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We focus on a linear chain of N first-neighbor-coupled logistic maps in the vicinity of their edge of chaos

in the presence of a common noise. This model, characterised by the coupling strength � and the noise

width rmax, was recently introduced by Pluchino et al. [Phys. Rev. E 87, 022910 (2013)]. They detected,

for the time averaged returns with characteristic return time s, possible connections with q-Gaussians, the

distributions which optimise, under appropriate constraints, the nonadditive entropy, Sq, basis of

nonextensive statistics mechanics. Here, we take a closer look on this model, and numerically obtain

probability distributions which exhibit a slight asymmetry for some parameter values, in variance with

simple q-Gaussians. Nevertheless, along many decades, the fitting with q-Gaussians turns out to be

numerically very satisfactory for wide regions of the parameter values, and we illustrate how the index q
evolves with ðN; s; �; rmaxÞ. It is nevertheless instructive on how careful one must be in such numerical

analysis. The overall work shows that physical and/or biological systems that are correctly mimicked by

this model are thermostatistically related to nonextensive statistical mechanics when time-averaged rele-

vant quantities are studied. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4947548]

Coupled map lattices are very useful models that are cur-

rently being studied in the literature along many years.

Indeed, they exhibit several interesting features that could

mimic the real world, for instance, biological systems. On

the other hand, since virtually all biological systems evolve

in some kind of noisy environment, it is fundamental to

analyse the behaviour of coupled map lattices in the pres-

ence of external noise. Here, our aim is to investigate the

effect of noise on the behaviour of coupled logistic maps

each of which is in the vicinity of its chaos threshold.

I. INTRODUCTION

Synchronization has long been observed in complex sys-

tems and extensively studied in the literature.1,2 In these

studies, coupled maps are considered as an important theo-

retical model for these systems.3 Moreover, since many bio-

logical systems evolve in noisy environments, it is important

to analyse the effect of noise in such coupled maps.

Recently, the effect of weak noise on globally coupled cha-

otic units has been studied for several systems.4,5

The model that we focus on here is a linear chain of N
coupled logistic maps, with periodic boundary conditions,

and can be written as

xi
tþ1 ¼ 1� �ð Þf xi

t

� �
þ �

2
f xi�1

t

� �
þ f xiþ1

t

� �� �
þ r tð Þ; (1)

where � 2 ½0; 1� is the local coupling and rðtÞ is an additive

random noise uniformly distributed in ½0; rmax�, which fluctu-

ates in time but is equal for all maps. Here, the ith logistic

map at any time t is given as
FIG. 1. Probability distribution functions of the normalized returns for

N¼ 100 logistic maps in the vicinity of chaos threshold with s¼ 32. The

parameter values used here are exactly those of Fig. 3(a) (case (a)) and of

Fig. 3(d) (case (b)) of Ref. 6. By expr¼ 1 we mean that only one experiment

has been done in each of these illustrations.
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f ðxi
tÞ ¼ 1� ljxi

tj
2; (2)

where l 2 ½0; 2� is the map parameter and this function is

taken in module 1 with sign in order to fold the iterates of

the maps back into the map interval [�1, 1] if the noise takes

them out of this interval. All elements of the system will be

kept at the chaos threshold by fixing the l parameter at

lc ¼ 1:40115518909:::.
Very recently, the probability distribution functions

(PDFs) of the returns for this model have been investigated

numerically by Pluchino et al.6 and fat-tailed distributions

have been reported, which can be fitted by q-Gaussians. The

physical quantity under investigation, the returns, is a com-

monly used one in areas such as turbulence,7 finance,8,9

DNA sequences,10 and earthquake dynamics11–14 in the liter-

ature. It is defined as

Ddt ¼ dtþs � dt; (3)

where

dt ¼
1

N

XN

i¼1

jxi
t � hxi

tij: (4)

The main result of Ref. 6 has been given in Fig. 3 of that

paper where the PDFs of the normalized returns (normalized to

the standard deviation of the overall sequence) have been plot-

ted for various rmax values. We have reproduced here in our

Fig. 1 two representative cases, namely, rmax ¼ 0:002 and

rmax ¼ 0:3 to be compared with Figs. 3(a) and 3(d) of Ref. 6,

respectively. It is evident that the q-Gaussian curves with pre-

dicted q values are very reasonable for these examples

(q¼ 1.54 for rmax ¼ 0:002 and q¼ 1 for rmax ¼ 0:3).

However, the distributions span less than 3 decades since the

time series that have been used are relatively short (t ¼ 105).

Therefore, it is interesting to check the behaviour with longer

time series in order to span more decades of the PDF. This is

what we have done: see Fig. 2, which has been obtained by

considering a large number of experiments (250 and 500). This

means that the time series analysed are as long as 250� 105

and 500� 105, respectively. As seen clearly from Fig. 2, when

one more decade is exhibited for the tails, the departure from

the a priori admissible q-Gaussians becomes clearly visible.

In addition to this, it is also interesting to check whether

these typical numerical PDFs are asymptotic in the sense of

the N !1 limit. If this is the case, one would expect the

PDF curves to remain basically invariant as the size N of the

system increases. We have checked it, see two illustrative

cases in Fig. 3. It is easily seen that the N¼ 100 size cannot

be considered as sufficient for the analysis of the asymptotic

behaviour, especially for small values of rmax.

FIG. 2. Probability distribution functions of the normalized returns for

N¼ 100 logistic maps in the vicinity of chaos threshold with s¼ 32 for

rmax ¼ 0:002 (a) and rmax ¼ 0:3 (b). In order to analyse the tails of the dis-

tribution, large number of experiments is used. The size of the time series

therefore equals to the number of experiments times the time steps used in

each experiment (i.e., expr� 105).

FIG. 3. Probability distribution functions of the normalized returns for N
logistic maps in the vicinity of chaos threshold with s¼ 32 for N¼ 100,

N¼ 100 000 and N¼ 500 000. It is evident that, as N increases, the asymp-

totic PDFs are attained slowly for small rmax values (i.e., case (a)), whereas

it is quite quick for larger rmax values (i.e., case (b)).
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It is therefore clear at this stage that, if we are particularly

interested in studying the asymptotic behaviour of PDFs of the

normalized returns of this system, both the size N of the system

and the length of the time series must be quite large. To further

refine the present analysis numerically, we have also studied

the same two cases with large enough value for N (N¼ 500 000

for rmax ¼ 0:002. and N¼ 200 000 for rmax ¼ 0:3), and with a

time series of 100� 106 steps. These conditions are sufficient

to observe the behaviour up to almost 6 decades. The results

are given in Fig. 4. The strong departure from the q-Gaussians

with early predicted q values becomes now very obvious.

Moreover, a slight but neat asymmetry emerges for small rmax.

In order to fit this kind of behavior, one can use a non-

symmetric extension of q-Gaussian, namely, given by

p / ½1� ð1� qÞðbx2 þ gx3Þ�1=ð1�qÞ; (5)

or even

p / ½1� ð1� qÞðbx2 þ gx3 þ hx4Þ�1=ð1�qÞ: (6)

These expressions recover the symmetric q-Gaussian for

g ¼ h ¼ 0. Strictly speaking, the case g 6¼ 0 and h¼ 0 is math-

ematically inadmissible since it would lead to a runaway to in-

finity. In contrast, the case g 6¼ 0 and h> 0 is perfectly

admissible. However, in practice, unless we explore very large

values of x, we can consider h¼ 0 with no sensible damage. A

very good fitting has been obtained by using q¼ 1.153,

b¼ 0.655, g¼ 0.006 (with h¼ 0) as illustrated in Fig. 4(a). The

representation of the same data using the q-logarithmic func-

tion, defined as lnqy�ðy1�q�1Þ=ð1�qÞðy>0; ln1y¼ lnyÞ,
has also been given in Fig. 4(b). We notice that, in the asymp-

totic regime, the PDF for large values rmax approaches a q-

Gaussian with q<1, rather than a Gaussian, as first advanced in

Ref. 6 far from the asymptotic regime, see Figs. 4(c) and 4(d).

II. q-GAUSSIAN APPROXIMANTS

A. Non-symmetric noise case

Let us now attempt a wider look at the same problem,

by extending the preliminary results given in Ref. 6. In order

to tackle the same problem, here we will use the same noise

described above. Since this noise, by definition, is a non-

symmetric one, it might cause the chaos threshold to shift

slightly. A simple q-Gaussian approximant describes fairly

well the numerical data unless we focus on a parameter value

where an asymmetry emerges in the PDF. The index q is

generically expected to depend on ð�; rmax; sÞ.
First of all, we need to define the procedure that we are

employing in order to predict the best value of q parameter of

the related q-Gaussian at each triplet. The q-Gaussians can be

obtained by optimising the entropy Sq ¼ ð1�
PW

i¼1 pq
i Þ

=ðq� 1Þ15 and can be given for �1 < q < 3 as

FIG. 4. Asymptotic PDFs of the normalized returns with large N and large number of time steps for rmax ¼ 0:002 (a) and rmax ¼ 0:3 (c). For both cases

s¼ 32. The q-logarithms versus the square of normalized returns have already been given for both cases in (b) and (d), respectively.
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p ¼ Aq

ffiffiffiffiffi
Bq

p
e�Bqx2

q ; (7)

where ey
q, known as q-exponential, is defined by

ey
q ¼

½1þ ð1� qÞy�1=ð1�qÞ; 1þ ð1� qÞy � 0

0; else:

(
(8)

FIG. 5. Two typical examples of choosing the most appropriate q value using the quadratic function for a case q< 1 (a) and for a case q> 1 (c). The appropri-

ate q value is taken as the one that gives the smallest c value (denoted as cmin). The probability density of the same examples using the q value obtained from

the explained procedure for the case q< 1 (b) and for the case q> 1 (d).

TABLE I. For s¼ 128 and two typical values of �, the values of the parame-

ters Aq

ffiffiffiffiffi
Bq

p
, Bq, and q as rmax varies are indicated.

rmax Aq

ffiffiffiffiffi
Bq

p
Bq q

� ¼ 0:000001

0.001 0.4023 0.5171 1.022

0.05 0.3957 0.4840 0.978

0.1 0.3989 0.4897 0.986

0.2 0.3944 0.4771 0.968

0.3 0.3944 0.4771 0.968

0.4 0.3953 0.4819 0.975

0.5 0.3938 0.4744 0.964

0.6 0.3937 0.4737 0.963

0.7 0.3930 0.4704 0.958

� ¼ 0:8

0.0015 0.4214 0.6154 1.125

0.02 0.4077 0.5441 1.054

0.15 0.3912 0.4613 0.944

0.2 0.3888 0.4494 0.925

0.3 0.3926 0.4684 0.955

0.4 0.3912 0.4613 0.944

0.45 0.3885 0.4482 0.923

0.5 0.3873 0.4423 0.913

0.55 0.3950 0.4805 0.973 FIG. 6. The behaviour of the index q as a function of rmax for three typical

values of �.
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By inverting this function we obtain the q-logarithm function

defined above.

The q-dependent coefficient Aq in Eq. (7) is given by

Aq ¼

C
5� 3q

2� 2q

� �

C
2� q

1� q

� �
ffiffiffiffiffiffiffiffiffiffiffi
1� q

p

r
; q < 1

1ffiffiffi
p
p ; q ¼ 1

C
1

q� 1

� �

C
3� q

2q� 2

� �
ffiffiffiffiffiffiffiffiffiffiffi
q� 1

p

r
; 1 < q < 3:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(9)

The quantity Bq characterizes the PDF width w of the distri-

bution as follows:

Bq ¼
1

3� qð Þw ; (10)

where w is, for q< 5=3, related to the standard deviation s
through

ð5� 3qÞs2 ¼ ð3� qÞw2: (11)

In our simulations, there are only two free parameters,

namely, q and Bq, to be adjusted under the assumption that

the number of decades that we are observing still shows a

symmetric PDF. For a given set ð�; rmax; sÞ, we adjust the

best value of q by looking at the curves lnq (PDF) versus

(normalized returns).2 The procedure consists of determining

the value of q which provides the best approach to a straight

line. More precisely, we fit the curves resulting from various

values of q with a quadratic function

y ¼ aþ bxþ cx2; (12)

and choose the value of q which provides the minimal value

for the parameter c. Then, for this q value, we calculate Aq

and Bq parameters from the time series. Finally, using all

these obtained parameter values, we plot the best q-Gaussian

for the chosen set ð�; rmax; sÞ. Two typical examples are

given in Fig. 5. For these examples, the minimal value of c,

denoted by cmin, have been obtained for q¼ 0.964 and

q¼ 1.022, respectively. Then these values of q have been

used to determine the values of the Aq and Bq parameters.

Finally, the PDFs of the normalized returns are approached

as shown in Figs. 5(b) and 5(d). It is evident from the figure

that the best q-Gaussian approximants corroborate the behav-

iour of the system for more than 6 decades in each case. The

obtained results are summarized in Table I and plotted in

TABLE II. For s¼ 128 and a typical value of rmax, the values of the param-

eters Aq

ffiffiffiffiffi
Bq

p
, Bq, and q as � varies are indicated.

rmax ¼ 0:5

� Aq

ffiffiffiffiffi
Bq

p
Bq q

0.000001 0.3938 0.4744 0.964

0.00001 0.3937 0.4737 0.963

0.0001 0.3941 0.4757 0.966

0.001 0.3939 0.4751 0.965

0.01 0.3939 0.4751 0.965

0.1 0.3914 0.4625 0.946

0.2 0.3895 0.4531 0.931

0.5 0.3878 0.4446 0.917

0.8 0.3873 0.4423 0.913

FIG. 8. The behaviour of the index q as a function of � for a typical value of rmax.

FIG. 9. The behaviour of the PDF for a typical case of l¼ 2.

FIG. 7. The effect of s on the behavior of the PDF.
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Fig. 6 for typical values of ð�; rmaxÞ. Unless the rmax values

are very small, the tendency is always towards a q-Gaussian

with q< 1. For very small rmax, q> 1 are also observed but

for such cases the asymmetry becomes important.

In our simulations, we prefer to set s¼ 128 since it is

evident from Fig. 7 that if s is not very small the PDF

remains the same as s is increased.

We have also checked the effect of � for a fixed value

of rmax. A clear tendency of increasing q values as � is

decreasing has been observed with a saturation value around

q ’ 0:965 as given in Table II and plotted in Fig. 8.

Finally, we have simulated the case l¼ 2 without noise.

As expected, in this case, a clear Gaussian with 6 decades

can be seen in Fig. 9 since all individual logistic maps are at

their mostly chaotic points. Whenever a nonzero noise term

is included, the system is not able to achieve the Gaussian

due to the persistence of the noise on each map.

B. Symmetric noise case

Here, we will check another possible noise which was

not taken into account in Ref. 6. The noise can also be defined

symmetrically as uniformly distributed in ½�rmax=2; rmax=2�,
which fluctuates in time but is equal for all maps like in the

non-symmetric case. This case also deserves to be investi-

gated but here we give only two representative cases as shown

in Fig. 10. It is evident that this case also gives similar results

but for a full description a detailed and systematic analysis

with respect to parameters should be performed.

III. CONCLUSIONS

We have numerically studied, along many decades, the

time-averaged returns in the model recently introduced in

Ref. 6 by varying the number N of logistic maps in the chain,

the first-neighbour-coupling constant �, the width rmax of the

common noise, and the characteristic return time s.

Our results can be summarised as follows. When the

control parameter l of the logistic maps is taken to be close

to the edge of chaos (lc), where the Lyapunov exponent van-
ishes, slightly asymmetric distributions are observed for

some parameter values. Unless the number of decades is

quite large, this asymmetry can be neglected and the distri-

butions satisfactorily admit q-Gaussian approximants even

for these parameter values. We have illustrated the effect on

the index q of the various parameters of the model.

When we choose for the parameter l of the logistic

maps not its value at the edge of chaos but any other value

such that the Lyapunov exponent is positive, we obtain nu-

merical PDFs that, as expected, are well fitted by simple

Gaussians along six PDF decades when the system has no

noise. In the presence of noise, however, the system is

unable to achieve the Gaussian PDF due to the persistent per-

turbation of the noise.

The overall scenario is that, when we consider time-

averaged relevant quantities such as the returns, Boltzmann-

Gibbs statistics (with its Gaussians, consistent with the clas-

sical Central Limit Theorem) emerges when strong chaos

(positive Lyapunov exponent) is present, and nonextensive

statistical mechanics (with its q-Gaussians, consistent with

the q-generalized Central Limit Theorem16) emerges, or

nearly emerges, when weak chaos (zero Lyapunov exponent)

is present. These facts reinforce the results recently obtained

with time-averaged quantities for the (conservative) standard

map.17 Biological and other systems appear to be well mim-

icked by the Pluchino et al. model.6 The present results

might be useful for examining such systems.
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