the collecting probe surface, me and e

are the electron mass and charge, respectively, V = φp − Vb

is the difference between the plasma potential φp and potential
applied to the probe Vb, E = 1

2mv2/e is the kinetic energy of
the particle, given in electron-volts, and Fe(E) is the EEDF.
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Figure 2. Faraday cup sketch, based on [18]; 1—Faraday cup signal
(ion current), 2—Second grid bias (energy discriminator), 3—First
grid bias (floating grid) and 4—Sample holder (bias electrode).

Therefore, differentiation of equation (1) twice with
respect to V , yields

Fe(V ) = 2m

e2A

(
2eV

m

) 1
2 d2Ie

dV 2
. (2)

Once the EEDF is obtained, the number density ne can be
promptly calculated,

ne =
∫ ∞

0
Fe(V ) dV (3)

and also the effective temperature, given in electron-volts, by

Teff = 2

3ne

∫ ∞

0
V Fe(V ) dV. (4)

2.2. IEDF Measurement

The IEDF was obtained using a Faraday cup [18], shown
schematically in figure 2, and it is composed by two electrodes
covered with high transparency grids (G1 and G2) and a
collecting electrode (P) placed at the end. The first grid is
set floating, hence when the cup is place inside the plasma its
potential will be the same as the floating potential Vf , which is
negative in relation to the plasma. This grid is responsible for
repelling electrons from the plasma, ensuring that the current
collected by the cup is genuinely due to the positively charged
ions. The second grid acts as an energy discriminator, and is
positively biased (variable) in order to cut out ionic component
with energy below the applied voltage, which is measured
in relation to the plasma potential. The collecting electrode
is negatively biased to prevent that any residual high energy
electrons to enter the cup.

By varying the voltage at the discriminator an I–V

curve similar to the Langmuir probe is obtained. The
measurements were automated using the same procedure
described in section 2.1 for the electrons.

The analysis of the I–V curve to obtain the IEDF is
similar to the second derivative approach to the EEDF, together

with smoothing procedure, with V = VG2 − �p, because the
discriminator is positively biased in relation to the plasma
potential. Therefore, the equations presented in section 2.1
are basically the same with the exchange of the electron mass
(me) by the ion mass (Mi) and the electron charge (e) by the
ion charge (Ze). The IEDF can be readily given by

Gi (V ) = 2Mi

(Ze)2 A

(
2ZeV

Mi

) 1
2 d2Ii

dV 2
. (5)

Opposite to the Langmuir procedure, here the ion energy
measured is mainly due to the energy gained in the plasma
sheath formed between the cup and the plasma. That energy
is substantially different from the ion energy at the bulk
plasma [19].

3. Results and discussion

Different species from the plasma can be characterized by their
temperatures, which will tend to equalize as the interaction
between the systems increase. For a discharge plasma, this
behaviour can be verified by varying the working pressure.
For low pressures one expect the electron temperature to be
higher than the neutral gas temperature. As the pressure
raises, the energy exchange between the electrons and the
neutral gas becomes more efficient, causing an increase in the
gas temperature and a decrease in the electron temperature.
Eventually, both temperatures will reach similar values, at
this stage the system is considered to be in thermodynamical
equilibrium.

Hence, for a fixed input power, the plasma discharge
condition can be divided into two regimes with two different
range of pressures. These regimes are mainly characterized by
their heating process that occurs in the plasma discharge. At
the high pressure range, the discharge is mainly maintained
by collisional processes, where the electrons gain energy
from the electromagnetic field and a small fraction of this
energy is transferred to the gas, by means of binary collisions.
The transition from one regime to another happens for a
pressure where the power absorbed by the plasma is maximum,
ω = νc, with νc being the collision frequency for momentum
transfer and ω being the RF frequency. For the lower
pressure regime, collisions become sparser and the discharge
is mainly maintained by stochastic processes, where the gain
of energy occurs via the interaction of the electrons with the
electromagnetic field at the plasma sheath.

When the electronic mean free path approach to the reactor
dimensions, stochastic processes start to become significant
[21]. The electromagnetic fields in the plasma sheath are
much higher than the fields inside the plasma, hence electrons
that reach this region will change their velocity and eventually
bounce back to the plasma. The interaction of these electrons
with the plasma sheath can be regarded as a collision with
a massive particle or with the oscillating wall [21]. As a
result of this encounter, the electron returns to the plasma
with an increased velocity u′ = u + 2v0, where u is the
electron initial velocity and v0 is the effective velocity of the
oscillating boundary. A net gain in energy, and consequently an

3
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Figure 3. EEDF for pressures varying from 4.5 × 10−3 to
1.0 × 10−1 mbar.

increase in electron temperature, per collision can be roughly
estimated by

〈�E〉 = meω
2δ2

0, (6)

where δ0 is the sheath thickness and ω is the RF frequency. The
sheath thickness being dependent on the working pressure.

3.1. From collisional to stochastic

The change in the discharge regime is reflected in plasma
parameters such as energy distribution functions, which affect
the density and electron, ion and gas temperatures. For
electrons, the EEDFs are shown in figure 3 for pressures
varying from 4.5 × 10−3 to 1.0 × 10−1 mbar. In figure 3(a)
(4.5 × 10−3 to 4 × 10−2 mbar) we can note that the EEDFs
have different shapes with a well pronounced high energy tail.
As the pressure increases the magnitude of the EEDF also
increases reaching a maximum between 3 and 4 × 10−2 mbar.
There, the energy tail becomes less pronounced and the
distribution shifts towards lower energies, causing a decrease
in the average energy and consequently in the electron
temperature. For pressures higher than 4 × 10−2 mbar,
figure 3(b), the high energy tail disappears and the EEDF shape

Figure 4. Ion energy distribution function for pressures varying
from 4.3 × 10−3 to 1.5 × 10−1 mbar.

remains roughly the same with its magnitude decreasing with
the increasing pressure. It is interesting to note that a change
also occurs in the IEDF measured by the Faraday cup, as shown
in figures 4(a) and (b).

In order to investigate the change from the collisional to
the stochastic regime, we use a non-linear fitting procedure
(Levenberg–Marquardt algorithm [22]) to adjust the best
Maxwellian and Druyvesteyn distribution function to the
experimental EEDF data. It is well known that for a plasma
in local thermodynamical equilibrium (LTE), the energy
distribution function is described by a Maxwellian function
FM(E), given by

FM (E) = 2 n

π
1
2

E
1
2

T
3
2

e

exp

[
− E

Te

]
, (7)

where n is the number density of particles and E is the electron
energy.

For plasmas that are not in local thermodynamic
equilibrium (non-LTE), a Maxwellian distribution function
cannot be assumed for the energy of electrons. Instead, it
is necessary to find a new EEDF which describe the energy
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Figure 5. Best curve fit to the EEDF data for a pressure of
4.0 × 10−2 mbar. Our data (open squares); Druyvesteyn and
Maxwellian curves (solid lines).

Figure 6. Best curve fit to the EEDF data for a pressure of
4.5 × 10−6 mbar. Our data (open squares); Druyvesteyn and
Maxwellian curves (solid lines).

distributions of particles in the plasma. Druyvesteyn [13]
solved the Boltzmann equation using several approximations
involving linearization and approximation of zero order for
a plasma permeated by an electric field. He obtained the
following energy distribution function:

FD (E) = 1.04 n
E

1
2

E
3
2
av

exp

[
−0.55 E2

E2
av

]
, (8)

with Eav being the average energy.
In figure 5 we show for electrons the best curve fit to

the EEDF data for a pressure of 4.0 × 10−2 mbar, where
the maximum power transmitted seems to occurs. We
can readily see that the EEDF differs substantially from a
Maxwellian distribution. Instead, it fits remarkably well to a
Druyvesteyn function (equation (8)). For pressures up to 4.0×
10−2 mbar, EEDFs are still well described by a Druyvesteyn
function, while for pressures below 1.0 × 10−2 mbar, neither
a Druyvesteyn nor a Maxwellian functions are able to fit the
EEDF data anymore as shown in figure 6.

Figure 7. Collision frequencies versus pressure.

The transition from the stochastic to collisional regime can
be examined qualitatively in terms of the pressure dependence
to the collision frequency of particles in the plasma. For
the collisional process, the collision frequency for momentum
transfer νm is given by

νm = ng 〈σv〉 , (9)

where the average 〈σv〉 was calculated from the experimental
EEDF (F (E)) for each pressure p, i.e.

νm (p) = ng (p)

ne

√
2e

m

∫ ∞

0
σ(E) E

1
2 F(E, p) dE, (10)

where the dependence of σ(E) with energy is obtained
from [19].

The collision frequency for the stochastic process νstoch is
defined as the rate of particles reaching the plasma sheath [21].
If the particle has an average velocity v̄, the time spent to travel
from one sheath to the other sheath is given by

�t = 2 (b − δ0)

v̄
, (11)

where b is the reactor radius and δ0 is the sheath thickness
(estimated as 10 mm).

Therefore, the collision frequency for the stochastic
process (νstoch) will be given by

νstoch = v̄

2 (b − δ0)
, (12)

where the average velocity v̄ is obtained for each pressure from

v̄ (p) = 1

ne

√
2e

m

∫ ∞

0
E

1
2 F(E, p) dE (13)

The plot of momentum transfer νm, stochastic νstoch and
effective collision frequencies νeff (defined as νeff = νm+νstoch)
is shown in figure 7. We can note from this simple model that
the stochastic process should take over the collisional process
for pressures below 0.8 × 10−2 mbar. These results are in

5
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Figure 8. Electron density and temperature as a function of working
pressure.

Figure 9. Ion density and mean energy as a function of working
pressure.

qualitative agreement with the EDF analysis, which points to
a transition occurring for a pressure near 2 × 10−2 mbar. The
main source of discrepancy lies in the estimation of δ0, which
should also incorporate a dependence on the pressure.

The consequences of the effective electron temperature,
electron and ion densities and ion mean energy (gained at the
plasma sheath) are shown in figures 8 and 9 as a function of the
gas pressure. For electrons (figure 8), it is important to point
out that the density reaches a maximum near 3 × 10−2 mbar,
which is consistent with the EEDF shape analysis of the
transition from the collisional to stochastic regime, where the
maximum power absorption is supposed to occur.

From figure 8 we can see that the effective electron
temperature remains constant at the collisional regime, this
is expected since the energy transferred by collision between
electrons and massive particles is negligible, and for the energy
range of the electrons in the plasma (few tens of electronvolts),
the elastic collision cross section is at least two order of
magnitude larger than the inelastic one [19, 23]. For pressures
below 3 × 10−2 mbar, the stochastic heating starts to take
over and the effective electron temperature starts to increase
due to the interaction of the electron with the plasma sheath,
qualitatively described by equation (6).

For ions (figure 9) the ion density also reaches its
maximum near 3 × 10−2 mbar, but instead of decreasing for
lower pressures, it presents an unexpected increase. This
behaviour might be due to secondary electron emission, as
for lower pressures, the IEDF have a high energy tail (above
100 eV). Concerning the quasi-neutrality (ni � ne), we can
note that ne is approximately twice ni, as shown in figures 8 and
9. This difference is due to the fact that the ion density detected
by the Faraday cup is always smaller than the ion density in the
plasma bulk, where ion and electron densities are equal [19].
It is important to point out that the ion mean energy obtained
from the Faraday cup measurement does not correspond to the
ion mean energy in the plasma bulk. In this case the amount
of energy is mainly gained by the ions throughout the plasma
sheath towards the Faraday cup (or the substrate). However,
due to the dynamic polarization effect [19], the first grid in
the Faraday cup becomes biased with a potential Vbias, which
is more negative than floating potential Vf with respect to the
plasma potential φp. We have measured Vbias for a pressure of
4.3×10−3 mbar, and found a value of −34 V. For this pressure,
the plasma potential φp was also measured using the Langmuir
probe and found to be φp = 26 V. This difference of potential
(60 V) justify the high value for the ion mean energy obtained
via the analysis of the IEDF.

3.2. Obtaining two temperatures and densities from a
bi-Druyvesteyn

For electrons, the high energy tail in the EEDF occurring
for pressures below 4 × 10−2 mbar can be regarded as an
indication of a two temperature plasma formation [24, 25].
In this pressure range the plasma heating is dominated by
stochastic processes and it may lead to creation of a second
electron population with energies higher than the main electron
gas [12].

EEDFs described by a bi-Maxwellian function have been
reported before [25]. However, for the discharge condition
presented in this work, for pressures below 4.0 × 10−2 mbar
the EEDFs are better described by a bi-Druyvensteyn (figure 6).
In either cases, bi-Druyvensteyn or bi-Maxwellian, there are
two temperatures Tcold and Thot, and two densities ncold and
nhot to be taken into account.

In order to determine quantitatively these temperatures
and densities from a two gas of electrons, the probability
function FP(E) for a single Druyvesteyn equation is used:

FP (E) = fD(E)

E
1
2

(14)

by taking the natural logarithm of FP(E), we have

ln [FP (E)] = ln

(
1.04 n

E
3
2
av

)
− 0.55

E2
av

E2. (15)

Therefore, the plotting of ln[FP] versus E gives a second
degree polynomial (Y = A − Bx2), where from coefficients
A and B it is possible to determine the density n and
electron average energy Wav and, consequently, the electron
temperature Te. The plotting of ln[FP] versus E is shown in
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Figure 10. ln[F(E)] versus energy for p = 4.5 × 10−3 mbar.

figure 10 for p = 4.5×10−3 mbar. It is interesting to note that
instead of single parabola a two parabolic behaviour is seen.
Fitting two separated parabola we can extract two different
values for the density and electron temperature. For the first
parabola we have ne-cold = 1.6×1014 m−3 and Te-cold = 9.0 eV
and for the second parabola we have ne-hot � 2.3 × 1013 m−3

and Te-hot � 15 eV; however, since the high energy tail is not
completely discriminated these values are not well defined.

It is important to point out that for pressures above
4.5 × 10−3 mbar, although the trend of a two second degree
polynomial is still present, the fitting procedure became
inaccurate leading to errors in the determination of the
temperatures and densities.

4. Conclusion

We have studied the transition between heating regimes in
an inductively coupled plasma configuration, with the RF
antenna placed inside the vacuum chamber. For approximately
constant RF power around 120 W delivered to the antenna, we
find that the transition between heating regimes occurs in the
pressure range from 1.0 to 4.0 × 10−2 mbar, in reasonable
agreement with the results reported in other investigations
[4, 15]. However, while for high pressures, i.e. p � 4.0 ×
10−2 mbar the electron energy distribution is well described
by a Druyvesteyn function, as found in previous works, for
low pressures, p � 1.0 × 10−2 mbar, it is better represented
by a bi-Druyvesteyn and not by a single or bi-Maxwellian
function, as reported in previous works. We do not have yet
a clear physical explanation for this result. One possibility is
that, since in the bona fide inductive coupling configuration
utilized in this work the electron density is somewhat smaller
than in standard experimental setups. Therefore, effects of
the electric field may play a stronger role in the collisionless
absorption of RF power by the electrons. The transition is
also noted as an increase in the density of ions detected by a

Faraday cup inserted in a metallic sample holder facing the RF
antenna and 13 cm from it. However, there is an unexpected ion
density increase at low pressures, departing from the behaviour
of the electrons, and the measured high ion energies clear
indicate that RF dynamic polarization is strongly affecting the
measurements with the Faraday cup. This question will be
more carefully investigated in a future work.
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