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Abstract – We present exact results obtained from Master Equations for the probability function
P (y, T ) of sums y=

∑
T

t=1 xt of the positions xt of a discrete random walker restricted to the set
of integers between −L and L. We study the asymptotic properties for large values of L and T .
For a set of position-dependent transition probabilities the functional form of P (y, T ) is with very
high precision represented by q-Gaussians when T assumes a certain value T ∗ ∝L2. The domain
of y values for which the q-Gaussian apply diverges with L. The fit to a q-Gaussian remains of
very high quality even when the exponent a of the transition probability g(x) = |x/L|a+ p with
0< p≪ 1 is different from 1, although weak, but essential, deviation from the q-Gaussian does
occur for a 6= 1. To assess the role of correlations we compare the T dependence of P (y, T ) for
the restricted random walker case with the equivalent dependence for a sum y of uncorrelated
variables x each distributed according to 1/g(x).

Copyright c© EPLA, 2011

Introduction. – The central-limit theorem states that
appropriately scaled sums of independent random vari-
ables will be distributed according to a Gaussian [1,2].
The random walker is the prototype example of a stochas-
tic Gaussian process [3,4]. The standard random walker is
characterized by transition constant probabilities, which
are independent of position and time. Here we point out
that for a certain class of position-dependent transition
probabilities correlations arise, which lead to deviations
away from Gaussian behavior. There exists already a large
amount of evidence, which points to q-Gaussians as the
relevant high-quality approximates for the functional form
for the distribution function in a range of cases where
correlations play an essential role [5]. The evidence for
the relevance of the q-Gaussian is however often derived
from numerical experiments in which fluctuations limits
the accuracy and therefore the precision of the fit to the

(a)E-mail: h.jensen@imperial.ac.uk

q-Gaussian form (analytical exceptions to this frequent
difficulty can be found in [6]). Moreover we believe the
random walk example we discuss here to be highly generic.
It is related to, e.g., particles moving in a confining poten-
tial or to more branching processes subject to resource
limitations.
Here we present an investigation of the sum y=

∑T

t=1 xt
of positions xt passed through by a Restricted Random
Walker (RRW). The underlying stochastic process is suffi-
ciently simple to allow exact numerical solution of the
Master Equation (ME) for the probability distribution
P (y, T ). This ensures a very high-precision fit to the
q-Gaussian form and thereby a very accurate determina-
tion of the relevant parameters. We find that a broad range
of transition probabilities for the random walker leads
to q-Gaussians with q parameters depending on transi-
tion probabilities. Since the ME can be easily handled in
exact numerically form, the RRW model is an excellent
laboratory for understanding the conditions under which
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sums of correlated random variables are distributed as
q-Gaussians:

P (y) =

{

P (0)
[

1−β(1− q)y2
]
1

1−q , for β(1− q)y2 < 1,

0, otherwise,
(1)

where q < 3 and β > 0 are parameters [7] (for q> 3 normal-
izability is lost). As q→ 1 the function P (y) approaches
the Gaussian.

Restricted Random Walk Model. – We consider a
one-dimensional symmetric random walker confined to the
integers between −L and L. The motion of the walker is
controled by the following time evolution:

xt+1 =











xt+1 with probability g(x)/2,

xt− 1 with probability g(x)/2,

xt with probability 1− g(x).

(2)

We concentrate on the following form:

g(x) =min
{
∣

∣

∣

x

L

∣

∣

∣

a

+ p, 1
}

, (3)

with reflective boundary conditions: If xt+1 >L (<−L)
we let xt+1 7→ xt+1− 1 (+1). We find numerically that
the first return time (defined as the time elapsed until
the walker, who leaves its x= 0 position, returns to the
zero position again, and note we do not include walkers
who remain at x= 0 for all times) distribution for these
RRW behaves asymptotically like P (T )∼ T−τ , with τ = 2,
i.e. different from the exponent τ = 3/2 for ordinary RW.

We study the sum y=
∑T

t=1 xt in the limit p→ 0 for
values of the exponent a= 0.75, 1 and 1.25. For p→ 1
and L→∞ the process reduces to the ordinary random
walk.
The highly restrictive nature of the RRW is clearly

seen from the 6 trajectories shown in fig. 1 in the case
L= 120 (with a= 1 and p= 5 · 10−6). For comparison
we present the trajectories of an ordinary random walk
on xt+1 = xt± 1 with probability 1/2 and xt confined
to −L,−L+1, . . . , L− 1, L. The figure shows that the
vanishing transition probability g(x) near x= 0 makes the
RRW non-ergodic leaving most of the phase space empty.
It is straightforward to derive a Master Equation for the
distribution P (x, t)

PX(x, t+1) = PX(x, t)+
1

2
g(x− 1)PX(x− 1, t)

+
1

2
g(x+1)PX(x+1, t)− g(x)PX(x, t)

(4)

subject to the appropriate boundary conditions at |X|=
L. The insert in fig. 1 exhibits a solution of the equation.
We will discuss P (x, t) in a more extended publication,
here we now turn our attention to another distribution.
Let P (y, x, T ) denote the probability that

∑T

t=1 xt =
y and xT = x. The time evolution of this simultaneous
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Fig. 1: (Colour on-line) Six representative trajectories for L=
120. Main panel: The restricted RWmodel (p= 5 · 10−6). Lower
Inset: The standard RW model (p= 1). Non-ergodic behavior
of the restricted RWmodel can easily be seen. Upper Inset: The
time evolution of P (x, t) at three different t values (t= 1000,
5000 and 10000 from bottom to top).

probability is controlled by the following ME:

P (y, x; t+1) = P (y, x; t)

+
∑

∆∈{−1,0,1}

[W (y, x; y− (x−∆), x−∆)

×P (y− (x−∆), x−∆; t))

−W (y+x+∆, x+∆; y, x)P (y, x; t)]. (5)

The transition probabilities W only depend on x and ∆.
We have

W (y, x; y− (x−∆), x−∆)=w(x−∆,∆)

and

W (y+x+∆, x+∆; y, x) =w(x,∆),

where

w(z,∆)=

{

g(z)/2, if ∆=±1,

1− g(z), if ∆= 0.
(6)

By substituting g(x) we obtain the following simple
equation:

P (y, x;T +1) =
1

2
[g(x+1)P (y− (x+1), x+1;T )

+g(x− 1)P (y− (x− 1), x− 1;T )]

+(1− g(x))P (y−x, x;T ). (7)

The relevant boundary conditions are straightforward but
lengthy to write down.
We now investigate the functional shape of the distrib-
ution P (y, T ) =

∑

x P (y, x, T ) for different values of a, L
and T , for the typical value p= 5 · 10−6. In fig. 2 we plot
a typical case from where the perfect agreement between
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Fig. 2: (Colour on-line) Exact and simulation results of the
case a= 1, L= 120 and p= 5 · 10−6. It is clearly seen that
the probability function P (y, T ∗) obtained from simulations is
completely in accordance with the exact results. The number
of experiments used in our simulations are 2 · 108.
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Fig. 3: (Colour on-line) The case a= 1 for L= 120, 140 and
160 with p= 5 · 10−6. The main panel shows the probability
function P (y, T ∗). The center of the function is shown in detail
in the left inset. The time T ∗ is chosen to optimize the fit to
the q-Gaussian. The scaling of T ∗ is given in the right inset.

the exact and simulation results is evident. Figure 3 is
concerned with the case a= 1 for different values of L.
For fixed L we determine the value T ∗ for which an opti-
mal fit to a q-Gaussian is possible. For T > T ∗ values, each
curve will start to exceed the q-Gaussian tails before the
fast drop region, due to the finite-size, is being achieved. It
is also interesting to analyze the relationship between T ∗

and L. We find that T ∗ ∼L2, a behavior identical to the
ordinary scaling that relates time and distance for diffusive
processes.
Since we have an exact numerical solution we can inves-
tigate with great accuracy the nature of the convergence to
the q-Gaussian as we increase the domain L of the random
walker. In fig. 4 we demonstrate that as L is increased
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Fig. 4: (Colour on-line) The case a= 1 and p= 5 · 10−6 with L
values between L= 90 to 160. The lower panel shows the data
collapse when the x-axis is appropriately scaled. The upper
panel shows a zoomed region around the Y =−1 line. In the
inset the scaling of smax with L is given. The straight line is
smax =AL

C with A= 0.2726 and C = 1.7828.

a trajectory in the T ∗-q-β parameter space exists along
which P (y, T ∗, L) becomes increasingly well described by
a q-Gaussian. The figure contains the scaling combination
Y ≡ lnq[P (y, T )/P (0, T )]/[βs2], where s= yP (0), lnq(x) =
(x1−q − 1)/(1− q) is the q-logarithm and the scaling para-
meter smax is defined as the s value of each L for which
Y significantly starts to deviate from the −1 line, namely
when |Y +1|> 0.004. If the dependence on y is exactly
q-Gaussian, we would have Y =−1 for all y. An appropri-
ate scaling of x-axis yields a clear data collapse. For all
values of L we observe the deviation from −1 to be no
more than a few parts in a 1000 and as L increases the
curves indeed approaches the line Y =−1 for large values
of the argument y. The oscillations about the Y =−1
curve exhibit a subtle dependence on L. Careful inspec-
tion of the top panel in fig. 4 reveals that for increasing
values of L the curves actually approach the Y =−1 line
for both small and large values of the argument s/smax.
We therefore believe that asymptotically the distribu-
tion P (y, T ∗) indeed becomes very well described by the
q-Gaussian functional form. It is unfortunately numeri-
cally impossible for us to reach very large L-values.
This suggests the distribution P (y, T, L) asymptotically

is described by the q-Gaussian form if one let the pair
(L, T ) vary appropriately. We localize these very precise q
and β values so that the curves are as symmetric as possi-
ble along the −1 line. Using the q values given in fig. 4,
we obtain an exponential dependence on L from where
one can predict the asymptotic value limL→∞q(L) = q∞ ≃
2.351, which is evident from fig. 5. It is interesting to
note that for values 5/3< q < 3 the variance diverges.
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Fig. 5: (Colour on-line) Linear-log representation for the L
dependence of q values. This exponential dependence suggests
an asymptotic value around q∞ ≃ 2.351.
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Fig. 6: (Colour on-line) Y plot of cases a= 0.75, a= 1 and a=
1.25 for a representative L value. Whenever a 6= 1, increasing
order of deviation from −1 line is evident.

So in this respect the distribution behaves similarly to,
e.g., the Cauchy-Lorentz distribution, which corresponds
to q= 2. Diverging variance is of course a common feature
in complex systems of distributions with power law tails.
Next we consider the effect of changing a to values

different from one. Although it is still possible to tune
T ∗ so that the distribution P (y, T ∗) is very close to a
q-Gaussian, the high-resolution Y plot given in fig. 6 now
shows that the order of deviation from straight horizontal
line through Y =−1 grows significantly whenever a 6= 1.

The role of correlations. – One might perhaps
wonder to what extent the observed deviation from ordi-
nary Gaussian behavior is caused by the peculiar shape
of the probability distribution of the individual terms
xt in the sum y=

∑T

t=1 xt. To check this we solved the
Master Equation for the probability distribution for y in

the uncorrelated case where all the individual terms in the
sum are drawn independently with probability

puc(x) =
N

| x
L
|+ p

, (8)

for x∈ {−L,−L+1, . . . , 0, . . . , L} and N the normaliza-
tion factor. The motivation for this is simply that for the
RRW considered above a term will appear in the sum
y a number of times roughly given by 1/g(x). In fig. 7
we show that when the terms are uncorrelated the sum
converges towards an ordinary Gaussian. We note that
the uncorrelated distribution P (y, T ) for small values of
T does resemble a q-Gaussian in the region of small y
values. However, as T is increased the functional form
rapidly changes towards the ordinary Gaussian in stark
contrast to the correlated case (left panel in fig. 7) where
the P (y, T ) grows towards the q-Gaussian as T is increased
up to very large values of T . For the uncorrelated sum
no trajectory (L, T ∗) which for L→∞ takes one to the
q-Gaussian exists.

Conclusions. – We have presented the hitherto most
simple setting in which q-Gaussians control asymptotic
behavior. We conclude that the q-Gaussian behavior is
brought about by the strong correlations and the high
reluctance for the walker to move away from the central
region of its domain.
The numerical exact solution of Master Equations

allows us to present high-precision data for the probability
function of sums of correlated random variables derived
from a restricted random walk (RRW) with position-
dependent transition probabilities. When the range of the
walker L and the number of terms in the sum T is scaled
according to T = 1.54L2, q-Gaussians are observed over
an increasingly broad interval. For non-linear transition
probabilities we are able to identify a subtle oscillatory
behavior away from the pure q-Gaussian form. Given
the relative simplicity of the RRW it appears likely that
the relation between transition probability and the value
of q and the existence of oscillatory corrections to the
q-Gaussian asymptote can be unraveled analytically. The
RRW model presented in the present letter promises
this way to significantly increase our understanding of
the mechanisms responsible for the often encountered
q-Gaussians.
The very weak dependence of q on T ∗(L) and the
subtle oscillations in the a= 1 case and the more essential
oscillations present for a 6= 1 indicates that the true exact
mathematical asymptote might not strictly be q-Gaussian
but rather some functional form resembling a q-Gaussian
to a high degree of accuracy. It is only because we have
numerically iterated the Master Equations exactly that we
are able to identify this very slight difference. In studies
relying on simulations or observational data the accuracy
may not be sufficient to resolve these details and one would
conclude that a q-Gaussian is an excellent approximation
of the observed behavior.

40008-p4



Restricted random walk model as a new testing ground for the applicability of q-statistics

-2000 -1500 -1000 -500 0 500 1000 1500 2000

y P(0)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
(y

) 
/ 

P
(0

)

T=1000
T=2500
T=4000
T=6000
T=8000
T=10000
T=14000
q=2.34 , β=16.5

L=100

-6 -4 -2 0 2 4 6

y P(0)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
(y

) 
/ 

P
(0

)

T=750
T=1000
T=1250
T=1500
T=2500
T=4000
T=8000
T=14000
Gaussian

L=100

Fig. 7: (Colour on-line) Comparison of the T dependence for fixed values of L with p= 5 · 10−6 for the correlated (left panel)
and the uncorrelated (right panel) P (y, T ) distribution (see text for the details).

Let us recall that q-Gaussians have been found previ-
ously for more complex processes than the random walk
to be able to provide very high-quality approximations
to relevant distributions. The case q < 1 was considered
in [8,9] where the authors found for two (scale-invariant)
probabilistic models that the large-size limiting distrib-
utions are amazingly close to q-Gaussians, but are not
exactly q-Gaussians [10]. The work in ref. [6] provides an
analytic example of large-size limiting distributions that
are q-Gaussians. We stress that even if q-Gaussians are not
always the exact analytic form of the probability distribu-
tions in question, it is highly intriguing why they provide
such exceptionally high-accuracy approximations in a
large number of cases where correlations are sufficiently
strong to make the central limit theorem inapplicable.
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