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Abstract

This thesis is composed of two di�erent experiments, performed during my Ph.D. pro-
gram in the Laboratory of Nuclear Magnetic Resonance (NMR), at the Brazilian Center
for Research in Physics. For the last ten years, NMR has become one of the main exper-
imental tools to implement quantum protocols of computation and communication.

In the �rst work, we developed a technique for Quantum State Tomography (QST)
in a three qubits system consisting of strongly coupled nuclear spins, known in the NMR
literature as “ABX” systems. We found that the number of experiments necessary to
perform QST in such systems can be reduced in respect to those of three qubits weakly
coupled, and, therefore reducing the experimental e�ort required for the complete density
matrix reconstruction. To test the proceedure we have implemented the full protocol for
quantum teleportation. The tomographed results demonstrate that the density matrix
can be reconstructed with less operations, and high �delity.

The second work presented in this thesis is implementation of two-dimensional (2D)
Yang-Baxter Equation (YBE) in NMR. The YBE �rst appeared in theoretical physics, in
a paper by Yang [1], and in the work of Baxter in Statistical Mechanics [2, 3]. It turned
out to be one of the basic equations in mathematical physics, and more precisely for
introducing the theory of quantum groups. The Yang-Baxter Equation also plays an im-
portant role in completely integrable statistical models, Knot theory, braided categories,
quantum computing, etc. The YBE is a universal gate for quantum computation and
some solutions of the YBE are unitary and then they can be seen as a quantum gate. We
present a practical scheme to test the YBE in the framework of quantum information.
Then we experimentally test the validity of 2D YBE in NMR. The optically implementing
YBE has been performed in [4].



Resumo

Esta tese é composta por dois trabalhos diferentes, realizados durante meu programa
de doutorado no Laboratório de Ressonância Magnética Nuclear (RMN), do Centro Bra-
sileiro de Pesquisas Físicas. Nos últimos dez anos, RMN se tornou uma das principais
ferramentas experimentais para a implementação de protocolos quânticos de computação
e comunicação.

No primeiro trabalho, aprimoramos um protocolo de Tomogra�a de Estado Quântico
(TEQ) em um sistema de três q-bits formado por spins nucleares fortemente acoplados,
conhecido na literatura de RMN como sistema “ABX”. Nós encontramos que o número
de experimentos necessários para realizar TEQ em sistemas como esse pode ser reduzido
com relação àqueles com três q-bits fracamente acoplados e, portanto, reduzindo o es-
forço experimental requerido para a reconstrução total da matriz densidade. Para testar
o procedimento nós implementamos o protocolo completo para o teleporte quântico. Os
resultados tomografados demonstram que a matriz densidade pode ser reconstruída com
menos operações e alta �delidade.

O segundo trabalho apresentado nesta tese é a implementação da Equação de Yang-
Baxter (EYB) em RMN. A EYB apareceu primeiro na Física Teórica, em um artigo de
Yang [1], e no trabalho de Baxter em Mecânica Estatística [2, 3]. Ela se tornou uma das
equações básicas na Física Matemática, e mais precisamente na introdução da Teoria de
Grupos Quânticos. A equação de Yang-Baxter também desempenha um papel importante
em modelos estatísticos completamente integráveis, Teoria de Nós, Categorias Trançadas,
Computação Quântica etc. A EYB é uma porta universal para a Computação Quântica
e algumas soluções da EYB são unitárias e então elas podem ser vistas como uma porta
quântica. Nós testamos a EYB 2D em RMN. Nós apresentamos um esquema prático para
testar a EYB no âmbito da Informação Quântica. Então nós testamos experimentalmente
a validade da EYB 2D em RMN. A implementação óptica da EYB foi realizada em [4].
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1
Introduction

SECTION: 1.1

NMR as a Quantum Information Processing

Quantum information science is an exciting, emerging �eld that promises to dramatically

improve the acquisition, transmission and processing of information. In 1948 Claude

Shannon published a paper with the title: A mathematical theory of communication. On

this paper, Shannon de�ned the unit of information, the binary digit, or bit, and estab-

lished the theory which tells us how to determine the amount of information (i.e., the

number of bits) which can be sent per unit time through a communication channel, and

how this information can be fully recovered, even in the presence of noise in the channel.

This work founded the theory of information.

In the early 1980s, scientists, including Richard Feynman [5], considered possible

schemes to exploit the laws of quantum physics to compute. This led to the idea of

a quantum computer, i.e. a computer whose functional principles would be based on the

1
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quantum mechanical laws.

In the last decades it has been shown that Nuclear Magnetic Resonance (NMR) is

an excellent tool for testing principles of quantum information science and developing

techniques to control quantum systems [6]. To date, NMR is one of the most accurate

techniques in terms of quantum control, capable of implementing experiments with up to

twelve quantum bits [7] and hundreds of logical operations [8, 9]. One approach to achieve

highly precise control, �rst introduced in Ref [10], consists of using numerically optimized

shaped pulses. A substantial improvement over the initial proposal was obtained by ap-

plying optimal control theory to the problem of handling quantum nuclear spins states.

This e�ort resulted in the Gradient Ascent Pulse Engineering (GRAPE) algorithm [11].

In a NMR quantum information processor, qubits are represented by the nuclear spins

contained within an ensemble of molecules. NMR is an e�ective tool for demonstrating

and developing new techniques for QC, due to its long decoherence time (on the order of

seconds) relative to the timescales over which unitary evolutions occur. This suggested

that quantum information can be preserved over the course of computation. The applica-

tion of Radio-Frequency (RF) pulses in NMR also provides a robust method for coherently

controlling the interactions between speci�c spins in the system, thereby allowing the pre-

cise implementation of unitary gates [12].

The realization of a quantum information processor in a NMR system was a challenge

at �rst because spins are in a mixed state at room temperature, whereas QC requires sys-

tems in a pure state. Proposals for performing QC in such an ensemble system were �rst

given by Cory, Fahmy, Havel [13], Gershenfeld and Chuang [14]. The method outlined

in [13] involves the creation of pseudo-pure states, which are mixed states that transform

similarly to pure spin states. The highly mixed nature of the spin states renders the

creation of pseudo-pure states for more than ten qubits impractical [13, 15]. However,

in the nascent stage of experimentally realizing QC, NMR remains a potent technology
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for developing control methods and demonstrating the implementation of standard quan-

tum algorithms. In 1998 the �rst quantum algorithm was experimentally demonstrated

in Isaac Chuang's laboratory, using NMR techniques [16] and nearly simultaneously by

Jones's group [17]. Their experiments clearly demonstrated a quantum algorithm and

suggested that much larger implementations using NMR techniques are accessible.

Quantum information processing (QIP) has become a major �eld of research because

of its broad potential of applications: faster-than-classical algorithms, unique quantum

processes to perform novel tasks (teleportation, quantum cryptography, etc.), e�cient sim-

ulation of quantum systems, and a thought-provoking role in the exploration of quantum

mechanics and its foundations. But despite great developments, many implementation

issues remain unsolved.

In liquid solutions the internal Hamiltonian of a spin system consists of the Zeeman

Hamiltonian, describing the magnetic interaction of nuclear spins with a static magnetic

�eld, and the indirect J coupling Hamiltonian, describing the interaction of pairs of nu-

clear spins through the bonding electrons. The indirect interaction can be classi�ed as

weak or strong, depending on the relative magnitude of the scalar coupling constant be-

tween two spins and the di�erence of their Larmor frequencies [18, 19]. One approach to

avoid unwanted evolutions during the implementation of quantum operations, caused by

such internal Hamiltonian, consists of decomposing the actual propagator into a target

propagator followed by error terms which can be tracked and corrected. This approach is

mostly used for weakly coupled systems and allows high �delity quantum gates to be im-

plemented with regular shaped pulses, as described in [20]. For strongly coupled systems,

however, the task of implementing quantum computation becomes more complicated, and

optimal control theory is often necessary to achieve high �delities.

After the application of the correct dynamics to the spin system, either by employ-

ing regular shaped pulses or optimal control theory, it is necessary to characterize the
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�nal state. This task is often accomplished by performing Quantum State Tomography

(QST). The �rst QST on NMR system was reported by Chuang et al.[21] for systems

of two coupled spins 1/2. Later, di�erent methods were proposed for quadrupolar nuclei

systems [22, 23, 24] and n weakly coupled spins [25]. In this thesis, we have studied QST

in a system with strongly coupled spins, known in NMR literature as “ABX” system.

We have found that the number of experiments necessary to perform QST in an “ABX”

system can be reduced with respect to three weakly coupled qubits. To test the procedure

we have simulated the full quantum teleportation protocol. The results demonstrate that

good accuracy in the density matrix reconstruction can be achieved.

SECTION: 1.2

Yang-Baxter Equation

The Yang-Baxter Equation (YBE) originated from solving the repulsive δ interaction

problem in one-dimension of N particles [1, 26], and problems of statistical models on

lattices [2, 3, 27]. Today, the Yang-Baxter Equation has become an important tool in

physics, and has many applications in a variety of areas of physics, for instance in quan-

tum �eld theory, statistical mechanics, and group theory [2, 3, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37]. It can be applied in completely integrable statistical models to �nd the

solutions by means of the nested Bethe ansatz [37]. Recently it turns up gradually that

the Yang-Baxter Equation is naturally linked to a hot area of frontier research, quan-

tum information and computing [38, 39]. It is found that the Yang-Baxter Equation is

closely related to quantum entangled states [40, 41], and the braiding operations in the

Yang-Baxter equation are universal quantum gates [42, 43, 44, 45, 46]. The Yang-Baxter

Equation attracts much attention in recent years and is being studied intensively in the

context of quantum correlation and entanglement, and topological quantum computing

[47, 48, 49, 50, 51, 52, 53, 54].
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Due to its importance, the experimental veri�cation of Yang-Baxter Equation has been

pursued all along. Notably, an experimental veri�cation was carried out by Tennant et al

in 1995 [55, 56]. Tennant et al measured the spectrum of Heisenberg spin-half chain, and

the experimental result appeared to agree with the calculation based on the Yang-Baxter

Equation. Recently, the density pro�le of 1-dimensional wires was measured and it agreed

well with the theoretical calculations based on Yang's solvable model [57].

Hu, Xue and Ge gave an explicit optical realization of the Yang-Baxter Equation

in 2008 [4]. By the use of the Temperley-Lieb algebra, they made a remarkable reduc-

tion that obtained a Yang-Baxter Equation with dimension 2, the minimum dimensional

Yang-Baxter Equation so far. Then, Zheng-Li-Song-Long experimentally implemented

the Hu-Xue-Ge scheme and demonstrated the validity of the Yang-Baxter Equation using

linear quantum optical components such as beamsplitters, half-wave plates, quarter wave

plates, and etc [58]. In our experiment, we experimentally implemented and demonstrated

the validity of the Yang-Baxter Equation using Nuclear Magnetic Resonance. The equal-

ity of the two sides of the Yang-Baxter Equation is directly veri�ed.

SECTION: 1.3

Organization Of The Dissertation

This thesis is organized as follows: The Chapter (2) is intended for review on NMR

and QIP fundamentals. In Chapter (3), we introduce the optimal control framework and

benchmark an optimal control algorithm known as GRAPE which updates all control

variables in a concurrent manner. We specify the algorithmic scheme by analyzing the

most important components; di�erent procedures for computing the gradient and the up-

date step are presented. In the following Chapters, (4) and (5), we analyze the Quantum

State Tomography (QST) in two and three qubits systems consisting of strongly coupled

nuclear spins, known in the NMR literature as “AB” and “ABX” systems, respectively

and show that the reconstruction of the density matrix for “AB” and “ABX” systems
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can be improved. We also present the results for implementation of the full protocol for

quantum teleportation. In Chapter (6), we present the NMR implementation of the two-

dimensional Yang-Baxter Equation and demonstrate its validity. The equality between

the two sides of the Yang-Baxter equation in two-dimension has demonstrated directly.

In Chapter (7), �nal conclusions are presented.



2
Review on NMR and QIP

Fundamentals

Nuclear Magnetic Resonance (NMR) is a spectroscopic technique which is conventionally

used to gain information about static and dynamic properties of magnetically active nu-

clei. NMR was discovered in 1945 by E. M. Purcell et al., and F. Bloch et al., [6]. They

discovered almost simultaneously that the nuclear spins of molecules which are placed in a

magnetic �eld, can be controlled by electromagnetic excitation at a given frequency, there-

fore leading to nuclear magnetic resonance (NMR). Since then, NMR has been the subject

of intensive research and development. The technology is now su�ciently advanced to

allow accurate control of the state of nuclear spins. In the year of 1997 Cory et al. [59]

and Gershenfeld et al. [60], independently, proposed NMR as a possible experimental

technique to implement a quantum information processing (QIP). NMR is an excellent

tool for testing principles of quantum information science and developing techniques to

control quantum systems [6]. The success of NMR as a test-bed of experimental QIP

may be attributed to the well established theory of NMR and availability of extremely

sophisticated NMR instruments. In this section we will discuss the theory of NMR in

7
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the context of QIP. The concepts of NMR are discussed in greater depth in the books of

Oliveira [6], Slichter [61] and Ernst [18], etc.

SECTION: 2.1

Spin

Matter is made of atoms. Atoms are made up of electrons and nuclei. Each atomic

nucleus (protons and neutrons composing the atomic nucleus) possesses a property called

spin, which is a fundamental and important property along with mass, electric charge and

magnetic moment. Spin is so called because it has very similar behaviour to classically

spinning systems with properties such as angular momentum and a frequency.

The atomic nucleus has a positive charge. In some nuclei, this positive charge rotates

about the nuclear axis. This spinning charge generates a small magnetic �eld and there-

fore the nucleus possesses a magnetic moment along the axis of rotation. The magnetic

moment is represented by µ. The spinning atomic nucleus also has angular momentum

and the relationship between these quantities is described by:

µ = γJ , (2.1)

where γ is the gyromagnetic ratio and it is a fundamental nuclear constant which has a

di�erent value for every nucleus. The angular momentum is described in terms of the

nuclear spin operator, I as:

J = }I, (2.2)

where } is Planck's constant divided by 2π. The spin value (represented by I) depends

on the number of protons and neutrons or the atomic and mass numbers. Spin numbers

have values of 0, 1/2, 3/2, and so forth. If the number of both, protons and neutrons, is

even then there is no overall spin and I = 0. If the number of neutrons plus the number
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of protons is odd, then the nucleus has a half-integer spin (i.e. I = 1/2, 3/2, 5/2). If the

number of both, protons and neutrons, is odd, then the nucleus has an integer spin (i.e.

I = 1, 2, 3).

The quantum characteristics of the nuclear spin operator are given by the eigenvalues

and eigenvectors of its square modulus (denoted by I2) and its z-component (denoted by

Iz) [6]:

I2 |I,m〉 = I(I + 1) |I,m〉, (2.3)

Iz |I,m〉 = m |I,m〉, (2.4)

where I2 = I2
x + I2

y + I2
z . The state vectors denoted by |I,m〉 correspond to the common

eigenvectors of I2 and Iz, being speci�ed by the quantum numbers I and m, with m =

−I,−I + 1, ..., I − 1, I. The action of the components, Ix and Iy on the basis |I,m〉 can

be evaluated using the raising and lowering operators, which are de�ned from as:

I± = Ix ± iIy, (2.5)

such that:

Ix =
1

2
(I+ + I−), Iy =

−i
2

(I+ − I−). (2.6)

The actions of such operators on the |I,m〉 vectors are given by [6]:

I+ |I,m〉 =
√
I(I + 1)−m(m+ 1) |I,m+ 1〉,

I− |I,m〉 =
√
I(I + 1)−m(m− 1) |I,m− 1〉. (2.7)

In a macroscopic sample and in the absence of an external magnetic �eld, normally

the nuclear magnetic moments are randomly oriented and the vector sum of all nuclear

magnetic moments is zero. So, the net sample magnetization is zero. When placed in

an external magnetic �eld, the nuclear magnetic moment can either be aligned with the

external magnetic �eld or anti-aligned with the external magnetic �eld but the majority is
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aligned with the external magnetic �eld. Therefore, the net magnetization will be aligned

with the external magnetic �eld. As it is shown in Figs. (2.1) and (2.2).

(a) (b)

Fig. 2.1: The direction of nuclear magnetic moment (a) in the absence of an external magnetic
�eld (b) in the presence of an external magnetic �eld.

Fig. 2.2: In the presence of an external magnetic �eld, on average, the net magnetization is along
the z direction.

Each nuclear magnetic moment in a sample precesses around the external magnetic

�eld with a frequency ω0 which is called Larmor frequency. The Larmor frequency is given

by:

ω0 = γB0, (2.8)
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where the Larmor frequency is proportional to the gyromagnetic ratio.

SECTION: 2.2

NMR Spin Systems

The Hamiltonian of NMR spin system is comprised by the system Hamiltonian and

the control Hamiltonian, H = HS+HC . The system Hamiltonian, HS, describes the inter-

actions among the spins and the interaction between the spins and an external magnetic

�eld. The control Hamiltonian, HC , describes the interaction between the spins and an

oscillating radio frequency �eld. The most common nuclei observed in NMR spectroscopy

have spin - 1/2 because they have two discrete energy levels. Some example of spin 1/2

nuclei are 1H, 13C, 15N , 19F , and 31P . Spin-0 nuclei are not magnetic and hence they are

not detectable with NMR. Higher order spins (e.g. spin 3/2 or spin 7/2) are also used

but they are more complex than spin 1/2 nuclei. Here, we will not consider high order

spins in this work.

The time evolution of a spin-1/2 particle subject to a static magnetic �eld ~B0 along

the ẑ-axis is governed by the Hamiltonian:

H0 = −µ.B = −~γB0Iz = −~ω0Iz =

−~ω0

2
0

0 ~ω0

2

 , (2.9)

where Ix, Iy, and Iz (x, y and z components of the nuclear spin angular momentum

operators) relate to the well-known Pauli matrices as:

Ix =
1

2
σx, Iy =

1

2
σy, Iz =

1

2
σz, (2.10)

where, in matrix symbolism,
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σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 . (2.11)

The eigenvalues of Hamiltonian are the energies associated with the di�erent possible

states of the spin which are proportional to the eigenvalues of the operator Iz, given by:

Em = −m}ω0. (2.12)

Therefore, for a nucleus with spin I, there are 2I + 1 energy levels spaced by the

amount }ω0. Hence, Eqs. (2.9) and (2.12) show that the spin-1/2 has two-discrete energy

eigenstates - |0〉 or | ↑〉 (the spin is aligned with the static magnetic �eld, i.e. �spin-up"

andm = 1
2
) and |1〉 or | ↓〉 (the spin is anti-aligned with the static magnetic �eld, i.e.�spin-

down" and m = −1
2
). Furthermore, the |0〉 state, whose energy is given by 〈0|H|0〉, has

~ω0 less energy than the |1〉 state (the energy of the |1〉 state is given by 〈1|H|1〉), as illus-

trated in the energy diagram of Fig. (2.3). The energy splitting is known as the Zeeman

splitting. The energy separation between the two spin states (�spin-up" and �spin-down")

is proportional to the strength of the external magnetic �eld, and increases as the mag-

netic �eld strength is increased (see Fig. (2.4)). In the absence of external magnetic �eld,

these two spin states (�spin-up" and �spin-down") have the same energy.

Fig. 2.3: Energy diagram or Zeeman splitting for a spin-1/2 particle subject to a static magnetic
�eld.
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Fig. 2.4: The energy di�erence between the two spin states depends on the strength of the
external magnetic �eld.

In the case of liquid-state NMR, typical values of the magnetic �eld B0 are in the

range of 5 − 20 Tesla, resulting in precession frequencies ω0 of a few hundred MHz, in

the radio-frequency range.

Di�erent species of nuclei (or heteronuclear spins) can be spectrally distinguished be-

cause they generally have a di�erent gyeromagnetic ratio γ, and hence a di�erent Larmor

frequency. Table (2.1) summarizes various Larmor frequencies at a magnetic �eld strength

of 11.74 Tesla.

Nucleus 1H 13C 15N 19F 31P

ω0/2π 500 126 −51 470 202

Tab. 2.1: Larmor frequencies [MHz] of several species of nuclei, at 11.74 Tesla.

Spins of the same nuclear species (homonuclear spins) which are part of the same

molecule can also have distinct frequencies, by amounts known as their chemical shifts,

σi (dependent on the chemical environment).
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The electron cloud at the nuclei produces a local magnetic �eld that is in turn a�ected

by the magnetic �eld B0. This local magnetic �eld causes the change of the resonance

frequency in the NMR spectroscopy, referred to as chemical shift. Therefore, the nuclear

spin Hamiltonian for a molecule consisting of N uncoupled nuclei can be described by:

H0 = −
N∑
i=0

~(1− σi)γB0I
i
z = −

N∑
i=0

~ωi0I iz, (2.13)

where the i superscripts label the nuclei and σ is known as the chemical shift which, in

some cases, can be a tensor quantity.

SUBSECTION: 2.2.1

Interacting Spins

Basically there are two types of interaction between nuclear spins in molecules: mag-

netic dipole-dipole interaction, and J coupling which are brie�y described in the following.

• Magnetic Dipole-Dipole Interaction:

Magnetic dipole-dipole interaction looks like the interaction between two bar magnets

close to each other. It takes place through space and depends on the internuclear vector

~rij connecting two nuclei i and j, which is described by the Hamiltonian:

HD =
∑
i<j

µ0γiγj~
4π|~rij|3

[~I i.~Ij − 3

|~rij|2
(~I i.~rij)(~I

j.~rij)]. (2.14)

In this equation, µ0 is the magnetic permeability of free space and ~I i is the magnetic

moment vector of spin i. It is inversely proportional to the cube of the spatial separation

between the two spins, and the relative positioning of the magnetic moment vector of

the two spins. Both intramolecular dipolar couplings between spins in the same molecule

and intermolecular dipolar couplings between spins in di�erent molecules exist. However,
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for molecules in liquid solution, both intramolecular dipolar couplings and intermolecular

dipolar couplings are averaged away due to rapid tumbling [6]. This is the case for the

samples used in this thesis.

• J Coupling:

This interaction is also known as scalar coupling and is mediated through shared electrons

in the chemical bond between the nuclei. The nuclear spin interacts with its neighboring

electrons. These in turn interact with other neighboring electrons, which can then in�u-

ence other nuclear spins. In order to obtain strong J-coupling, the nuclear-electron and

electron-electron interaction need to be strong. The strength of the J-coupling is further-

more dependent on additional parameters such as the gyromagnetic ratio of the nuclei,

and the geometry of the molecule. However, it is independent of the applied magnetic

�eld B0 and its direction. This interaction is the most important for the application of

NMR to quantum information processing.

The Hamiltonian for scalar J-coupling of a molecule containing N spin-1/2 coupled

nuclei is given by:

HJ = ~
N∑
i<j

πJijσ
i.σj/2 = ~

N∑
i<j

πJij(σ
i
xσ

j
x + σiyσ

j
y + σizσ

j
z)/2, (2.15)

where Jij is the coupling strength between the spins i and j. Here, the system is said to

be strongly coupled. When the frequency separation between the spins is large compared

to their coupling strength, i.e. when 2π|Jij| � |ωi − ωj|, we can simplify Eq. (2.15) to

[6]:

HJ = ~
N∑
i<j

πJijσ
i
zσ

j
z/2. (2.16)

When the chemical shift between the nuclei are su�ciently large, this condition is easily

satis�ed for heteronuclear spins and for small homonuclear molecules. When the condition

|ωi − ωj| � 2πJ applies, the spectra are also said to be �rst order and the system is said

to be weakly coupled.
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In summary, the simplest form of a system Hamiltonian of N nuclear spins in an isotropic

solution and with �rst order spectra is given by:

H = −
N∑
i=0

~ωi0σiz/2 + ~
N∑
i<j

πJijσ
i
zσ

j
z/2. (2.17)

The interpretation of this equation is that in addition to the static magnetic �eld,

each spin �sees" another magnetic �eld along ±ẑ produced by neighbouring spins. The

resonance frequency ωi of each spin i is shifted by −Jij/2 when spin j is in the |0〉 state,

and by +Jij/2 when spin j is in the |1〉 state. A molecule with two spins that are coupled

with strength J would then have two resonance frequencies for each spin (the frequency

spectrum of spin i consists of two lines separated by Jij and centered around ωi0). We can

associate each with the state of the other spins, either |0〉 or |1〉.

The magnitude of the couplings can be measured directly in the spectrum. The cou-

pling strength J can be a few hundred Hertz for coupling through a single bond, and a

few Hertz or tenths of Hertz for couplings through three or four bonds. The coupling need

not be positive and the relative signs of the couplings can be determined by sequences of

pulses as well known as soft-COSY, for example [18].

SUBSECTION: 2.2.2

The Control Hamiltonian

Radio-Frequency Fields

The physical mechanism used to control the NMR system is described in this section.

The state of a spin-1/2 particle in a static magnetic �eld ~B0 along ẑ can be manipulated

by applying an electromagnetic �eld ~B1(t) which rotates in the x̂− ŷ plane at frequency

ωrf , at or near the spin precession frequency ω0. The single-spin Hamiltonian owing to
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the radio frequency (RF) �eld is given by, similar to Eq. (2.9) for the static �eld B0,

Hrf = −~γB1[cos(ωrf t+ φ)Ix − sin(ωrf t+ φ)Iy], (2.18)

where ω1 = γB1 and φ is the phase of the RF �eld, and B1 its amplitude. Typical

values for ω1 are up to ≈ 50 kHz in liquid state NMR. For N spins, the radio frequency

Hamiltonian takes the following form:

Hrf = −
N∑
i=1

~γB1[cos(ωrf t+ φ)I ix − sin(ωrf t+ φ)I iy]. (2.19)

In practice, the RF �eld oscillates along a �xed axis in the laboratory, perpendicular

to the static magnetic �eld. This oscillating �eld can be decomposed into two counter-

rotating �elds, one of which rotates at frequency ωrf in the same direction as the spin

and so can be set on or near resonance with the spin. The other component rotates in

the opposite direction and results in a tiny shift of the Larmor frequency, also known as

the Bloch-Siegert shift. We note also that the amplitude B1 and phase φ of the RF �eld

can be varied, as opposed to other parameters such as the Larmor frequency and coupling

constants. It has a central role in controlling quantum systems via NMR with techniques

such as GRAPE, which will be discussed in Chapter (3).

The Rotating Frame

We can now investigate the evolution of a spin due to the RF �eld at or near the

Larmor frequency ω0. The dynamics however are very complicated when described in the

laboratory reference frame. A description at a reference frequency that rotates about the

ẑ axis at frequency ωrf simpli�es this picture. This is the rotating reference frame.

We can describe the motion of a single nuclear spin in a coordinate system rotating
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about ẑ at ωrf as:

|ψ〉rot = exp(iωrf tIz)|ψ〉, (2.20)

where |ψ〉 is the generic state of a single nuclear spin which is a linear combination of the

two eigenkets (see section (2)) in the laboratory reference frame. The superscript in the

left hand side of the Eq. (2.20) refers to |ψ〉 in the rotating reference frame.

Substitution of |ψ〉 in the Schrödinger equation i~ (d|ψ〉/dt) = H|ψ〉 with,

H = −~ω0Iz − ~ω1[cos(ωrf t+ φ)Ix − sin(ωrf t+ φ)Iy], (2.21)

gives i~ (d|ψ〉rot/dt) = Hrot|ψ〉rot, where,

Hrot = −~(ω0 − ωrf )Iz − ~ω1[cosφIx − sinφIy]. (2.22)

(a) (b)

Fig. 2.5: Nutation of a spin subject to a transverse RF �eld (a) observed in the rotating frame
and (b) observed in the laboratory frame.

Naturally, the RF �eld lies along a �xed axis in the frame rotating at ωrf . Further-

more, if ωrf = ω0, the �rst term in Eq. (2.22) vanishes. In this case, an observer in the

rotating frame will see the spin simply precess about ~B1 (Fig. (2.5(a))), a motion called

nutation. The choice of φ controls the nutation axis. An observer in the laboratory frame
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sees the spin spiral down over the surface of the Bloch sphere (Fig. (2.5(b))).

If the RF �eld is o�-resonance with respect to the spin frequency by ∆ω = ω0 − ωrf ,

the spin precesses in the rotating frame about an axis tilted away from the ẑ axis by an

angle α = arctan(ω1/∆ω), and with frequency ω
′
1 =

√
(∆ω)2 + ω2

1. The RF �eld has vir-

tually no e�ect on spins that are far o� resonance, since α is very small when |∆ω| � ω1.

If all spins have well-separated Larmor frequencies, we can thus in principle selectively

rotate any one qubit without rotating the other spins.

In the case of systems with multiple spins where a separate rotating frame are used

for each spin and in the presence of multiple RF �elds indexed r, the RF Hamiltonian in

this multiply rotating frame is given by:

Hrot =
∑
i,r

−~ωr1{cos[(ωrrf − ωi0)t+ φr]I ix − sin[(ωrrf − ωi0)t+ φr]I iy}, (2.23)

where the amplitudes ωr1 and phases φr are control parameters.

SUBSECTION: 2.2.3

Relaxation and Decoherence

One important feature of the nuclear spins is its relative isolation from environment,

so that the coherence time of the system is high compared with the time scales of the

dynamics of the system. Therefore, under good approximation and speci�c conditions,

the dynamics of the NMR system can be considered as an isolated system.

The coupling of the system with the environment is described by an additional Hamil-

tonian Henv, weakly coupled to the system and control Hamiltonian. This coupling leads

to decoherence, or the loss of quantum information. In NMR, decoherence is parameter-

ized by two parameters: T1, connected to the system energy loss to the environment and
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T2 connected to the loss of coherence of the system.

1. Longitudinal Relaxation (or T1 relaxation)

Thermal equilibrium is a state in which the population of α− and β−states (for

a spin-1/2 system α and β refer to m = 1
2
and m = −1

2
, respectively) corresponds

to the Boltzmann distribution. Furthermore, the spins are uncorrelated in phase

such that no transverse magnetization exists. However, when RF pulses are ap-

plied the state of the spins is pertubated away from equilibrium distributions and

longitudinal relaxation describes the return of the z-component magnetization to

its equilibrium value, or, equivalently, return of the populations of the energy

levels of the spin system (diagonal elements of the density operator) to the equi-

librium Boltzmann distribution. The longitudinal or spin-lattice relaxation time

constant is called T1. Typical values for T1 range from milliseconds to several

seconds although T1 may be as long as days or even months in exceptional cases.

2. Transverse Relaxation (or T2 relaxation)

Transverse relaxation describes the decay of transverse (x, y) magnetization to

zero, or equivalently, the decay of transverse quantum coherences (o�-diagonal el-

ements of the density matrix). Analogously, the transverse or spin-spin relaxation

time constant is called T2. Typical values for T2 range from milliseconds to several

seconds.

A �nal requirement for implementing QIP using liquid-state NMR is to have qubits

which maintain quantum coherence. We thus need a system where the time to implement

quantum gates is signi�cantly shorter than the decoherence time of the system. The low

energies of nuclear spins naturally decouples them from other degrees of freedom, hence

isolating them well. The only decoherence present in NMR arises from interaction with

the other spins or by energy exchange with the surroundings. In liquid state NMR, these

processes are associated with loss of coherence on the order 100's of ms to seconds, while
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the longest quantum gates can be implemented on the order of 10's of ms. These compet-

ing timescales allow us to implement a lot of gates before decoherence a�ects the system,

signi�cantly.

SECTION: 2.3

Quantum Bits

A quantum bit, or qubit, is simply a two level quantum system, labeled as |0〉 and

|1〉, e�ectively identifying them with the two logical states 0 and 1. This choice is usually

called the computational basis. In NMR, the qubits are spin-1/2 nuclei in a molecule.

Spin-1/2 nucleus has exactly two orthogonal states. For the case of spin-1/2 particle, the

logical state 0 can be represented by the spin up state (|0〉 ≡ | ↑〉), whereas the logical

state 1 can be represented by the spin down state (|1〉 ≡ | ↓〉). Obviously, systems with

N spins-1/2 are N -qubit systems.

Unlike to the case of classical bits in which only two states, 0 and 1, can exist, the

quantum bit can be in any superposition of the computational basis of the form:

|ψ〉 = α|0〉+ β|1〉, (2.24)

where α and β are arbitrary complex numbers related to each other by the constraint

|α|2 + |β|2 = 1 in order for |ψ〉 to be correctly normalized. |α|2 and |β|2 indicate proba-

bilities of measuring spin up and spin down, respectively. The state |ψ〉 can in this case

be written as a column vector consisting of two entries, α and β.

One particularly important pair of superposition states is |+〉 and |−〉, de�ned by:

|±〉 =
|0〉 ± |1〉√

2
, (2.25)
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which play a key role in many quantum algorithms.

We can multiply an arbitrary |ψ〉 by any phase factor without loss of generality because

this overall phase is unmeasurable, so we can write |ψ〉 as:

|ψ〉 = cos(θ/2)|0〉+ e−iφ sin(θ/2)|1〉, (2.26)

where α = cos(θ/2), β = e−iφ sin(θ/2) and the variables θ and φ are real numbers.

Visually, this state can be represented on the Bloch sphere as shown in Fig. (2.6).

This picture will help us understand the dynamics of nuclear spins in the context of NMR

quantum computing. The Bloch sphere allows us to visualize the state of a single qubit

in a three-dimensional space. A qubit can exist on any point on the surface of the Bloch

sphere. This sketch is very useful for visualizing single qubit quantum states but for mul-

tiple qubits, this picture may not even hold in general.

The state of a qubit is the unit radius vector extending outwards the origin of an x, y, z

three-dimensional space. The direction of the vector is de�ned by the two angles, θ and

φ. The angle θ is the rotation of the vector from the z axis and the angle φ is the rotation

from the x axis on the xy plane. The Bloch sphere is the three-dimensional shape formed

by varying θ and φ over all possible values (0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π).
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(a) (b)

Fig. 2.6: (a) Bloch sphere representation of an arbitrary quantum state |ψ〉 for a single qubit. (b)
Representation of several important quantum states, ignoring the normalization factor.

Later, we will discuss single qubit operators such as the σx, σy, and σz rotation gates.

Fundamentally, all qubit operators cause the state vector on the Bloch sphere to rotate

to another point on the sphere.

A system of a single qubit is hardly interesting, but even a two qubit system or systems

with more than one qubit can show interesting computational behaviour. A system of two

qubits, for example, has four computational basis states, and can be found in a arbitrary

superposition of all four,

|ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉, (2.27)

where |00〉 is the short hand notation for |0〉 ⊗ |0〉, ⊗ is the tensor product or Kro-

necker product symbol, and the coe�cients α, β, γ, δ satisfy the normalization condition

|α|2 + |β|2 + |γ|2 + |δ|2 = 1. Two qubits can exist in four states at the same time, and |ψ〉

is given by a column vector of four entries.
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For N qubits, a general quantum state |ψ〉 can be described as:

|ψ〉 =
2N−1∑
i=0

ci|i〉, (2.28)

where i is the decimal (instead of binary) representation, and the ci satisfy the normal-

ization condition
∑2N−1

i=0 |ci|2 = 1. Describing the pure state of N qubits thus requires 2N

complex numbers. This is in contrast to the description of N classical bits which only

requires a number of complex numbers linear in N .

Entanglement

The N qubit state |ψ〉 can sometimes be written as a Kronecker product of several

individual qubit states:

|ψ〉 = ⊗Ni=1|ψi〉, (2.29)

where |ψi〉, the state of the i-th qubit, is of the form of Eq. (2.26) and ⊗Ni=1 represents

the N Kronecker products of the states |ψi〉. If this equation holds, then each qubit can

be represented on the Block sphere, similar to Fig. (2.6). Thus we only require a number

of complex numbers linear in N to describe the N pure qubits, similar to N classical

bits. Such a quantum state is therefore also known as a separable state. For example,

the two qubit states can be divided into two classes of states, said separable states, which

can be decomposed into a tensor product of individual states of each system, as the state

|ψ〉 = (|00〉+ |01〉+ |10〉+ |11〉)/2 = [(|0〉+ |1〉)/
√

2]⊗ [(|0〉+ |1〉)/
√

2].

If |ψ〉 cannot be written into the product form of Eq. (2.29), then the two qubits

are said to be entangled. For example, states |φ±〉 = (|00〉 ± |11〉)/
√

2 and |ψ±〉 =

(|01〉 ± |10〉)/
√

2 are maximally entangled states, which form the important two-qubit

Bell states or EPR states. The two qubits are correlated because the measurement of

one qubit directly a�ects the state of the other qubit. Unentangled qubits may each be
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represented on a Bloch sphere. Entanglement however cannot easily be visually repre-

sented. Instead, the state is mathematically described in Hilbert space, a 2N -dimensional

complex vector space.

SUBSECTION: 2.3.1

Mixed States and The Density Operator

The above description of the possible states of a qubit requires preparation of perfect

pure states. However, this situation is only an idealization due to experimental limitations.

One way to deal with this situation is introducing non-pure states, or statistical mixtures

(or mixed states). The state of a quantum system in a statistical mixture is conveniently

described by its density operator:

ρ =
∑
i

pi|ψi〉〈ψi|, (2.30)

where 〈ψ| represents the Hermitian conjugate of |ψ〉, and |ψ〉〈ψ| denotes the outer prod-

uct (a linear operator). Obviously, the probabilities pi must satisfy pi ≥ 0 and
∑

i pi = 1.

The density operator of a pure state |ψ〉 is then just ρ = |ψ〉〈ψ|.

The density operator also has two important characteristics:

Tr(ρ) = 1, (2.31)

because Tr(ρ) =
∑

i piTr(|ψi〉〈ψi|) =
∑

i pi = 1. This is also known as the trace condition.

Furthermore, the density operator is a positive operator because 〈φ|ρ|φ〉 ≥ 0 where |φ〉

is any other quantum state. Therefore, the density operator must have some spectral

decomposition into a set of orthogonal states:

ρ =
∑
k

λk|k〉〈k|, (2.32)
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where λk are the real-valued eigenvalues of ρ and |k〉 are orthogonal (the |ψ〉 above need

not be orthogonal). Since a pure state has only one eigenvalue, necessarily equal to unity,

and a mixed state has several eigenvalues, we can derive a very useful condition which

allows us to distinguish between mixed and pure states:

Tr(ρ2) = 1→ When ρ is pure,

Tr(ρ2) < 1→ When ρ is mixed.

The density matrix formalism can also be mapped to the Bloch sphere picture by

writing a density operator as:

ρ =
I + ~r.~σ

2
, (2.33)

where ~σ = σxx̂+σyŷ+σz ẑ and σx, σy, σz are Pauli matrices and ~r is a real three-dimensional

vector with ‖~r‖ ≤ 1. Pure states have ‖~r‖ = 1 and mixed states have ‖~r‖ < 1.

A mixed state is a manifestation of the lack of knowledge about the quantum system

or ensemble of quantum systems.

SECTION: 2.4

Quantum Gates

Quantum logic gates are unitary transformations which implement some desired logic

operation on qubits. Thus, with respect to the control of quantum systems, the goal is the

implementation of a unitary transformation on the qubits, U , which can be decomposed

into a sequence of unitary transformations, U = UkUk−1...U2U1. It has long been known

that NMR can be used to implement any desired unitary evolution, including quantum

logic gates. In this section we describe a set of unitary gates with which we can construct

any arbitrary quantum circuit.
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A very useful result from classical information theory is that any operation can be

decomposed into a set of gates for example AND, OR and NOT gates, which is known

as a universal set of gates. The NAND and NOR gates are universal, and also form a

universal set.

Similar to the classical case, there also exists a set of universal gates for quantum com-

putation. Any arbitrary unitary operation can be approximated to arbitrary extent from

a �nite universal set of quantum gates. Arbitrary single qubit operations and Controlled-

NOT (CNOT) gate form a universal set of quantum gates.

SUBSECTION: 2.4.1

Single Qubit Gates

Single qubit gates are de�ned by 2 × 2 matrices and represent the simplest quantum

logical operations. At �rst, we introduce a convenient matrix representation to describe

quantum states and unitary transformations. The quantum state |ψ〉 = α|0〉 + β|1〉 is

written in matrix notation as:

|ψ〉 =

α
β

 , (2.34)

where |ψ〉 is a column vector of two entries, α and β which are the amplitudes of the |0〉

and |1〉 states respectively and |α|2 + |β|2 = 1. The matrix representation of 〈ψ| is then

just a row vector with the same entries, but taking their complex conjugates:

〈ψ| = [α∗ β∗]. (2.35)

In general, any single qubit rotation takes the form:

U = eiα Rn̂(θ), (2.36)

where Rn̂(θ) corresponds to a rotation of the state vector |ψ〉 on the Bloch sphere in Fig.
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(2.6) around the axis n = (nx, ny, nz) over an angle θ. Mathematically, we can de�ne

Rn̂(θ) as:

Rn̂(θ) = exp(−iθn̂.~σ
2

) = cos(
θ

2
) I − i sin(

θ

2
) [nx σx + ny σy + nz σz], (2.37)

where ~σ = (σx, σy, σz), with σx, σy, σz denoting the Pauli matrices and I the identity

matrix:

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 I =

1 0

0 1

 . (2.38)

The Pauli matrices satisfy the following useful relationships:

σx σy = iσz, σy σz = iσx, σz σx = iσy, σ2
x = σ2

y = σ2
z = 1. (2.39)

In the Bloch sphere, there are three axes (x̂, ŷ and ẑ) and thus three important single

qubit rotations (the x̂, ŷ and ẑ -rotations). These are given by:

Rx̂(θ) = exp(
−iθσx

2
) = cos(

θ

2
) I − i sin(

θ

2
) σx =

 cos( θ
2
) −i sin( θ

2
)

−i sin( θ
2
) cos( θ

2
)

 , (2.40)

Rŷ(θ) = exp(
−iθσy

2
) = cos(

θ

2
) I − i sin(

θ

2
) σy =

cos( θ
2
) − sin( θ

2
)

sin( θ
2
) cos( θ

2
)

 , (2.41)

Rẑ(θ) = exp(
−iθσz

2
) = cos(

θ

2
) I − i sin(

θ

2
) σz =

e−iθ/2 0

0 eiθ/2

 . (2.42)

We can de�ne the general single qubit operator as the product of the rotation opera-

tions by �rst rotating over x̂, then ŷ, and lastly ẑ. To achieve this, we can write any U

with the global phase term as:

U = e−iα Rẑ(β) Rŷ(γ) Rx̂(δ). (2.43)
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We actually do not require the ability to perform explicit ẑ-rotations because we can

generate them from x̂ and ŷ rotations:

Rẑ(β) = Rx̂(90◦) Rŷ(β) Rx̂(−90◦) = Rŷ(−90◦) Rx̂(β) Rŷ(90◦), (2.44)

where time goes from right to left (i.e. Rx̂(−90◦) or Rŷ(90◦) is applied �rst). Thus, ar-

bitrary x̂ and ŷ rotations are su�cient to implement any arbitrary single qubit rotation.

Now we can review some of the common single qubit operators.

The NOT or X Gate:

This is sometimes called the Pauli X gate (or Pauli σx gate and for convenience, we show

it by X). It maps |0〉 onto |1〉 and vice-versa, similar to classical inversion. The unitary

matrix which e�ects this transformation for arbitrary input states is:

UNOT = X =

0 1

1 0

 . (2.45)

The Y Gate:

The Pauli Y gate (or Pauli σy gate and for convenience, we show it by Y ) performs the

following mapping on the logical states:

Y |0〉 = i|1〉, Y |1〉 = −i|0〉. (2.46)

So, the unitary matrix takes this form:

Y =

0 −i

i 0

 . (2.47)

The Z Gate:

The Pauli Z gate (or Pauli σz gate and for convenience, we show it by Z) performs these
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mapping on the logical gates:

Z|0〉 = |0〉, Z|1〉 = −|1〉. (2.48)

This gate just changes the relative phase factor by −1 and its matrix is:

Z =

1 0

0 −1

 . (2.49)

The Phase or S Gate:

The Phase (or S) gate performs the following mapping on the logical states:

S|0〉 = |0〉, S|1〉 = i|1〉. (2.50)

The matrix is de�ned as:

S =

1 0

0 i

 . (2.51)

The π/8 or T Gate:

The T gate is de�ned by the matrix:

T =

1 0

0 eiπ/4

 . (2.52)

The Hadamard Gate:

A important single qubit gate is the HADAMARD gate, de�ned as:

H =
1√
2

1 1

1 −1

 . (2.53)

The Hadamard gate is extremely useful because it maps the basis states |0〉 and |1〉
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into a superposition of the two states with equal weight. That is:

|0〉 ⇒ (|0〉+ |1〉)/
√

2, |1〉 ⇒ (|0〉 − |1〉)/
√

2. (2.54)

We can describe these single qubit rotations and single qubit gates via the quantum

circuit language, �rst introduced by Deutsch and shown in Fig. (2.7). The horizontal

wires denote the individual qubits, and time goes from left to right.

Fig. 2.7: Quantum circuit representation of (a) the X gate, (b) the Y gate, (c) the Z gate, (d)
the Hadamard gate, (e) the S gate and, (f) the T gate.

As we have shown, single qubit rotations can be generated by Pauli matrices. But

when we have n multiple qubits and wish to apply only a single qubit operation around

n̂ on qubit i, we denote this rotation by Ri
n̂(θ). This rotation can be generated by a

concatenation of Pauli matrices σik where k is either x, y or z and σik is the short hand

notation for n-fold Kronecker product of I matrices (Identity matrix) expect for the i-th

location, where we have σk. For example, when we have three qubits and wish to apply

a single qubit x̂ rotation on qubit three, then:

R3
x̂(θ) = exp(−iθ(I ⊗ I ⊗ σx)

2
) = exp(−iθ(IIX)

2
), (2.55)

where IIX is just the short-hand notation for I⊗I⊗σx and I is the 2×2 identity matrix.
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Implementation of Single-Qubit Gates

Rotations on single qubits can be implemented directly in the rotating frame using

RF pulses. From the control Hamiltonian, Eq. (2.18), it follows that when an RF �eld of

amplitude ω1 is applied to a single-spin system at ωrf = ω0, the spin evolves under the

transformation:

U = exp[iω1 (cosφ Ix − sinφ Iy) tpw], (2.56)

where tpw is the pulse width (or pulse length), the time duration of the RF pulse. U

describes a rotation in the Bloch sphere over an angle θ proportional to the product of

tpw and ω1 = γB1, and about an axis in the x̂− ŷ plane determined by the phase φ.

Thus a pulse with phase φ = π and ω1tpw = π/2 will perform Rx(90), which is a 90◦

rotation about x̂, denoted for short as X. A similar pulse but twice as long realizes a

Rx(180) rotation, written for short as X2. By changing the phase of the RF pulse to

φ = π/2, Y and Y 2 pulses can similarly be implemented.

The Hadamard gate transforms the computational basis states into the uniform su-

perposition of states, and back (time goes from right to left):

H = Rx̂(180◦) Rŷ(90◦) = Rŷ(90◦) Rẑ(180◦). (2.57)

The pulse sequence for implementation of some single quantum gates are as following:

X Gate ⇒ Rx̂(180◦), (2.58)

Y Gate ⇒ Rŷ(180◦), (2.59)

Z Gate ⇒ Rx̂(−90◦)→ Rŷ(180◦)→ Rx̂(90◦), (2.60)

S Gate ⇒ Rx̂(−90◦)→ Rŷ(90◦)→ Rx̂(90◦), (2.61)

T Gate ⇒ Rx̂(−90◦)→ Rŷ(45◦)→ Rx̂(90◦). (2.62)
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SUBSECTION: 2.4.2

Two-Qubit Gates

Two-qubit quantum gates have two inputs and can operate on one or two qubits. The

most important two-qubit gate is the CNOT (Controlled-NOT) gate. The CNOT gate is

an X gate operating on one qubit but controlled by the other qubit. The operations of

the CNOT gate with the �rst qubit as control on the logic basis states are:

CNOT |00〉 = |00〉, CNOT |01〉 = |01〉,

CNOT |10〉 = |11〉, CNOT |11〉 = |10〉. (2.63)

The circuit and the unitary matrix for the CNOT gate are then:

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (2.64)

This gate inverts the target qubit (represented in the second line of the above circuit)

if and only if the control qubit (the �rst qubit) is in state |1〉.

In NMR experiments, however, the key two-qubit gate is the Controlled-Z gate:
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which is easily converted to a Controlled-NOT gate:

with the application of a pair of Hadamard gates.

Controlled-Z can be easily decomposed as a product operator:

Controlled− Z = exp[−i(π/2)(−1

2
I + I1

z + I2
z − 2I1

z I
2
z )], (2.65)

where the 1
2
I term is just a global phase, and can be ignored as usual and I1

z is the z-

component of the �rst spin and I2
z is the z-component of the second spin. Terms I1

z and

I2
z are just single qubit rotations, and can be implemented with single-qubit gates. The

term 2I1
z I

2
z corresponds to evolution under the spin-spin coupling term, 2πJ I1

z I
2
z for a

time 1/2J .

There are several extensions of the CNOT gates, one important two-qubit gate is the

SWAP gate, which swaps two qubits, i.e. 00 7→ 00, 01 7→ 10, 10 7→ 01, and 11 7→ 11. This

gate can be entirely constructed out of three CNOT gates:

SWAP12 = CNOT12 CNOT21 CNOT12, (2.66)

where CNOTij is the Controlled-NOT gate with the qubit i as control and the qubit j as

target. Besides the CNOT , we can in fact implement any controlled U operation. The

quantum circuits representation for a few two-qubit gates are shown in Fig. (2.8).
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Fig. 2.8: quantum circuit representation of (a) a Controlled-NOT gate, (b) a Zero-Controlled-
NOT, (c) a SWAP gate, and (d) a Controlled-U gate. The • symbol denotes the control
qubit- the controlled operation is only executed if the qubit is in the |1〉 state. The
◦ symbol denotes the Zero-Controlled qubit, i.e. the operation is only executed if the
control qubit is in the state |0〉.

As we mentioned, if we have some sequence of individual unitary evolutions applied

one after another, the overall resulting unitary evolution can be calculated as:

U = Ui Ui−1 Ui−2 ... U2 U1. (2.67)

The �rst unitary gate that we should apply, U1, must be on the right hand side and the

last, Ui, on the left. The order is important since in general:

U1 U2 6= U2 U1. (2.68)

That is, in general, two unitary operators may not commute under multiplication.

Implementation of Two-Qubit Gates

A possible pulse sequences for the CNOT12, CNOT21 and SWAP gates respectively

are (time goes from right to left):

CNOT12 = R1
z(90◦) R2

z(−90◦) R2
x(90◦) UJ(1/2J) R2

y(90◦), (2.69)
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CNOT21 = R2
z(90◦) R1

z(−90◦) R1
x(90◦) UJ(1/2J) R1

y(90◦), (2.70)

SWAP = R2
y(90◦) R2

z(−270◦) R1
z(−270◦)UJ(1/2J) R2

y(90◦)

R1
y(−90◦) UJ(1/2J) R1

x(90◦) R2
x(−90◦) UJ(1/2J) R2

y(−90◦). (2.71)

Another important gate is Controlled−Phase gate. This gate can be obtained through

the following pulse sequence:

Controlled− Phase = R2
y(90◦) R2

x(180◦) UJ(
θ

2πJ
) R2

x(180◦) R1
z(90◦) R2

z(90◦) R2
y(90◦).

(2.72)

SUBSECTION: 2.4.3

Three-Qubit Gates

Three qubit gates have three inputs and three outputs, and are described by 8 × 8

square unitary matrices. Common examples of three qubit gates that we will cover in

more detail are To�oli and Fredkin gates. These are the same gates that we have used in

this thesis (see chapter (6)).

The state of the three qubit gates can be written as the linear superposition of its 8

computational basis states as:
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|ψ〉 = c0|000〉+ c1|001〉+ c2|010〉+ c3|011〉+ c4|100〉+

c5|101〉+ c6|110〉+ c7|111〉, (2.73)

where
∑7

i=0 |ci|2 = 1.

The Fredkin Gate:

The Fredkin gate has one control input and two target qubits. It is essentially the

Controlled-SWAP gate. When the control qubit is asserted, the target qubits are swapped.

The quantum circuit of a Fredkin gate is shown in Fig. (2.9) where the control is a and

target qubits are b and c.

Fig. 2.9: quantum circuit representation of a Fredkin gate with qubits a as control and qubits b
and c as targets.

The operations of the Fredkin gate on the logic basis states are:

|000〉 → |000〉, |100〉 → |100〉,

|001〉 → |001〉, |101〉 → |110〉,

|010〉 → |010〉, |110〉 → |101〉,

|011〉 → |011〉, |111〉 → |111〉. (2.74)
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Therefore, the unitary matrix of the Fredkin gate is given by:

Fredkin =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1



. (2.75)

The To�oli Gate:

The To�oli gate is also known as the Controlled-CNOT gate because it is literally a CNOT

gate with a secondary control input. The function is if both control inputs are asserted,

the target qubit is inverted. Fig. (2.10) shows a circuit diagram of the quantum To�oli

gate with qubits a and b as controls and qubit c as target.

Fig. 2.10: quantum circuit representation of a To�oli gate with qubits a and b as controls and
qubit c as target.
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The operations of the To�oli gate on the logic basis states are:

|000〉 → |000〉, |100〉 → |100〉,

|001〉 → |001〉, |101〉 → |101〉,

|010〉 → |010〉, |110〉 → |111〉,

|011〉 → |011〉, |111〉 → |110〉. (2.76)

Therefore, the unitary matrix of the To�oli gate is given by:

Toffoli =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



. (2.77)

Implementation of Three-Qubit Gates

A possible and minimum pulse sequences for the Fredkin and To�oli gates respectively

are shown in Figs. (2.11) and(2.12).
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Fig. 2.11: Minimum pulse sequences for the Fredkin with qubits a as control and qubits b and c
as targets. Time goes from left to right.

Fig. 2.12: Minimum pulse sequences for the To�oli with qubits a and b as controls and qubit c
as target. Time goes from left to right.

Now, in Figs. (2.13) and (2.14), we have shown some single and two qubit circuits

that they share the same unitary transformation in both sides or they are the same in the

left hand side and the right hand side.
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Fig. 2.13: Single qubit circuits which are simpli�ed.

Fig. 2.14: two qubit circuits which are simpli�ed.
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SECTION: 2.5

Magnetic Field Gradients

Now, we would like to discuss the magnetic �eld gradients before we start to talk

about the initial state of the nuclear spins and describe the preparation methods of the

pseudo-pure state. Magnetic �eld gradients create spatial inhomogeneity of the magnetic

�eld in the z direction along the sample tube, which has the e�ect of a non-unitary trans-

formation on the macrostate of the system. The application of �eld gradients is necessary

in the context of quantum computing for the preparation of pseudo-pure states and the

reproduction of non-unitary evolution of a system.

Fig. 2.15: Scheme of an NMR sample and �eld lines in a region with gradient.

In a region where the �eld generated by the gradient is B(z) (Fig. (2.15)), the evolution

is given by:

H = H0 + ~B(z)
∑
i

γiI
i
z, (2.78)

where the subscript i refers to each of the spin systems. By assuming that the Hamilto-

nian of the system commutes with Iz. Thus, we consider only the e�ect of the interaction

with the magnetic �eld gradient, since the evolution under the system Hamiltonian (with

static �eld) adds only a multiplicative factor to the density matrix.

As the gradient term does not depend on time, the density matrix evolves according
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to:

ρ(t) = e−iB(z)t
∑
i γiI

i
z ρ(0) eiB(z)t

∑
i γiI

i
z . (2.79)

Using the basis of eigenstates of Iz, |m1,m2, · · ·mN〉 which for simplicity we denote

by |M〉, it is easy to see that an element of the density matrix evolves with:

〈M ′|ρ(t)|M〉 = 〈M ′|ρ(0)|M〉eiB(z)t
∑
i γi δ

i
M,M′ , (2.80)

where δM,M ′ = M −M ′. Since the observed signal is the average of the whole sample

signal, we can integrate in the z direction to get the average. Assuming that the �eld

generated by applying a gradient has the form B(z) = αz, we have:

1

2L

∫ +L

−L
e
iB(z)t

∑
i γi δ

i
M,M′dz =

sin(αLt
∑

i γi δ
i
M,M ′)

αLt
∑

i γi δ
i
M,M ′)

. (2.81)

Then we see that, at the end of the application of the gradient for a su�ciently long

time, the elements of the density matrix which satisfy δM,M ′ 6= 0 are eliminated. It is

worth noticing that the application of the magnetic �eld gradient itself is not a non-

unitary operation, because the gradient is only a magnetic �eld that varies along the

sample. What makes its non-unitary e�ect is the average over the sample, which happens

in the acquisition of data.

SECTION: 2.6

Initialization

In order to implement quantum algorithms and extract relevant information, one must

know the initial state of the quantum processor and that state should preferably be pure.

Liquid state NMR does not o�er this possibility due to its high temperature and ensemble

nature, but techniques have been developed to partially overcome this limitation. This

section is a review of existing techniques.
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SUBSECTION: 2.6.1

The Initial State of Nuclear Spins and E�ective Pure States

In Liquid state NMR experiments at room temperature, the state of the system is

described by the Boltzmann thermal distribution. Therefore, the density matrix at the

thermal equilibrium state is given by:

ρth =
e−βH

Z
, (2.82)

where β = 1/(kBT ) and Z is the partition function (Z = Tr(exp(−βH))) and H is the

Hamiltonian of N spins system. As we have in general ωi0 � Jij (ω0 is on the order of

MHz while J is on the order of tens to hundreds of Hz), in this equation only the term

connected to the interaction with the external �eld is taken into account and we have

not included the J-coupling between the spins. The Zeeman energy of the nuclei is much

smaller than kBT , so that (~ωi0)/(kBT ) ≈ 10−5 � 1 for a temperature of 300K with a

�eld of 11.74 Tesla. For N spins system in thermal equilibrium, we have:

ρth ≈
1

2N
I +

1

2N
~

kBT

N∑
i=1

ωi0I
i
z, (2.83)

where I is the 2N × 2N identity matrix.

The non-identity part of the thermal state is called the deviation density matrix. So

that the thermal state in liquid state NMR at room temperature is highly mixed. A single

spin system in thermal equilibrium is then simply approximated by:

ρth =
1

2
I +

~ω0

2kBT
Iz. (2.84)

The fact that the thermal equilibrium state at room temperature is highly mixed

makes it di�cult to prepare the spin system in the pure state (|00...0〉) and we can not

use standard NMR techniques to change the thermal equilibrium state into that state.
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Because of this di�culty in preparing pure states in NMR systems, almost all experiments

of quantum information processing by NMR use the pseudo-pure states, sometimes called

e�ective pure states. There are several ways to prepare pseudo-pure states, especially

methods of temporal [62] and spatial [63] averages and logical labeling[64]. These three

methods are described in detail in the following subsections. In this thesis, we usually use

the technique of spatial averaging which consists of applying spatially varying magnetic

�elds, or magnetic �eld gradients, to achieve the pseudo-pure state.

A pseudo-pure state of N qubits system is given by:

ρeff =
1− ε0

2N
I + ε0|ψ〉〈ψ|, (2.85)

where ε0 is a measure of the purity of a state, I is the 2N × 2N identity matrix and |ψ〉

is a pure state such as |00...0〉. It is valuable to mention that NMR experiments are

only sensitive to the traceless deviation density matrix. Therefore, the observable signal

in NMR is proportional to the di�erence between two populations, instead of the popu-

lations themselves and the density matrix proportional to the identity matrix does not

produce a measurable signal. Hence any part of a density matrix that is proportional

to the identity matrix can be ignored during the experiment. Furthermore, the identity

matrix does not evolve under unitary operations, i.e. U †IU = I. We can only consider

the deviation density matrix ρdev.

Gershenfeld and Chuang [64] and, independently, Cory, Havel and Fahmy [13, 62] re-

alized that a density matrix of the form of Eq. (2.85) gives the signal and has the dynamic

behaviour of just the second term, |ψ〉〈ψ|, which represents a pure state. So, the goal is

to create an e�ective pure state for which all populations are equal (identity part) expect

for one which di�ers (deviation part), for example |00...0〉.

A convenient way of describing the pseudo-pure states is for using the product operator

formalism which uses the Pauli matrices (see chapter (4)). For example, the pseudo-pure
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state |00〉〈00| is described on this basis as I1
z + I2

z + 2I1
z I

2
z , wherein the identity term was

neglected because it was not observed in the NMR signal as we have mentioned. The use

of this basis simpli�es the visualization of the e�ects of unitary and non-unitary transfor-

mations on qubits, facilitating the construction of sequences of pulses for the preparation

of states and implementation of logical operations.

SUBSECTION: 2.6.2

Spatial Labeling

Spatial averaging [62] averages the NMR signal spatially over a volume of the sam-

ple to equalize all populations expect for the ground state population. This is done via

magnetic �eld gradients to remove undesirable coherences. All non-diagonal entries of the

density matrix are made zero in this method. Spatial averaging can be easily understood

by using the product operator formalism.

From the thermal equilibrium state of a system of two homonuclear spins, I1
z + I2

z , the

sequence of transformations:

I1
z + I2

z

R2
x(60) ⇒ I1

z +
1

2
I2
z −
√

3

2
I2
y (2.86)

Gz ⇒ I1
z +

1

2
I2
z (2.87)

R1
x(45) ⇒

√
2

2
I1
z +

1

2
I2
z −
√

2

2
I1
y (2.88)

t(1/2J12) ⇒
√

2

2
I1
z +

1

2
I2
z +

√
2

2
I1
x I

2
z (2.89)

R1
y(−45) ⇒ 1

2
I1
z −

1

2
I1
x +

1

2
I2
z +

1

2
I1
x I

2
z +

1

2
I1
z I

2
z (2.90)

Gz ⇒
1

2
I1
z +

1

2
I2
z +

1

2
I1
z I

2
z (2.91)

where Gz indicates the application of gradient in the direction z, t(1/2J12) indicates a
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period of free evolution of the system in duration 1/2J and I1
i (I2

i ) denotes a rotation

about the spin 1 (2) in the direction i. Here and throughout the section, the system state

is described using the deviation density matrix. This technique has been successfully

used for state preparation on two or three spins. That is the one that we have used for

preparing a pseudo-pure state in this thesis.

SUBSECTION: 2.6.3

Logical Labeling

Logical labeling [64, 65] consists of applying a pulse sequence which rearranges the

thermal equilibrium populations such that a subset of the spins is in an e�ective pure

state, conditioned upon the state of the remaining spins. Then the computation is carried

out within this embedded subsystem.

We explain logical labeling using a three-spin example. The thermal equilibrium de-

viation density matrix for a homonuclear three-spin system is approximately:

ρeq =
1

23

~ω0

2kBT



3

1

1

−1

1

−1

−1

−3



, (2.92)

where this diagonal represents the populations of the state |000〉, |001〉, ..., |111〉. Suppose

we can swap the populations of the states |011〉 and |100〉, which can be done using a



2. Review on NMR and QIP Fundamentals 48

sequence of one and two-qubit operations. The density matrix changes into:

ρeff =
1

23

~ω0

2kBT



3

1

1

1

−1

−1

−1

−3



. (2.93)

Now, the subspace |000〉, |001〉, |010〉, |011〉 is in an e�ective pure state. In other words,

when spin 1 is |0〉, the system is e�ective pure. Performing logical operations within this

subsystem allows two-qubit quantum computations (this may require decoupling spin 1

from the other spins).

SUBSECTION: 2.6.4

Temporal labeling

Temporal labeling consists of averaging multiple experiments, each of which underwent

a di�erent permutation of the populations. Each experiment is designed such that the sum

of the input states equals an e�ective-pure state. Since quantum mechanics is linear, the

sum of the resulting output states behaves as if the computation was done on a pure state.

Assume that we are given only homonuclear spins so that each term in the thermal

density matrix has the same weight. The idea then is to perform a series of CNOT op-

erations that transform the n terms in the thermal density matrix into a di�erent set of

n terms that are part of the e�ective-pure state. We then perform a di�erent series of

operations to create additional n new terms. Since 2n− 1 terms are required, and we can

create n terms in each experiment, we need to perform [(2n−1)/n] to obtain all necessary
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terms. We can cancel out additional terms by performing NOT operations.

The following relations illustrate how CNOT and NOT operations a�ect the product

operator terms:

I I CNOT12−−−−−→ I I (2.94)

I I1
z CNOT12−−−−−→ I1

z I
2
z (2.95)

I1
z I CNOT12−−−−−→ I1

z I (2.96)

I1
z I

2
z CNOT12−−−−−→ I I2

z (2.97)

I NOT−−−→ I (2.98)

I1
z NOT−−−→ − I1

z (2.99)

As an example, let us explain a three-qubit homonuclear example. The thermal density

matrix is given by ρth ∼= I1
z + I2

z + I3
z . The following three experiments create an e�ective

pure state ρeff ∼= I1
z + I2

z + I3
z + I1

z I
2
z + I1

z I
3
z + I2

z I
3
z + I1

z I
2
z I

3
z after summing over all

terms:

CNOT21 CNOT32 7→ I1
z I

2
z I

3
z + I2

z I
3
z + I3

z (2.100)

CNOT31 7→ I1
z I

3
z + I2

z + I1
z (2.101)

CNOT12 NOT3 7→ I1
z + I1

z I
2
z − I3

z (2.102)

For heteronuclear spins each term in the thermal density matrix has a di�erent weight

and hence we require 2n − 1 experiments to obtain all terms in the e�ective-pure state.

If k of the n spins are homonuclear, we simply create k new terms in each experiment,

requiring [(2n − 1)/k] experiments.

Now, we describe a method of preparing pseudo pure state based on Controlled-transfer

gates using spatial averaging techniques [22]. We have used this method for preparing

pseudo pure state of three homonuclear system (see chapter (6)). In this procedure
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of preparing pseudo pure state, the population of the ground state remains unchanged

throughout the process which ensures the maximum purity of the prepared state.

SECTION: 2.7

Preparing Pseudo-Pure States With Controlled-Transfer

Gates

All methods for preparing pseudo-pure states work by averaging the populations of

states other that the ground state, ideally leaving the ground state unchanged. This

method consists of using a Controlled-rotation gate with a rotation angle of θ, followed

by the application of a magnetic �eld gradient which both of them are called Controlled-

transfer gate [66]. The quantum circuit of the Controlled-transfer gate is shown in Fig.

(2.16).

Fig. 2.16: Quantum circuit representation of a Controlled-transfer gate with qubit a as control
and qubit b as target. Magnetic �eld gradient is after Controlled-rotation gate and
which is implicit.

The performance of a Controlled-transfer gate on a general population state or on

diagonal state of a two-qubit system is given by:



a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d


→



a 0 0 0

0 b 0 0

0 0 c′ 0

0 0 0 d′


, (2.103)
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where c′ and d′ are given by:

c′ =
c+ d+ (c− d) cos θ

2
, (2.104)

d′ =
c+ d− (c− d) cos θ

2
, (2.105)

where θ is the Controlled-rotation angle.

For preparing a pseudo-pure state of a two-qubit system, the Controlled-transfer gate

must be applied two times, one with the qubit one as control and second with the qubit

two as control. The rotation angles for each of these gates are calculated from the coe�-

cients of the thermal state of the system. This preparation scheme for a two-qubit system

is illustrated by the circuit below:

Fig. 2.17: Quantum circuit for the preparation of pseudo-pure state of a two-qubit system. The
gates are applied from left to right.

For generating a pseudo-pure state, the angles θ1 and θ2 must be set to:

θ1 = arccos[
2b− (c+ d)

3(c− d)
], θ2 =

π

2
. (2.106)

The Controlled-transfer gates (see Fig. (2.16)) with qubit one as control and qubit

two as target can be implemented by the sequence of pulses as:

R2
y(
π
2
) → R2

x(π) → UJ(
θ

2πJ
) → R2

x(π)

→ R1
z(
θ

2
) → R2

z(
θ

2
) → R2

y(
π

2
) → Gz, (2.107)
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where Gz presents the magnetic �eld gradient in the ẑ direction, the superscripts indicate

which spin is excited and the subscripts denote the phase of the pulses. UJ is a free

evolution of the system Hamiltonian.

At the end of Fig. (2.17), the pseudo-pure state is given by:



a 0 0 0

0 b+c+d
3

0 0

0 0 b+c+d
3

0

0 0 0 b+c+d
3


. (2.108)

As we can see for the matrix in Eq. (2.108), the populations of the excited levels are

changed in the process of preparing the pseudo-pure state. In other words, the popula-

tions b, c, and d are mixed and the population of the ground state is unchanged. This

ensures the maximum possible purity of the pseudo-pure state.

For the preparation of pseudo-pure state in systems with more qubits, the Controlled-

transfer gates must be applied only on the spins in which the coupling is stronger in order

to optimize the time spent in preparing states. Therefore, for a three-qubit system, the

following circuit is used in the preparation of the pseudo-pure state:

Fig. 2.18: Quantum circuit for preparation of pseudo-pure state of a three-qubit system. The
gates are applied from left to right. Where the angles θ1 = arccos(−1/7) ≈ 98.2◦ and
θ2 = arccos(−5/7) ≈ 135.6◦.
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SECTION: 2.8

Measurement

This section discusses the measurement procedure of nuclear spins in liquid solution.

We begin by determining the physical properties of the measured signal: It is an induced

oscillating voltage for which the Fourier transform yields the NMR spectrum.

SUBSECTION: 2.8.1

Interpretation of NMR Spectra

The NMR Signal

The signal of a single nuclear spin is too weak to be directly detected, and therefore NMR

experiments are performed using a large ensemble of identical molecules, typically on the

order of 1023, all dissolved in a liquid solvent. The entire sample is subject to the same

radio frequency �eld and hence each molecule undergoes the same operations.

The same RF coil that produces the B1 �eld is also used to detect the signal. The

spins precess about the ẑ -axis at their respective Larmor frequency. Then, the spins in a

sample are rotated from their equilibrium direction to the transverse plane with an applied

RF pulse and the precessing magnetization in the RF coil around the sample induces the

voltage. The NMR signal is displayed as a function of time. We can perform a Fourier

transform from this signal to obtain the spectrum. Fourier transform is a mathematical

technique that converts a function of the time into a function of frequencies, according

to:

S(ω) =

∫ ∞
0

S(t)e−iωtdt. (2.109)

The amplitude and phase of the spectral lines give us information about the respective

spin states. Mathematically, we can write the induced voltage in the RF coil due to spin
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i as:

Vi(t) = V0 Tr[e
−iH0t/~ρ(0)eiH0t/~(−iσix − σiy)], (2.110)

where V0 is the maximum signal strength and ρ(0) is the density matrix at the start of the

measurement. The phases of the observable (−iσix − σiy) are chosen such that a positive

absorptive line corresponds to a spin along −ŷ (this is the signal we obtain if we apply a

Rx(90) rotation on a spin in the state |0〉). Similarly, we choose a negative absorptive line

to correspond to the spin being along +ŷ, and a positive and negative dispersive lines to

a spin along +x̂ and −x̂ respectively. Eq. (2.110) represents the signal in the lab frame,

but by mixing the signal with a reference oscillator at ωi0, we obtain instead the expec-

tation value of (−iσix − σiy) in the rotating frame, which is the relevant reference frame

for quantum computing. If ρ is mixed, as is the case in room temperature experiments,

the expectation value represents an averaged read out over the statistical mixture of states.

Since a spin along the ±ẑ -axis of the Bloch sphere, corresponding to the computa-

tional basis states |0〉, |1〉, can not induce a voltage in the RF coil, we have to change

the basis to obtain a measurement in the |0〉, |1〉 basis. This is achieved using a Rx(90)

read-out pulse. With the above phase conventions, a spin in the |0〉 state produces a pos-

itive absorptive signal following the read-out pulse, and a spin in the |1〉 state produces a

negative absorptive signal.

Measurement Process

The RF coil is present at all times, contributing only small amounts to decoherence. The

other decoherence process (inhomogeneities in B0, interactions with other spins and the

environment) are still active. The transverse component of the magnetic moment hence

decays over time, usually exponentially. This decaying signal in the time domain is called

free induction decay, or FID for short. The FID typically decays as V (t)e−t/T
∗
2 where T ∗2

includes the T2 decoherence processes as well as other systematic phase randomizations.

Using Eq. (2.109), the Fourier transform of this signal gives rise to a Lorentzian lineshape:
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V (t) e−t/T
∗
2 ⇒ λ

λ2 + (ω − ω0)2
− i(ω − ω0)

λ2 + (ω − ω0)2
, (2.111)

where λ = 1
T ∗2

and the two terms correspond to the absorptive and dispersive components

which may or may not be both present at the same time. The linewidth at half height is

given by:

∆f =
∆ω

2π
=

1

πT ∗2
. (2.112)

The Figure (2.19) (a) and (b) show free induction decay (FID) and the Fourier trans-

form of the FID signal from carbon-13 labeled trichloroethylene (see Fig. (5.1)) in the

thermal equilibrium state, respectively.

Fig. 2.19: (a) Free induction decay (FID) and (b) the Fourier transform of the FID signal (Carbon
spectrum) from carnon-13 labelled trichloroethylene in the thermal equilibrium state.

As mentioned earlier, when we apply a read-out pulse on a single spin that is either

in the |0〉 or |1〉 state, we obtain either a positive or negative absorptive line. This is the

case for most quantum computations. However, other states such as superpositions give

rise to di�erent signals. By designing a proper sequence of di�erent read-out pulses, we

can reconstruct the full density operator of this single spin.
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In Chapter (4) and (5), we completely describe how the full density operator can be

reconstructed by performing several experiments each with appropriate unitary transfor-

mations just before the measurement. In the following section, we give a brief description

of the experimental apparatus.

SECTION: 2.9

The NMR Spectrometer

NMR spectrometers have now become very complex instruments capable of perform-

ing an almost limitless number of sophisticated experiments. However, the essential parts

of a spectrometer are not that complex to understand in outline, and it is certainly helpful

when using the spectrometer to have some understanding of how it works. The main com-

ponents of a NMR spectrometer are outlined in Fig. (2.20). A sample containing a large

number of identical molecules dissolved in some liquid solution is placed in a strong, static

and nearly homogeneous magnetic �eld. The radio frequency (RF) pulses are generated

by a radio-frequency coil placed next to the sample inside a probe. The same coil is used

to detect the signal of the spins during the measurement. The experiment is controlled

by a computer. We next explain the main components: the sample, the magnet, the RF

transmitter, duplexer, the probe and the signal receiver. In this thesis, all experiments

were performed with high-resolution spectrometer, Varian Premium Shielded 500MHz.



2. Review on NMR and QIP Fundamentals 57

Fig. 2.20: Scheme of a NMR spectrometer.

• Sample

The physical NMR qubits are represented by the spin-1/2 nuclei of atoms in a

molecule. Since the signal of a single molecule is too weak to be detected with cur-

rent technologies, we use a liquid solution containing ∼ 1023 molecules to enhance

the signal. These molecules are dissolved in some liquid solvent at room temper-

ature and atmospheric pressure. The solvent is chosen based on the solubility of

the molecules in the solvent, and on the coherence times of the qubits obtained

in this solvent. The NMR solvents are usually deuterated because the deuterium

signal is used as part of a feedback loop which keeps the detection system locked

over the course of several experiments.

The sample solution is held in a thin-walled glass NMR sample tube with a 5mm

outer diameter (4.2mm inner diameter). The sample tube is �lled with our liquid

solution to about 5cm from the bottom. It is critical that the walls of the tube be

straight and uniform in thickness, in order to minimize �uctuations of the mag-

netic susceptibility.
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Finally, the open end of the glass sample tube is �ame sealed to prevent impurities

from leaking into the solution. The �lled and sealed sample tube is then placed

in a sample holder called �spinner" (see Fig. (2.21)). As the name suggests, the

sample holder does not only hold the sample in place but it is also used to spin

the sample about the axis of the static magnetic �eld to average out x̂ŷ inhomo-

geneities in the static �eld.

Fig. 2.21: A typical NMR sample. The sample tube is held by a sample holder when it
is inserted in the superconducting magnet.

• Magnet

The sample inside the sample holder is placed in the bore of a superconducting

magnet at room temperature. The magnet is made of a superconducting solenoid

immersed in a bath of liquid Helium (4.2 Kelvin). A current passing through

the solenoid produces the static magnetic �eld. The Helium vessel is surrounded

by a vacuum seal, a liquid Nitrogen vessel and another vacuum seal. The whole

magnet is mounted on air-cushioned vibration isolation legs (see Fig. (2.22)).
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Fig. 2.22: Varian 500 MHz NMR magnet. The �ll ports for liquid Nitrogen and Helium
are at the top of the magnet. The probe is inserted at the bottom of the
magnet, while the sample is inserted from the top.

The current that passes through the superconducting solenoid is on the order of

100A in strength, producing a �eld of about 11.74 Tesla at the center of the mag-

net (about 200.000 times as strong as the earth's magnetic �eld). The resulting

Larmor frequency of 1H spin is 500 MHz. The �eld strength outside the magnet

drops o� dramatically, reaching only 5 Gauss about 3 meters away from the mag-

net (about 10 times the earth's magnetic �eld). Due to the strong �elds, we must

make sure that no magnetic objects are placed close to the magnet. Magnetic

objects can be pulled into the bore and damage the magnet.

Sensitivity and resolution of NMR signals are the fundamental reasons for the

requirement of higher magnetic �eld strengths. Resolution of NMR spectra at a

constant line width in hertz improves linearly with magnetic �eld strength (B0).
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The sensitivity of an NMR signal is proportional to the population di�erence be-

tween two nuclear transition states. Because the energy gap of the two nuclear

states is small (in the RF range), the population di�erence determined by the

Boltzmann distribution is also small. An increase in �eld strength will increase

the population di�erence, and thus increases sensitivity.

The magnet has to be regularly re�lled with liquid Nitrogen (once a week) and

liquid Helium (once every 3 months).

• Transmitter

The function of the transmitter is to generate, amplify, and send RF pulses to

the probe. The transmitter section is made up of other smaller parts, such as:

1) synthesizer, which is responsible for generating radio frequency signals contin-

uously; 2) Pulse programmer; 3) radio frequency ampli�er, which increases the

intensity of the applied signal in the sample; 4) the attenuator, which allows us

to control the intensity of signal sent to the sample. A basic electronic block dia-

gram of the transmitter section of a NMR spectrometer is shown in Fig. (2.23) [6].

Fig. 2.23: Block diagram of a NMR spectrometer (transmitter section).
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• Duplexer

From the duplexer, two cables emerge. One cable leads to the probe, which is

mounted inside the magnet, and which contains the sample. The second cable

leads to the receiver section, which is used to detect the weak radio frequency

signals generated by the nuclear spins. when a strong radio frequency pulse ar-

rives from the ampli�er, the duplexer diverts it towards the probe, not into the

sensitive signal detection circuitry and when, on the other hand, the tiny NMR

signal travels from the probe to the duplexer, it is diverted into the signal detec-

tion path, not towards the ampli�er.

• Probe

A wave generator produces a voltage that oscillates sinusoidally at a desired fre-

quency. This output is cut o� in pulses by a switch which is opened and closed

by a pulse generator, controlled by the computer spectrometer. The pulses are

ampli�ed and sent to the NMR probe.

The probe is in a cylindrical aluminum housing which contains the RF coils, a

tuning and matching electrical circuit, a temperature control system, a sample

spinning mechanism and sometimes gradient coils. The probe also contains the

sample and it is responsible for coupling the RF �eld to the spins. In the probe,

the NMR signal from the sample is collected.

The probe may contain a (Z) gradient coil, or three (X;Y ;Z) gradient coils,

or none. These coils produce a static magnetic �eld in the ẑ direction, but the

strength of this �eld varies linearly along the x̂; ŷ or ẑ axis.

• Receiver

The precession of the nuclear magnetization, excited by this RF �eld, in the same
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coil induces an oscillating voltage, which is the NMR signal, that is sent in se-

quence to the receiver. So, the function of the receiver is to record the voltage

induced in the coil by the oscillating magnetic signals from the spins. In other

words, a receiver is used to detect the NMR signal generated at the probe and

amplify the signal to a level suitable for digitization. At the receiver, after being

pre-ampli�er, the NMR signal is mixed with a reference frequency, usually the

same as that was used by the pulse for exciting the spins. Because the RF signal

is very weak coming from the probe, it is ampli�ed �rst by a preampli�er that is

located near or inside the probe to reduce the loss of signal, before it is transferred

to the receiver inside the console. A basic electronic block diagram of the receiver

section of a NMR spectrometer is shown in Fig. (2.24) [6].

Fig. 2.24: Block diagram of a NMR spectrometer (receiver section).

• The Analogue to Digital Converter

The signals generated at the probe coil and detected by the receiver are in contin-

uous or analog form, meaning that their amplitudes change smoothly, such as in a

sine wave. However, the signals to be processed by computers and other electronic

devices in the NMR spectrometer are a digital or discrete type, which means that

their amplitudes can only exist in certain levels or ranges, such as binary digits.
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On the other hand, the output controlled by the computer needs to be converted

to analog form. Therefore, for NMR spectrometers it is necessary to accurately

convert an analog signal to a digital number proportional to its amplitude (ADC),

and vice versa(DAC). Then, an analogue to digital converter or ADC is used to

convert the NMR signal from a voltage to a binary number which can be stored

in the computer memory. These conversions are essential in a wide variety of

processes in which the analog information is converted (ADC) for data process-

ing and display such as the Fourier transformation of the time domain data, and

the digital information is converted to analog (DAC) for a computer controlling

the experimental setup such as shimming, gradient pulse amplitude, or waveform

generation.

The Pulse Programmer

The spectrometer is operated using software from Varian (Vnmr). All experiments

can be controlled entirely by the software, provided that the hardware has been

properly con�gured for a particular experiment.

The pulse sequences are written in C, and several commands are provided by

Varian's software. These commands typically involve speci�c parameters, such as

the pulse width, phase, pulse shape, and channel number.

Each pulse sequence and framework must be compiled, and is then submitted to

the spectrometer. The digitized signal can be Fourier transformed and displayed

by the Varian software as well. Further processing, such as zeroth and �rst-order

phase corrections or line-broadening, can also be applied.

Most of our analysis is not done by the Varian software. Instead, we interface

with the spectrometer via MATLAB which allows us to set up a large number of

experiments to run automated. The data is also stored in some desired directory
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for future analysis. We can then use other MATLAB routines to analyze the data

as it is accumulated. For example, in quantum state tomography experiments,

the density matrix is derived from a large set of output spectra. The �exibility in

MATLAB programs thus allows easy execution of a pulse sequence and a straight-

forward analysis of the collected data.



3
Gradient Ascent Pulse Engineering

In quantum computing, logic gates are implemented as unitary operators acting on qubits.

In NMR implementations these unitary operators are realized by sequences of radio-

frequency pulses and the natural evolution of the spin system. In general, a pulse se-

quence that generates a desired unitary propagator is neither trivial nor unique. It is

useful to �nd optimal sequences that minimize the negative e�ects of errors, relaxation,

and decoherence. However, it is much more di�cult to �nd an appropriate control se-

quence to perform some desired operation. Numerical methods o�er e�ective solutions

to this problem. One of the solutions is Gradient Ascent Pulse Engineering (GRAPE)

algorithm. GRAPE algorithm was introduced by Khaneja et al. [11] for the design of

pulse sequences in NMR spectroscopy. The algorithm utilizes optimal control theory

to search for pulses that can maximize the coherence transfer between coupled spins as

well as minimize relaxation e�ects during a given time step. This method allows us to

optimize functions with more variables, which makes the optimization result be smoother.

65
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SECTION: 3.1

The Optimal Control Framework

We begin with a general de�nition of the optimal control problem. Consider a system

with state vector x(t), in�uenced by controls u(t) over the time interval [0, T ]. The scalar,

real-valued objective functional Φ (also called the quality function or �delity) is written

in the form:

Φ = Ψ(x(T )) +

∫ T

0

L(x(t), u(t))dt. (3.1)

It is worth mentioning that the �rst term in the above equation depends only on the

state at the �nal time T , while the second term integrates up a running cost. The task

is to maximize Φ subject to the condition that the equation of motion of the system,

dx

dt
= f(x(t), u(t)), (3.2)

is satis�ed, with x(t) = x0 and u(t) is restricted to the set of permissible controls. A

solution is said to be time-optimal if Φ is maximized for the minimum value of T which

is denoted by Tmin.

For a more detailed introduction into optimal control, see [67], [68] and the book by

Kirk [69].

SECTION: 3.2

Optimal Control For Quantum Systems

A closed quantum system can be described by the Hamiltonian,

Htot(t) := H0 +
M∑
m=1

um(t)Hm, (3.3)

where H0 is the drift Hamiltonian, Hm are the control Hamiltonians or radio-frequency

Hamiltonians corresponding to the available control �elds and um(t) = (u1(t), u2(t), ..., um(t))
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represents the vector of amplitudes that can be changed and which is referred to as the

control vector. In the case of a spin 1/2, e.g., we have Hm = {Ix, Iy}. The state of the

spin system is characterized by the density operator ρ(t), and its equation of motion is

the Liouville-von Neumann equation [70]:

dρ(t)

dt
= −i[Htot(t), ρ(t)]. (3.4)

We can write this equation of motion for the propagator of a closed quantum system as

follows:

dU(t)

dt
= U̇(t) = −iHtot(t)U(t). (3.5)

At t = 0, the initial propagator is U(0) = 1.

The control problem for synthesising a target operator, or quantum gate, UG can now

be described as:

max φ(u), subject to U̇(t) = −iHtot(t)U(t). (3.6)

As we mentioned, the quality function Φ in Eq. (3.1) contains a term for the quality

at the �nal time T and a term representing the running cost. The �nal quality re�ects

the distance between the achieved unitary operation U(T ) and the desired gate UG.

There are two ways for expressing the geometrical distance between the two unitary

operators UG and U(T ). The �rst one takes the global phase between the two operators

into account and yields the quality term as follows:

Φ1 := Re tr{U †GU(T )}/N, (3.7)

which is normalised to 1 and N is the matrix dimension. Φ1 achieves the maximum of 1

if and only if U(T ) = UG, which follows from

‖U(T )− UG‖2
2 = 2N − 2Re tr{U †GU(T )}, (3.8)
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and the property of the Hilbert-Schmidt norm ‖x‖ = 0⇔ x = 0.

For practical applications the global phase can be neglected. For this purpose we

de�ne a quality function that is insensitive to any global phase factors:

Φ2 := |tr{U †GU(T )}|2/N2. (3.9)

This function is maximized if

U(T ) = e−iθUG, (3.10)

for any θ ∈ [0, 2π].

SECTION: 3.3

Algorithmic Scheme

Here, we present an iterative scheme for performing the maximization of Eq. (3.6) by

updating the control vector u. The following steps describe this algorithm.

Step 1: Initial Setup

Fix a �nal time T and a digitization K such that T is divided into K time steps tk with

∆tk = tk − tk−1 = T/K. During each step k, the control term Hm and the corresponding

control amplitude um(tk) are constant. Guess a random initial value um(tk) for all k andm.

Step 2: Compute Hamiltonians

The total Hamiltonian is constant over each time interval tk. The total Hamiltonian can

be computed as follows:

Htot(tk) = H0 +
∑
m

um(tk)Hm ∀ tk. (3.11)
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Step 3: Exponentiate

The unitary propagator U(T ) can be obtained via direct integration of U̇ = −iHtotU with

U(0) = 1. Then, the propagators Uk for the system can be computed by the exponentials:

Uk = e−i∆tkHtot(tk) ∀ k. (3.12)

The total propagator is obtained by the product of Uk. The goal of optimization is to

�nd the um such that this propagator corresponds to a given target unitary transformation.

Step 4: Propagate Forward

Set U0 = 1 and calculate the forward propagation as follows:

Uk:0 = Uk.Uk−1.....U1.U0 ∀ k. (3.13)

Step 5: Propagate Backward

Similarly, set UK+1 = U †G and calculate the backward propagation as follows:

λK+1:k+1 := UK+1.UK .....Uk+2.Uk+1 ∀ k. (3.14)

Step 6: Evaluate Quality

Evaluate the quality function according to Eq. (3.7) or Eq. (3.9):

Φ1 = Re tr{U †GU(T )}/N = Re tr{λK+1:k+1Uk:0}/N,

or

Φ2 = |tr{U †GU(T )}|2/N2 = |tr{λK+1:k+1Uk:0}|2/N2.
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Step 7: Get Gradient

The derivative of the quality function Φ1 with respect to um(tk) is:

∇k,mΦ1 = Re∇k,mtr{λK+1:k+1Uk:0}/N

= Retr{∇k,m(λK+1:k+1Uk:0)}/N

= Retr{λK+1:k+1(∇k,mUk:0)}/N

= Retr{λK+1:k+1(∇k,mUk)Uk−1:0}/N

= Retr{λK+1:k+1(∇k,me
−i∆tkHtot(tk))Uk−1:0}/N. (3.15)

Since the control Hamiltonians do not commute with the total Hamiltonian in the gen-

eral case, calculating the derivative of the exponential is nontrivial. There are several

methods to obtain this derivative including: 1) an approximation of the gradient term

to �rst order in ∆tk (the standard approximation), 2) the well-known �nite-di�erence

method, 3) an approximation using a series expansion, and 4) an exact method based on

the eigen-decompostion of the total Hamiltonian and etc. In this thesis, for computing

the gradient vector, we have used the methods number one and two. For more details

about numbers three and four see [71] and [72], respectively.

The gradient vector for all tk and um,

∇Φ = (
∂Φ(U1:0)

∂u1(t1)
, ...,

∂Φ(Uk:0)

∂um(tk)
, ...,

∂Φ(UK:0)

∂uM(tK)
),

can be computed by using one of the formulas derived in parts A and B below. We in-

troduce the shorthand notation ∇k,mΦ = ∂Φ
∂um(tk)

for gradient vector.

A: The Standard Gradient Approximation

The general approach for computing the derivative of the exponential of a matrix function

f(x) is [73]:

∂

∂x
ef(x) =

∫ 1

0

esf(x)∂f

∂x
e(1−s)f(x)ds. (3.16)
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This yields:

∂Uk
∂um(tk)

= −i(
∫ ∆tk

0

Uk(τ)HmUk(−τ)dτ)Uk, (3.17)

where

Uk(τ) = exp{−iτHtot(tk)}. (3.18)

For small enough ∆tk the unitaries inside the integral Eq. (3.17) can then be expanded

to �rst order in τ , leading to:

∫ ∆tk

0

Uk(τ)HmUk(−τ)dτ ≈
∫ ∆tk

0

(1− iτHtot(tk))Hm(1 + iτHtot(tk))dτ

≈
∫ ∆tk

0

Hm − iτ [Htot(tk), Hm]dτ. (3.19)

This approximation requires:

∆tk � ‖Htot(tk)‖−1
2 ∀k, (3.20)

in order to be valid. By computing the integral and dropping the ∆t2 term we �nd:

∫ ∆tk

0

Uk(τ)HmUk(−τ) ≈ ∆tHm. (3.21)

Thus, a �rst order approximation of the derivative of unitary propagator Uk with respect

to the control �elds um(tk) can be evaluated as:

∂Uk
∂um(tk)

≈ −i∆tkHmUk. (3.22)

By inserting Eqs. (3.22) into (3.15), the gradient expression for the quality function Φ1

can be yielded:

∇k,mΦ1 = −Retr{λK+1:k+1i∆tkHmUk:0}/N. (3.23)

Similarly, we have the following approximate gradient term for the quality function Φ2:

∇k,mΦ2 = −2Retr{λK+1:k+1i∆tkHmUk:0}tr{Uk:0λK+1:k+1}/N2. (3.24)
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B: Computing the Exponential Derivative by a Finite-Di�erence Method

The derivative of a general function f at a point x is de�ned by the limit:

∂f

∂x
= lim

ε→0

f(x+ ε)− f(x)

ε
. (3.25)

When ε is a �xed non-zero value, the fraction on the right-hand side is an approximation

of the derivative of f . In our case, Eq. (3.25) becomes:

∇k,mΦ1 =
Retr{λK+1:k+1Pk,mUk−1:0}/N − Φ1

ε
, (3.26)

with

Pk,m = exp{−i∆tk(Htot(tk) + εHm)}. (3.27)

For Φ2 we �nd:

∇k,mΦ2 =
|tr{λK+1:k+1Pk,mUk−1:0}|2/N2 − Φ2

ε
. (3.28)

Numerically, this derivative can be set to reach the best machine precision when ε is suf-

�ciently small. Typically, when choosing ε to be on the order of 10−7, we can �nd the

best results.

Step 8: Update Controls

There exist many methods for updating the control vector in an iterative optimization

scheme which include 1) Steepest ascent 2) Newton and quasi-Newton methods 3) Con-

jugate gradients 4) Line search and etc. For a more detailed information into these four

methods see [74], [75], [76] and [77]. Here, we will explain only the �rst method.

Steepest Ascent

Steepest ascent is a �rst-order method for computing the control vector for the next

iteration. Only the gradient information is used to determine the new vector. In the case
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of our pulse optimization, the control amplitudes in the next iteration are:

um(tk)→ um(tk) + γ∇k,mΦ. (3.29)

Here, γ is a stepsize parameter. If the stepsize is su�ciently small at each iteration, and

exact gradients are used, the algorithm is guaranteed to converge monotonically to a local

maximum of the quality function.

Step 9: Check Stopping Criteria

Iterate steps 2 through 8 until Φ > 1− ε. The goal tolerance ε is introduced because we

cannot expect a numerical method to reach a �nal �delity of exactly 1. The algorithm is

terminated if the change in the performance index Φ is smaller than a chosen threshold

value. In practice, several other stopping criteria are applied, e.g., an upper limit for the

number of iterations, and a lower limit for the norm of the gradient or the step.

Fig. 3.1: The m'th control function is represented by a piecewise-constant pulse sequence con-
sisting M scalar control amplitudes um.
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SECTION: 3.4

Robustness

The GRAPE algorithm can be con�gured to search for controls which are robust

under the variation of any system parameters. Consider a parameter δr which appears

in the Hamiltonian and therefore in�uences the resulting unitary at time T , Ur(T ). Let

us assume the quality function Φ{U(T )} is normalized to have a maximum of 1. The

average,

Φ(T ) :=
1

R

R∑
r=1

Φ{Ur(T )}, (3.30)

then achieves a maximum of 1 if and only if Φ{Ur(T )} is maximized for each and every

choice of δr. Any of the previous quality functions can be extended in this fashion to

search for robust controls. It may be that T must be increased for such controls to exist,

however, or that some compromise between maximum �delity and robustness is necessary.

In this thesis, in order to implement NMR experiments, we have used some pulses gen-

erated by the GRAPE algorithm. We have implemented some single qubit operations and

unitary gates by applying radio-frequency pulses generated using the GRAPE algorithm

to rotate spins. The GRAPE algorithm of �nding pulses is for coherently controlling a

system of qubits and implementing precise unitary transformations in NMR.

For the purpose of our experiment, the GRAPE code was used to �nd an optimal pulse

for a given unitary operation (the Controlled-NOT gate, for example). A key parameter

in the use of the GRAPE algorithm is the total duration of the pulse. The total duration

of each modulated sequence was between 1ms to 2ms for single qubit unitaries and a pulse

time comparable to the scalar coupling constant ( 1
2Jij

) for two-qubit operations between

spins i and j. Tables (3.1) and (3.2) show the control parameters for each GRAPE pulse

used in this these. The Fidelity is given by:
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F =
|Tr(UsimU †ideal)|√

Tr(UsimU
†
sim)Tr(UidealU

†
ideal)

, (3.31)

where Usim and Uideal are the simulated unitary by using the output of the pulse opti-

mization and the desired target unitary, respectively.

Pulse Time step Total time 1
2J

Fidelity

R1
x(
π
2
) 1 µs 1000 µs - 0.9999

R2
x(
π
2
) 1.5 µs 1500 µs - 1

Hadamard for �rst qubit 1 µs 1000 µs - 0.9999

Hadamard for second qubit 1.5 µs 1500 µs - 1

CNOT12 2 µs 4000 µs 2.5 ms 0.9999

CNOT23 3 µs 6000 µs 4.9 ms 0.9999

Tab. 3.1: Control parameters input into the GRAPE algorithm for trichloroethylene molecule
(see Chapter (5)).

Pulse Time step Total time Fidelity

R1
x(
π
2
) 1 µs 1000 µs 0.9999

R2
x(
π
2
) 1 µs 1000 µs 1

R3
x(
π
2
) 1 µs 1000 µs 0.9999

Tab. 3.2: Control parameters input into the GRAPE algorithm for iodotri�uoroethylene molecule
(see Chapter (6)).

For example, Fig. (3.2) shows phase and amplitude obtained in the optimization of 90

degree pulse applied to the second qubit about the x axis (R2
x(
π
2
)) in the iodotri�uoroethy-

lene molecule. Also, the robustness of the pulse to radio frequency �eld inhomogeneities

is shown on Fig. (3.3).
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Fig. 3.2: The quadrature components of the �uorine control �elds for a GRAPE pulse that im-
plements a 90 degree rotation on F2 in the iodotri�uoroethylene molecule (see Chapter
(6)). The total duration of the pulse is 1000µs.

Fig. 3.3: The robustness of the pulse to radio frequency �eld inhomogeneities. The amplitude
in the Fig. (3.2) is changed and then the �delity (the overlap of the output state from
the simulated unitary and the output from the ideal unitary) is calculated.
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Result I:

In quantum information processing, an important step is to characterize the system state

at the end of a computational process. This step makes it possible to measure the �-

delity of an initial state or often the implementation of a logic gate, or in the estimation

of errors in the experimental implementation. This procedure of reconstruction of the

density matrix of a system is known as the Quantum State Tomography (QST). The pro-

cesses of quantum state tomography require a set of measurements on the system, since

experimentally only a small part of the 4N−1 elements of the density matrix are accessible.

Quantum State Tomography is the process of completely characterizing the density

matrix of a quantum system. The �rst QST on NMR system was reported by Chuang et

al.[21] for systems of two coupled spins 1/2. Later di�erent methods were proposed for

quadrupolar nuclei [22, 23] and n weakly coupled spins [25].

In this chapter, we present results on QST in a system with strongly coupled spins,

known in NMR literature as “AB” and “ABX” systems. We have found that the number

of experiments necessary to perform QST in an “ABX” system can be reduced with re-

spect to three weakly coupled qubits. Therefore our method can reduce the experimental

e�ort required for the complete density matrix reconstruction.

SECTION: 4.1

Time Domain Signal

In liquid state NMR a sample in a small tube is placed in a region of strong magnetic

�eld, and radio frequency (RF) pulses are applied in order to induce transitions between
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the energy levels of the nuclear spin system [6]. The spin Hamiltonian in the laboratory

frame describes the interaction of the nuclear spins with a static magnetic �eld, the

Zeeman interaction, and the interaction among the spins, the indirect J coupling:

H =
n∑
k=1

ωkIkz +
n∑

k,j(k<j)

2πJkj(IkxIjx + IkyIjy + IkzIjz), (4.1)

where Ikm is the m-component of the nuclear spin angular momentum operator for spin k,

ωk/2π is the Larmor frequency and Jkj is the coupling strength between the spins k and

j. Ix, Iy, and Iz are the spin components which relate to the well-known Pauli matrices

as:

Ix =
~
2
σx, Iy =

~
2
σy, Iz =

~
2
σz, (4.2)

where, in matrix notation,

σx ≡

0 1

1 0

 , σy ≡

0 −i

i 0

 , σz ≡

1 0

0 −1

 . (4.3)

When 2π|Jkj| � |ωk − ωj|, the system is said to be weakly coupled, and the Hamilto-

nian in the laboratory frame can be approximated by [18]:

H =
n∑
k=1

ωkIkz +
n∑

k,j(k<j)

2πJkjIkzIjz. (4.4)

During the application of quantum gates, the natural evolution of the system, driven

either by the Hamiltonian (4.4) or (4.1), deviates the actual operation implemented from

the target one. One approach to achieve good control consists of using an approximation

that decomposes the actual operation into the ideal target operation, driven by the inter-

action of the spins with radio frequency magnetic �elds, followed and preceded by error

terms which can be tracked and corrected. In weakly coupled systems this decomposition

is easier, since all terms of the Hamiltonian (Eq. (4.4)) commute with each other, allowing

precise quantum operations using standard shaped pulses [20]. With this approach imple-
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mentations of quantum computing have been performed on liquid state NMR samples with

seven [8, 9] and twelve qubits [7]. For implementing high �delity quantum gates and pro-

tocols on strongly coupled systems, usually, optimal control techniques must be employed.

Then, a signal due to the precessing magnetization of the sample is detected. The

detected signal in NMR is the so called Free Induction Decay (FID), which corresponds to

an electric current induced in tuned pick-up coils. The detected signal stores information

about the instantaneous transverse magnetization of the sample during the detection

process. The observed signal, in the time domain, is de�ned as the expectation value:

S(t) = Tr{ρ(t)
∑
k

Ik+} = Tr{ρ(t)
∑
k

(Ikx + iIky)}, (4.5)

where Ik+ = Ikx + iIky, and Ikx and Iky are spin operators proportional to the x and y

components of magnetization due to spin k, and ρ(t) is the reduced density operator at

time t during the FID.

The density operator at time t is given by the transformation of an initial density

operator ρ0 at t = 0 under the propagator Up, imposed by applied pulses. As it is

usually done [6] we will assume that, during the application of the radio frequency pulses,

we can neglect the evolution caused by the internal Hamiltonian, and consider only the

radio frequency Hamiltonian. After the pulses, the system evolves under the natural

Hamiltonian:

ρ(t) = e−iHtUpρ0U
†
pe

+iHt. (4.6)

In QST, the Hamiltonian of the system is given and we would like to estimate the

density operator at the beginning of the measurement. It is worth to mention that Up

and the Hamiltonian H, usually do not commute with each other. By substituting Eqs.

(4.6) into (4.5) and making use of the linearity of the trace and its invariance with respect

to cyclic permutation of operators in a product, the observed time domain signal can be
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written as a function of the initial density matrix, ρ0, of n spins as [25]:

Sp(t) =
n∑
k=1

Sp,k(t) =
n∑
k=1

Tr{ρ0Op,k(t)}

=
n∑
k=1

Tr{ρ0U
†
pe

+iHtIk+e
−iHtUp}, (4.7)

where k and p are the spin number and the preparatory pulses (see next section), respec-

tively. An interesting point from Eq. (4.7) is that the FID can be used to investigate the

properties of the density matrix of the system, ρ0.

The spectrum is obtained by taking the Fourier transform of Eq. (4.7):

S̄p,k(ω) =
1

T

∫ T

0

e−iωtSp,k(t)dt. (4.8)

In the weak coupling limit, the observed spectrum is called �rst-order spectrum and

the intensities of resonance lines in a multiplet are uniform. For �rst order system, J

coupling and chemical shift values are directly measurable from line positions. Upon

strong coupling, second-order e�ects appear and the intensities of the NMR peaks vary

across the multiplet. If �rst order behavior assume here we will �nd incorrect coupling

constants and chemical shifts. Furthermore, additional transitions, not allowed in the

weakly coupled systems, can leave the spectra of strongly coupled spins more complex to

analyze. It's notable that the FID has information on various frequencies of the spectrum.

In this chapter, we will assume two strongly coupled spin-1
2
systems, “AB” and

“ABX” spin systems. For this reason, in order to evaluate Op,k(t), some mathematical

preliminaries are necessary. The Hamiltonian matrix for strongly coupled spin systems is

not diagonal and it will be di�cult to produce an exponential matrix operator. On the

other hand, diagonal matrices allow easy construction of exponential operator matrices.

For these reasons, we should diagonalize the Hamiltonian.
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According to the unitary transformation (see Appendix (A)):

B̂ = T̂−1ÂT̂ , (4.9)

we have:

Hdiag = V̂ −1HV̂ , (4.10)

or

H = V̂ HdiagV̂
−1, (4.11)

where V is the unitary matrix of eigenvectors.

By replacing Eqs. (4.11) into (4.7), the signal can be written as:

Sp(t) =
n∑
k=1

Tr{ρ0U
−1
p V e+iHdiagtV −1Ik+V e−iHdiagtV −1Up}. (4.12)

SECTION: 4.2

Product-Operator Basis

To perform QST, we consider the expansion of density matrices in terms of the product

operators. The basis which is generally used in describing the NMR experiments is the

product-operator basis. This basis is formed by tensor products of nuclear spin operators

given by:

{I0, I1, I2, I3} = {I, 2Ix, 2Iy, 2Iz}, (4.13)

that denotes a basis for the space of linear operators on the single-spin-1
2
Hilbert space.

The density matrix of a single qubit is therefore written as:

ρ =
1

2
I + cxIx + cyIy + czIz. (4.14)
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The reconstruction of the density matrix relies on the determination of each product

operator coe�cient (cx, cy, cz in the above example). However it is not possible to

characterize all coe�cients in a single experiment. The operators Ix and Iy are observables

and their coe�cients can be determined directly by the NMR signal. Although the Iz

term is not observable in the FID signal, it can still be determined by rotating the spin

by 90 degree to convert the Iz term into an observable one. Note that the I term cannot

be observed by any NMR experiment and therefore all NMR QST techniques can only

determine the so called deviation density matrix ∆ρ = ρ − I/D, where D is the Hilbert

space dimension. For n 1/2-spins, each product basis operator is de�ned as [78]:

Pn,s =
n⊗
k=1

Iqk(s), (4.15)

where qk(s) is the kth digit of the integer s represented in base-4 where 0 ≤ s ≤ 4n − 1.

For example, the basis for two-spin system (P(2)) is given by:

{I ⊗ I, I ⊗ 2Ix, I ⊗ 2Iy, I ⊗ 2Iz,

2Ix ⊗ I, 2Ix⊗ 2Ix, 2Ix ⊗ 2Iy, 2Ix ⊗ 2Iz,

2Iy ⊗ I, 2Iy ⊗ 2Ix, 2Iy ⊗ 2Iy, 2Iy ⊗ 2Iz,

2Iz ⊗ I, 2Iz ⊗ 2Ix, 2Iz ⊗ 2Iy, 2Iz ⊗ 2Iz}. (4.16)

To make the notation of Eq. (4.15) clearer, the element of the basis operator P(2),21 is

given by the element of the third row and second column, 2Iy⊗2Ix. These products form

a �complete set of basis operators” of a two spin 1/2 system. The number of 16 di�erent

operators is equal to the square of the Hilbert space dimensionality. We denote the basis

elements as a product of matrices instead of direct product ⊗, with P(2),21 = 4IyIx, for

example. This is the notation that will be used from now on.

The product-operator basis P(n) is orthonormal with respect to the scalar product in

Hilbert-Schmidt space:
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(A,P ) ≡ 1

2n
Tr{A†P}, (4.17)

where n is the number of spins. This property of orthonormality allows us to expand

uniquely any density matrix in terms of this basis:

ρ =
1

2n
ID +

4n−1∑
s=1

ρsPn,s, (4.18)

where D in ID denotes the order of the identity matrix and ρs is a real number given by:

ρs = (P †n,s, ρ) = (Pn,s, ρ) = Tr(ρPn,s). (4.19)

with the self-adjointness property P †n,s = Pn,s.

For weakly coupled spins, the Fourier intensities of the NMR spectrum (Eq. (4.8))

are related to the coe�cients ρs by a set of linear equations S̄p = M × C, where S̄p =

(Sp(Ω1), Sp(Ω2), · · · )T is a column vector of Fourier intensities, observed at frequencies

Ωm, C is a vector containing some coe�cients of the expansion (Eq. (4.18)) and the

matrix M connects the experimental observed quantity S̄p to the coe�cients to be de-

termined [25]. Note that, in order to distinguish two experiments with di�erent applied

pulses, the signal is labeled with the index p. The exact form of M depends on the spin

system. For weakly coupled systems, M is given in [25]. In some cases, it is not easy

to determine analytical expressions for M, and numerical calculations must be used. By

inverting the system of equations, we can determine the coe�cients ρs. As in the single

qubit case, only a few coe�cients can be determined in a single run. The remaining

coe�cients are determined by converting non-observable terms into observable ones by

applying a preparatory set of operations {1, X, Y } to each spin, where “1” denotes no

pulse, and X and Y denote selective pulses that rotate the spin's magnetization by 90

degree about the x and y axis, respectively. As there are n spins, there will be 3n possible

preparatory operations. Nevertheless, the minimum set of experiments necessary for QST

in weakly coupled systems can be substantially reduced, as discussed in [25]. In strongly
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coupled systems the results derived for weakly coupled systems cannot be applied and one

needs to recalculate M to properly relate the coe�cients of the expansion (Eq. (4.18))

and the observed Fourier intensities of the NMR spectra (Eq. (4.8)). Next, we will dis-

cuss quantum state tomography in two strongly coupled systems and, in particular, show

how the number of experiments required for performing a complete tomography can be

reduced in the case of “ABX” systems.

SECTION: 4.3

Two Nuclei “AB” Spin System

The simplest case to be considered is two spins strongly coupled, in NMR nomen-

clature called “AB” spin system. In NMR, an “AB” spin system is comprised by two

strongly coupled spins and can be found when the chemical shift di�erence is comparable

to the coupling constant between �A� and �B� spins. Examples of such molecules are

shown in Table (4.2). Its Hamiltonian in the laboratory frame can be written as:

H = ω1I1z + ω2I2z + 2πJ12(I1xI2x + I1yI2y + I1zI2z). (4.20)

Here, subscripts 1 and 2 refer to “A” and “B” respectively. I1m and I2m are the m com-

ponents of the nuclear spin angular momentum operators for “A” and “B” nuclei; ω1 and

ω2 are the precession frequencies of “A” and “B” nuclei and J12 is the scalar coupling

constant. The four eigenstates of the “AB” spin system are shown in Table (4.1). The

energy level diagram with the eigenstates of the “AB” spin system is shown in Fig. (4.1).

In the weak coupling limit (when 2π|J12| � |ω1 − ω2|), the angle θ ≈ 0 and the four

eigenstates will be |00〉, |01〉, |10〉 and |11〉, where |0〉 and |1〉 denote the eigenstates of

the spin operator Iz. In this case the spectrum consists of a pair of doublets with equal

amplitudes. If the chemical shift is zero, we have a pair of equivalent nuclei, and only a

single line will be observed. But in the strong coupling regime the spectrum changes from

two simple doublets into a symmetrical group of four lines, the inner pair of lines being

stronger than the outer (Fig. (4.2)).
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Line Eigenstate

1 |αα〉

2 cos θ|αβ〉+ sin θ|βα〉

3 − sin θ|αβ〉+ cos θ|βα〉

4 |ββ〉

Tab. 4.1: The four eigenstates for two nuclei “AB”. Where α = 0, β = 1 and θ = 1
2 tan−1( 2πJ12

ω1−ω2
)

is the mixing angle.

Fig. 4.1: Energy level diagram of an “AB” spin system. The numbers correspond to the eigen-
states given in Table (4.1).
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Formula
Name

• 2-Bromo-5-
Chlorothiophene
(C4H2BrClS)

• 2-
Chloroacrylonitrile
(C3H2ClN)

• Trisodium
Citrate
(C6H5O7Na3)

• 1-Bromo-1-
Chloroethene
(C2H2BrCl)

Tab. 4.2: Examples of NMR “AB” spin systems.

Hence, for two strongly coupled spins, the Hamiltonian in the matrix form can be

written as:

H =


(ω1+ω2)

2
+
πJ12

2
0 0 0

0
(ω1−ω2)

2
−πJ12

2
πJ12 0

0 πJ12 − (ω1−ω2)
2

−πJ12
2

0

0 0 0 − (ω1+ω2)
2

+
πJ12

2

 . (4.21)

The Hamiltonian matrix is not diagonal and we aim to diagonalize this matrix. We
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recognize that the �rst and last terms of the Hamiltonian will not change a diagonalization

procedure as there are no o�-diagonals associated with them. Only the second and third

terms will change. Using the unitary transformation,

Hdiag = V̂ −1HV̂ , (4.22)

Hamiltonian for “AB” spin system can be diagonalized. Where V is the unitary matrix

that it contains eigenvectors of “AB” spin systems and can be chosen as:

V =



1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1


, V −1 =



1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1


, (4.23)

where V̂ V̂ −1 = 1̂ and θ = 1
2

tan−1( 2πJ12

ω1−ω2
). Then, the fully diagonalized Hamiltonian

matrix by using Eq. (4.22) is as follows:

Hdiag =



(ω1+ω2)
2

+ πJ12

2
0 0 0

0 a b 0

0 b c 0

0 0 0 − (ω1+ω2)
2

+ πJ12

2


, (4.24)

where

a = (ω1−ω2)
2

cos(2θ)− πJ12 sin(2θ)− πJ12

2
,

b = − (ω1−ω2)
2

sin(2θ) + πJ12 cos(2θ),

c = − (ω1−ω2)
2

cos(2θ) + πJ12 sin(2θ)− πJ12

2
.

If this matrix is to be diagonal then:

b = 0 ⇒ −(ω1 − ω2)

2
sin(2θ) + πJ12 cos(2θ) = 0, (4.25)

tan(2θ) =
2πJ12

(ω1 − ω2)
⇒ θ =

1

2
tan−1(

2πJ12

ω1 − ω2

). (4.26)
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Using the general equation for eigenvalues of 2× 2 matrix, the eigenvalues are:

λ = ∓1

2

√
4(πJ12)2 + (ω1 − ω2)2 − πJ12

2
, (4.27)

and therefore, the full diagonalized Hamiltonian matrix is:

Hdiag =


(ω1+ω2)

2
+
πJ12

2
0 0 0

0 M
2
−πJ12

2
0 0

0 0 −M
2
−πJ12

2
0

0 0 0 − (ω1+ω2)
2

+
πJ12

2

 , (4.28)

where M =
√

4(πJ12)2 + (ω1 − ω2)2.

For “AB” spin 1/2 systems, there are only four allowed transitions. The allowed tran-

sitions of the “AB” spin system with transition energies and relative intensities are given

in Table (4.3). The relative intensities are proportional to the squares of the appropriate

matrix elements of the x component of the spin Ix(A) + Ix(B). Thus for the transition

2→ 1, for example, we have:

[cos θ(αβ)|Ix(A) + Ix(B)|αα]2 =
1

4
(cos θ + sin θ)2 =

1

4
(1 + sin 2θ). (4.29)

Transition Energy Relative intensity

1)3→ 1 (ω1+ω2)
2

+ M
2

+ πJ12 1− sin(2θ)

2)4→ 2 (ω1+ω2)
2

+ M
2
− πJ12 1 + sin(2θ)

3)2→ 1 (ω1+ω2)
2
− M

2
+ πJ12 1 + sin(2θ)

4)4→ 3 (ω1+ω2)
2
− M

2
− πJ12 1− sin(2θ)

Tab. 4.3: Transition Energies and Intensities for two nuclei spins “AB”.
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Fig. 4.2: Typical spectrum for two nuclei “AB”. It is assumed that ωA > ωB and J > 0.

As we mentioned, the NMR signal can therefore be rewritten in terms of the dioganal-

ized Hamiltonian, Hdiag, as:

Sp(t) =
n∑
k=1

Tr{ ρ0U
−1
p V e+iHdiagt V −1 Ik+ V e−iHdiagt V −1 Up}. (4.30)

After an explicit calculation of Eq. (4.30) by substituting Eqs. (4.23) and (4.28) into

(4.30), the signal due to spins “AB” can be written in the form:

Sp,1,2(t) =
1

4
(1, 2, 3, 4)×

(2 sin2(θ)− sin(2θ)) −(2 sin2(θ)− sin(2θ)) (2 cos2(θ)− sin(2θ)) −(2 cos2(θ)− sin(2θ))

(2 sin2(θ) + sin(2θ)) (2 sin2(θ) + sin(2θ)) (2 cos2(θ) + sin(2θ)) (2 cos2(θ) + sin(2θ))

(2 cos2(θ) + sin(2θ)) −(2 cos2(θ) + sin(2θ)) (2 sin2(θ) + sin(2θ)) −(2 sin2(θ) + sin(2θ))

(2 cos2(θ)− sin(2θ)) (2 cos2(θ)− sin(2θ)) (2 sin2(θ)− sin(2θ)) (2 sin2(θ)− sin(2θ))



×



Tr{ρ0Ĩ1+}

Tr{ρ02Ĩ1+Ĩ2z}

Tr{ρ0Ĩ2+}

Tr{ρ02Ĩ1z Ĩ2+}


, (4.31)
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where

1 = (ω1+ω2)
2
− M

2
− πJ12, 2 = (ω1+ω2)

2
− M

2
+ πJ12,

3 = (ω1+ω2)
2

+ M
2
− πJ12 and 4 = (ω1+ω2)

2
+ M

2
+ πJ12.

Here, Ã = U−1
p AUp is the operator A transformed by the unitary operator U−1

p due

to the applied preparatory pulses. Taking the Fourier transform of Eq. (4.31) at the four

observed frequencies, we �nd that:



S̄p,1,2(ω1+ω2

2
− M

2
− πJ12)

S̄p,1,2(ω1+ω2

2
− M

2
+ πJ12)

S̄p,1,2(ω1+ω2

2
+ M

2
− πJ12)

S̄p,1,2(ω1+ω2

2
+ M

2
+ πJ12)


=

1

4
×


(2 sin2(θ)− sin(2θ)) −(2 sin2(θ)− sin(2θ)) (2 cos2(θ)− sin(2θ)) −(2 cos2(θ)− sin(2θ))

(2 sin2(θ) + sin(2θ)) (2 sin2(θ) + sin(2θ)) (2 cos2(θ) + sin(2θ)) (2 cos2(θ) + sin(2θ))

(2 cos2(θ) + sin(2θ)) −(2 cos2(θ) + sin(2θ)) (2 sin2(θ) + sin(2θ)) −(2 sin2(θ) + sin(2θ))

(2 cos2(θ)− sin(2θ)) (2 cos2(θ)− sin(2θ)) (2 sin2(θ)− sin(2θ)) (2 sin2(θ)− sin(2θ))



×



Tr{ρ0Ĩ1+}

Tr{ρ02Ĩ1+Ĩ2z}

Tr{ρ0Ĩ2+}

Tr{ρ02Ĩ1z Ĩ2+}


. (4.32)

As we can see from this equation, the intensities of the lines of an NMR spectrum are

related to linear combinations of the expected values of speci�c observable, I1+, 2I1+I2z,

I2+ and 2I1zI2+ for the spectrum of spins 1 and 2 in an “AB” spin system. We invert

Eq. (4.32) and construct the expectation values directly in terms of linear combinations

of �tted data:
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21−n


−A B C D

A B −C D

D C B −A

−D C −B −A





S̄p,1,2(ω1+ω2

2
− M

2
− πJ12)

S̄p,1,2(ω1+ω2

2
− M

2
+ πJ12)

S̄p,1,2(ω1+ω2

2
+ M

2
− πJ12)

S̄p,1,2(ω1+ω2

2
+ M

2
+ πJ12)



=
1

2n
×



Tr{ρ02Ĩ1+}

Tr{ρ04Ĩ1+Ĩ2z}

Tr{ρ02Ĩ2+}

Tr{ρ04Ĩ1z Ĩ2+},


, (4.33)

where A = sin θ
cos θ−sin θ

, B = sin θ
cos θ+sin θ

, C = cos θ
cos θ+sin θ

, D = cos θ
cos θ−sin θ

. In Eq. (4.33), n

denotes the number of spins in each system and for an “AB” spin system, n is equal to 2.

In the weak coupling limit (2π|J12| � |ω1 − ω2|), the angle θ ≈ 0, M ≈ |ω1 − ω2| and

the results of Ref. [25] for two weakly coupled spins are obtained. Since the coe�cients

involved in Eq. (4.33) are the same as in the weak coupling case, we can use the minimal

set of preparatory pulses derived in [25] to perform a complete quantum state tomography

of “AB” systems.

SECTION: 4.4

Three Nuclei “ABX” Spin System

We can extend the results of the previous section to three-spin systems known in NMR

nomenclature as “ABX” systems. In an “ABX” spin system, the chemical shift di�erence

between the “A” and “B” nuclei is comparable to their coupling to each other and both

are coupled to a “X” nucleus but the chemical shift of “X” nucleus is far away from the

chemical shifts of the “A” and “B” nuclei. Examples of “ABX” systems are shown in

Table (4.5). The Hamiltonian in the laboratory frame for an “ABX” spin system can be
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written as:

H = ω1I1z + ω2I2z + ω3I3z + 2πJ12(I1xI2x + I1yI2y

+ I1zI2z) + 2πJ13(I1zI3z) + 2πJ23(I2zI3z), (4.34)

where 1, 2 and 3 labels are related to the nuclei “A”, “B” and “X”, respectively and I1m,

I2m, and I3m are the m components of the nuclear spin angular momentum operators for

“A”, “B”, and “X” nuclei; ω1, ω2, and ω3 are the precession frequencies of the nuclei

“A”, “B”, and “X”, respectively. J12 is the coupling between “A” and “B” nuclei, J13 is

the coupling between “A” and “X” nuclei, and J23 is the coupling between “B” and “X”

nuclei. The eight eigenstates of the “ABX” spin system are given in Table (4.4). The

energy level diagram of the “ABX” spin system is shown in Fig. (4.3).

Line Eigenstate

1 |ααα〉

2 |ααβ〉

3 cos θ+|αβα〉+ sin θ+|βαα〉

4 − sin θ+|αβα〉+ cos θ+|βαα〉

5 cos θ−|αββ〉+ sin θ−|βαβ〉

6 − sin θ−|αββ〉+ cos θ−|βαβ〉

7 |ββα〉

8 |βββ〉

Tab. 4.4: The eight eigenstates for three nuclei “ABX”. Where α = 0, β = 1 and θ± =
1
2 tan−1 2πJ12

ω1−ω2±π(J13−J23) .

When the angles θ± are small, the eigenstates reduce to |ααα〉, |ααβ〉, |αβα〉, |αββ〉,

|βαα〉, |βαβ〉, |ββα〉 and |βββ〉.
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Fig. 4.3: Energy level diagram of an “ABX” spin system. The numbers correspond to the
eigenstates given in Table (4.4).

Formula
Name

•
Trichloroethylene
(TCE)
(C2HCl3)

• 2-Fluoro-
4,6-
Dichlorophenol
(C6H3FCl2O)

• 2,3-
Lutidine
(C7H9N)

• Styrene
Oxide
(C8H8O)

Tab. 4.5: Examples of NMR “ABX” spin systems.
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For an “ABX” system, the Hamiltonian in the matrix form can be written as:

H =


A1 0 0 0 0 0 0 0
0 A2 0 0 0 0 0 0
0 0 A3 0 A7 0 0 0
0 0 0 A5 0 A9 0 0
0 0 A4 0 A8 0 0 0
0 0 0 A6 0 A10 0 0
0 0 0 0 0 0 A11 0
0 0 0 0 0 0 0 A12

 , (4.35)

where

A1 = (ω1+ω2+ω3)
2

+ πJ12+πJ13+πJ23

2
,

A2 = (ω1+ω2−ω3)
2

+ πJ12−πJ13−πJ23

2
,

A3 = (ω1−ω2+ω3)
2

+ −πJ12+πJ13−πJ23

2
,

A4 = πJ12,

A5 = (ω1−ω2−ω3)
2

+ −πJ12−πJ13+πJ23

2
,

A6 = πJ12, A7 = πJ12,

A8 = (−ω1+ω2+ω3)
2

+ −πJ12−πJ13+πJ23

2
,

A9 = πJ12,

A10 = (−ω1+ω2−ω3)
2

+ −πJ12+πJ13−πJ23

2
,

A11 = (−ω1−ω2+ω3)
2

+ πJ12−πJ13−πJ23

2
,

A12 = (−ω1−ω2−ω3)
2

+ πJ12+πJ13+πJ23

2
.

In an “ABX” spin system, we also use the unitary transformation Hdiag = V −1HV

for diagonalization the Hamiltonian, where “V ” is the unitary matrix of eigenvectors

(columns):

V =



0 0 0 0 0 0 0 1

0 0 0 0 0 1 0 0

0 0 − sin θ+ 0 cos θ+ 0 0 0

− sin θ− 0 0 0 0 0 cos θ− 0

0 0 cos θ+ 0 sin θ+ 0 0 0

cos θ− 0 0 0 0 0 sin θ− 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0



. (4.36)
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The Hamiltonian in its diagonal form is therefore given by:

Hdiag =


B1 0 0 0 0 0 0 0
0 B2 0 0 0 0 0 0
0 0 B3 0 0 0 0 0
0 0 0 B4 0 0 0 0
0 0 0 0 B5 0 0 0
0 0 0 0 0 B6 0 0
0 0 0 0 0 0 B7 0
0 0 0 0 0 0 0 B8

 , (4.37)

where

B1 = −ω3

2
− πJ12

2
− M−

2
,

B2 = (−ω1−ω2+ω3)
2

+ πJ12−πJ13−πJ23

2
,

B3 = ω3

2
− πJ12

2
− M+

2
,

B4 = (−ω1−ω2−ω3)
2

+ πJ12+πJ13+πJ23

2
,

B5 = ω3

2
− πJ12

2
+ M+

2
,

B6 = (ω1+ω2−ω3)
2

+ πJ12−πJ13−πJ23

2
,

B7 = −ω3

2
− πJ12

2
+ M−

2
,

B8 = (ω1+ω2+ω3)
2

+ πJ12+πJ13+πJ23

2
,

and

M± =
√

4(πJ12)2 + ((ω1 − ω2)± π(J13 − J23))2.

According to the selection rules, there are 14 allowed transitions. The �rst 12 out of

14 transitions are �rst order transitions and the last two transitions are multiple quantum

transitions, in which all three spins �ip; they are called combination lines. Therefore an

“ABX” spectrum consists of 14 lines. The combination lines (lines 14 and 15) become

large when JAB > (ωA − ωB) and these are the “X” lines. So the “AB” part of “ABX”

spectrum contains 8 lines that consists of two separate quartets and the “X” part of

“ABX” spectrum contains 6 lines. The allowed transitions with the transition energies

and relative intensities are given in Table (4.6).
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Transition Energy Relative
intensity

1)8→ 6 ω̄ + π
2 (−2J12 − J13 − J23)− M−

2 1− sin(2θ+)

2)5→ 2 ω̄ + π
2 (2J12 − J13 − J23)− M−

2 1 + sin(2θ−)

3)7→ 4 ω̄ + π
2 (−2J12 + J13 + J23)− M+

2 1− sin(2θ−)

4)3→ 1 ω̄ + π
2 (2J12 + J13 + J23)− M+

2 1 + sin(2θ+)

5)8→ 5 ω̄ + π
2 (−2J12 − J13 − J23) + M−

2 1 + sin(2θ−)

6)7→ 3 ω̄ + π
2 (−2J12 + J13 + J23) + M+

2 1 + sin(2θ+)

7)6→ 2 ω̄ + π
2 (2J12 − J13 − J23) + M−

2 1− sin(2θ−)

8)4→ 1 ω̄ + π
2 (2J12 + J13 + J23) + M+

2 1− sin(2θ+)

9)8→ 7 ω3 − π(J13 + J23) 1

10)5→ 3 ω3 + (M+−M−)
2 cos2(θ+ − θ−)

11)6→ 4 ω3 + (−M++M−)
2 cos2(θ+ − θ−)

12)2→ 1 ω3 + π(J13 + J23) 1

13)7→ 2 Forbidden Transition 0

14)5→ 4 ω3 − (M++M−)
2 sin2(θ+ − θ−)

15)6→ 3 ω3 + (M++M−)
2 sin2(θ+ − θ−)

Tab. 4.6: Transition Energies and Intensities for three nuclei “ABX”, where ω̄ = (ω1+ω2)
2 and

θ± = 1
2 tan−1 2πJ12

ω1−ω2±π(J13−J23) .

Fig. 4.4: Typical spectrum for three nuclei “ABX”. The lines 1, 2, 3, 4 are “B” lines; 5, 6, 7, 8
are “A” lines and 9, 10, 11, 12, 14, 15 are “X” lines. The numbering of lines applies if
ωA > ωB and J23 > J13. The numbers in the �gure are related to the transitions
indicated in Table (4.6).

First, the “AB” part of the “ABX” spin system is considered. To derive the “AB”

part of the spectrum we analytically calculate the signal (4.7) for the I+
1 and I+

2 terms in

an “ABX” spin system. By substituting Eqs. (4.36) and (4.37) into (4.12), we �nd that

the signal due to spins 1 and 2 can be written as:
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Sp,1,2(t) =
1

8
(1, 2, 3, 4, 5, 6, 7, 8)×

D1 −D1 −D1 D1 D7 −D7 −D7 D7

D2 D2 −D2 −D2 D5 D5 −D5 −D5

D3 −D3 D3 −D3 D8 −D8 D8 −D8

D4 D4 D4 D4 D6 D6 D6 D6

D5 −D5 −D5 D5 D2 −D2 −D2 D2

D6 −D6 D6 −D6 D4 −D4 D4 −D4

D7 D7 −D7 −D7 D1 D1 −D1 −D1

D8 D8 D8 D8 D3 D3 D3 D3



×



Tr{ρ0Ĩ1+}

Tr{ρ02Ĩ1+Ĩ2z}

Tr{ρ02Ĩ1+Ĩ3z}

Tr{ρ04Ĩ1+Ĩ2z Ĩ3z}

Tr{ρ0Ĩ2+}

Tr{ρ02Ĩ1z Ĩ2+}

Tr{ρ02Ĩ2+Ĩ3z}

Tr{ρ04Ĩ1z Ĩ2+Ĩ3z}



, (4.38)

where

1 = (ω1+ω2)
2
− M−

2
− π(J13+J23)

2
− πJ12,

2 = (ω1+ω2)
2
− M−

2
− π(J13+J23)

2
+ πJ12,

3 = (ω1+ω2)
2
− M+

2
+ π(J13+J23)

2
− πJ12,

4 = (ω1+ω2)
2
− M+

2
+ π(J13+J23)

2
+ πJ12,

5 = (ω1+ω2)
2

+ M−

2
− π(J13+J23)

2
− πJ12,

6 = (ω1+ω2)
2

+ M+

2
+ π(J13+J23)

2
− πJ12,

7 = (ω1+ω2)
2

+ M−

2
− π(J13+J23)

2
+ πJ12,

8 = (ω1+ω2)
2

+ M+

2
+ π(J13+J23)

2
+ πJ12,

and

D1 = (2 sin2(θ−)− sin(2θ−)), D2 = (2 sin2(θ−) + sin(2θ−)),

D3 = (2 sin2(θ+)− sin(2θ+)), D4 = (2 sin2(θ+) + sin(2θ+)),

D5 = (2 cos2(θ−) + sin(2θ−)), D6 = (2 cos2(θ+) + sin(2θ+)),
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D7 = (2 cos2(θ−)− sin(2θ−)), D8 = (2 cos2(θ+)− sin(2θ+)).

Here, Ã = U−1
p AUp is also the operator A transformed by the unitary operator U−1

p

due to the applied preparatory pulses. Taking the Fourier transform of Eq. (4.38) at the

eight observed frequencies, we �nd that:



S̄p,1,2( (ω1+ω2)
2
− M−

2
− π(J13+J23)

2
− πJ12)

S̄p,1,2( (ω1+ω2)
2
− M−

2
− π(J13+J23)

2
+ πJ12)

S̄p,1,2( (ω1+ω2)
2
− M+

2
+ π(J13+J23)

2
− πJ12)

S̄p,1,2( (ω1+ω2)
2
− M+

2
+ π(J13+J23)

2
+ πJ12)

S̄p,1,2( (ω1+ω2)
2

+ M−

2
− π(J13+J23)

2
− πJ12)

S̄p,1,2( (ω1+ω2)
2

+ M+

2
+ π(J13+J23)

2
− πJ12)

S̄p,1,2( (ω1+ω2)
2

+ M−

2
− π(J13+J23)

2
+ πJ12)

S̄p,1,2( (ω1+ω2)
2

+ M+

2
+ π(J13+J23)

2
+ πJ12)



=
1

8



D1 −D1 −D1 D1 D7 −D7 −D7 D7

D2 D2 −D2 −D2 D5 D5 −D5 −D5

D3 −D3 D3 −D3 D8 −D8 D8 −D8

D4 D4 D4 D4 D6 D6 D6 D6

D5 −D5 −D5 D5 D2 −D2 −D2 D2

D6 −D6 D6 −D6 D4 −D4 D4 −D4

D7 D7 −D7 −D7 D1 D1 −D1 −D1

D8 D8 D8 D8 D3 D3 D3 D3



×



Tr{ρ0Ĩ1+}

Tr{ρ02Ĩ1+Ĩ2z}

Tr{ρ02Ĩ1+Ĩ3z}

Tr{ρ04Ĩ1+Ĩ2z Ĩ3z}

Tr{ρ0Ĩ2+}

Tr{ρ02Ĩ1z Ĩ2+}

Tr{ρ02Ĩ2+Ĩ3z}

Tr{ρ04Ĩ1z Ĩ2+Ĩ3z}



. (4.39)

We invert Eq. (4.39) and construct the expectation values directly in terms of linear
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combinations of �tted data:

21−n



−A B −C D E F G K

A B C D −E −F G K

A −B −C D −E F −G K

−A −B C D E −F −G K

G E K F B D −A −C

−G E −K F −B −D −A −C

−G −E K F −B D A −C

G −E −K F B −D A −C


×



S̄p,1,2( (ω1+ω2)
2
− M−

2
− π(J13+J23)

2
− πJ12)

S̄p,1,2( (ω1+ω2)
2
− M−

2
− π(J13+J23)

2
+ πJ12)

S̄p,1,2( (ω1+ω2)
2
− M+

2
+ π(J13+J23)

2
− πJ12)

S̄p,1,2( (ω1+ω2)
2
− M+

2
+ π(J13+J23)

2
+ πJ12)

S̄p,1,2( (ω1+ω2)
2

+ M−

2
− π(J13+J23)

2
− πJ12)

S̄p,1,2( (ω1+ω2)
2

+ M+

2
+ π(J13+J23)

2
− πJ12)

S̄p,1,2( (ω1+ω2)
2

+ M−

2
− π(J13+J23)

2
+ πJ12)

S̄p,1,2( (ω1+ω2)
2

+ M+

2
+ π(J13+J23)

2
+ πJ12)



=
1

2n
×



Tr{ρ02Ĩ1+}

Tr{ρ04Ĩ1+Ĩ2z}

Tr{ρ04Ĩ1+Ĩ3z}

Tr{ρ08Ĩ1+Ĩ2z Ĩ3z}

Tr{ρ02Ĩ2+}

Tr{ρ04Ĩ1z Ĩ2+}

Tr{ρ04Ĩ2+Ĩ3z}

Tr{ρ08Ĩ1z Ĩ2+Ĩ3z}



, (4.40)

where

A = sin θ−

cos θ−−sin θ−
, B = sin θ−

cos θ−+sin θ−
, C = sin θ+

cos θ+−sin θ+ , D = sin θ+

cos θ++sin θ+ ,

E = cos θ−

cos θ−+sin θ−
, F = cos θ+

cos θ++sin θ+ , G = cos θ−

cos θ−−sin θ−
, K = cos θ+

cos θ+−sin θ+ and n = 3.

Now, let us consider the “X” part of the “ABX” spin system. The “X” part of
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the spectrum contains 6 lines corresponding to 4 �rst order and 2 multiple quantum

transitions. When 2π|J12| < |ω1 − ω2| the intensities of the multiple quantum transitions

become small and may not be observed in some cases. We consider I3+ term in an “ABX”

spin system (the “X” part of the “ABX” spin system) and by substituting Eqs. (4.36)

and (4.37) into (4.12), we �nd that the signal due to spin 3 can be written as:

Sp,3(t) =
1

4
(1, 2, 3, 4, 5, 6)×



E1 −E3 E3 −E1 E5 −E8

1 −1 −1 1 0 0

E2 E4 −E4 −E2 E6 E7

E2 −E4 E4 −E2 −E7 −E6

1 1 1 1 0 0

E1 E3 −E3 −E1 E8 −E5



×



Tr{ρ0Ĩ3+}

Tr{ρ02Ĩ1z Ĩ3+}

Tr{ρ02Ĩ2z Ĩ3+}

Tr{ρ04Ĩ1z Ĩ2z Ĩ3+}

Tr{ρ04Ĩ1−Ĩ2+Ĩ3+}

Tr{ρ04Ĩ1+Ĩ2−Ĩ3+}


, (4.41)

where

1 = ω3 + −M+−M−
2

,

2 = ω3 − π(J13 + J23),

3 = ω3 + M+−M−
2

,

4 = ω3 + −M++M−

2
,

5 = ω3 + π(J13 + J23),

6 = ω3 + M++M−

2
,

and

E1 = sin2(θ− − θ+),

E2 = cos2(θ− − θ+) ,

E3 = sin(θ− − θ+) sin(θ− + θ+),
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E4 = cos(θ− − θ+) cos(θ− + θ+),

E5 = cos(θ−) cos(θ+) sin(θ− − θ+),

E6 = cos(θ−) sin(θ+) cos(θ− − θ+),

E7 = sin(θ−) cos(θ+) cos(θ− − θ+),

E8 = sin(θ−) sin(θ+) sin(θ− − θ+).

Taking the Fourier transform of Eq. (4.41) at the six observed frequencies, we �nd

that:



S̄p,3(ω3 + −M+−M−
2

)

S̄p,3(ω3 − π(J13 + J23))

S̄p,3(ω3 + M+−M−
2

)

S̄p,3(ω3 + −M++M−

2
)

S̄p,3(ω3 + π(J13 + J23))

S̄p,3(ω3 + M++M−

2
)



=
1

4



E1 −E3 E3 −E1 E5 −E8

1 −1 −1 1 0 0

E2 E4 −E4 −E2 E6 E7

E2 −E4 E4 −E2 −E7 −E6

1 1 1 1 0 0

E1 E3 −E3 −E1 E8 −E5



×



Tr{ρ0Ĩ3+}

Tr{ρ02Ĩ1z Ĩ3+}

Tr{ρ02Ĩ2z Ĩ3+}

Tr{ρ04Ĩ1z Ĩ2z Ĩ3+}

Tr{ρ04Ĩ1−Ĩ2+Ĩ3+}

Tr{ρ04Ĩ1+Ĩ2−Ĩ3+}


. (4.42)

We invert Eq. (4.42) and construct the expectation values directly in terms of linear

combinations of �tted data. Therefore, the relation between the Fourier intensities and
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product basis coe�cients at the six observed frequencies is given by:

21−n



1 1 1 1 1 1

−S −1 P −P 1 S

S −1 −P P 1 −S

−1 1 −1 −1 1 −1

Q 0 −Y −R 0 M

−M 0 R Y 0 −Q


×



S̄p,3(ω3 + −M+−M−
2

)

S̄p,3(ω3 − π(J13 + J23))

S̄p,3(ω3 + M+−M−
2

)

S̄p,3(ω3 + −M++M−

2
)

S̄p,3(ω3 + π(J13 + J23))

S̄p,3(ω3 + M++M−

2
)



=
1

2n
×



Tr{ρ02Ĩ3+}

Tr{ρ04Ĩ1z Ĩ3+}

Tr{ρ04Ĩ2z Ĩ3+}

Tr{ρ08Ĩ1z Ĩ2z Ĩ3+}

Tr{ρ08Ĩ1−Ĩ2+Ĩ3+}

Tr{ρ08Ĩ1+Ĩ2−Ĩ3+}


, (4.43)

where

S = sin(θ−+θ+)
sin(θ−−θ+)

, P = cos(θ−+θ+)
cos(θ−−θ+)

,

Q = (2 cos(θ−−θ+)+2 cos(θ−+θ+))
sin(θ−−θ+)

,

Y = (2 sin(θ−−θ+)−2 sin(θ−+θ+))
cos(θ−−θ+)

,

R = (2 sin(θ−−θ+)+2 sin(θ−+θ+))
cos(θ−−θ+)

,

M = (2 cos(θ−−θ+)−2 cos(θ−+θ+))
sin(θ−−θ+)

and n = 3.

The multiple quantum transitions, which are not present in weakly coupled systems,

add further information to a single spectrum. This feature allows one to reduce the num-

ber of experiments needed to complete the tomography of the density matrix.
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Thus, using Eq. (4.33) in “AB” spin system and Eqs. (4.40) and (4.43) in “ABX” spin

system, the density matrix can be reconstructed for “AB” and “ABX” spin systems.

To prove the accuracy of the results obtained in this section and the previous section,

several experiments have been performed on the “AB” and “ABX” spin systems which

are described fully in the next chapter.
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Result II:

We report in this chapter two experimental benchmarks on a three-qubit liquid state nu-

clear magnetic resonance quantum information processor aimed at testing the technique

developed in the previous chapter. In both cases, full quantum state tomography was

performed at the di�erent steps. In the �rst case, i.e. for “AB” spin system, the density

matrix is reconstructed in two steps |11〉 and |10〉 while in the second case, i.e. for the

“ABX” spin system, the density matrix is reconstructed in each step of the quantum

teleportation protocol.

SECTION: 5.1

“AB” Spin System

As we have obtained in the previous chapter, the NMR signal due to spins “AB” can

be written in the form (see Eq. (4.33)):

21−n


−A B C D

A B −C D

D C B −A

−D C −B −A





S̄p,1,2(ω1+ω2

2
− M

2
− πJ12)

S̄p,1,2(ω1+ω2

2
− M

2
+ πJ12)

S̄p,1,2(ω1+ω2

2
+ M

2
− πJ12)

S̄p,1,2(ω1+ω2

2
+ M

2
+ πJ12)



=
1

2n
×



Tr{ρ02Ĩ1+}

Tr{ρ04Ĩ1+Ĩ2z}

Tr{ρ02Ĩ2+}

Tr{ρ04Ĩ1z Ĩ2+}


, (5.1)

106
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where A = sin θ
cos θ−sin θ

, B = sin θ
cos θ+sin θ

, C = cos θ
cos θ+sin θ

, D = cos θ
cos θ−sin θ

and n = 2.

Since the coe�cients involved in Eq. (5.1) are the same as in the weak coupling case,

we can use the minimal set of preparatory pulses shown in Table (5.1) to perform a com-

plete state tomography of “AB” systems.

Pulse set

XX, 11, 1X, 1Y

Tab. 5.1: The pulse set, together, yield the complete tomography of two-spin homonuclear sys-
tem. The pulse set labeled 1X applied to the two-spin system, for example, speci�es
no pulse on spin 1, and an X pulse on spin 2.

To prove Eq. (5.1), we have reconstructed the density matrices of two strongly coupled

qubits for the state |11〉 and the subsequent application of the Controlled-NOT (CNOT)

gate. The experimental density matrices of two strongly coupled qubits for these two

states are shown in Fig. (5.3). This demonstration was carried out on a liquid-state NMR

quantum information processor, using a sample of trichloroethylene dissolved in deutered

chloroform (Fig. (5.1)). In this sample, the chemical shift di�erence between two carbons

is comparable to their coupling to each other, and both are coupled to a Hydrogen with

Larmor frequency far away from the ones of the two carbons. The coupling constants are

J12 = 103.1Hz, J13 = 8.59Hz, and J23 = 201.31Hz and the di�erence between the C1

and C2 Larmor frequencies is ∆ν12 = 899.67Hz. The phase decoherence times (T2) for

C1 and C2 and Hydrogen are approximately 0.4s and 0.6s and 4s, respectively. The spin

system is actually an “ABX” system. However, when the proton spin is decoupled from

the two carbons, the system becomes an “AB” system ( this is what we have used in this

section). The molecule structure and NMR spectra of the thermal equilibrium state are

shown in Figs. (5.1) and (5.2).
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(Hz) C1 C2 H

C1 15553.1 103.1 8.59

C2 103.1 3234.5 201.3

H 8.59 201.3 14653.4

Fig. 5.1: The structure and the parameters of carbon and proton labeled trichloroethylene (TCE)
molecule. The diagonal terms in the table are the chemical shifts (in Hz) of the carbons
and proton. The nondiagonal terms are the coupling constants, also in Hz. The numbers
above the carbons and proton specify the number of qubits.

(a) (b)
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(c)

Fig. 5.2: Thermal equilibrium spectra of trichloroethylene (a) Carbon spectrum when the pro-
ton is not decoupled, (b) proton spectrum and (c) carbon spectrum when proton is
decoupled, obtained by applying selective readout pulses to the system in its thermal
equilibrium state.

All quantum operations were implemented using Gradient Ascent Pulse Engineering

(GRAPE) method (see chapter (3)). The total duration of each pulse used in our experi-

ment was between 1ms to 2ms. Table (5.2) show the control parameters for each GRAPE

pulse used in this experiment.

Pulse Time step Total time 1
2J

Fidelity

R1
x(
π
2
) 1 µs 1000 µs - 0.9999

R2
x(
π
2
) 1.5 µs 1500 µs - 1

Hadamard for �rst qubit 1 µs 1000 µs - 0.9999

Hadamard for second qubit 1.5 µs 1500 µs - 1

CNOT12 2 µs 4000 µs 2.5 ms 0.9999

CNOT23 3 µs 6000 µs 4.9 ms 0.9999

Tab. 5.2: Control parameters input into the GRAPE algorithm for trichloroethylene molecule
(see Chapter (3)).

To measure the e�cacy with which the experiment was carried out, we calculated the

�delity, i.e.
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F =
tr(ρexpρ

†
theory)√

tr(ρ2
exp)tr(ρ

2
theory)

, (5.2)

where ρexp and ρtheory are experimental and theoretical density matrices, respectively.

Using this formula, the �delities of the state |11〉 and the subsequent application of the

CNOT gate, with the �rst qubit (C1) as the control and the second qubit (C2) as the

target, were found to be over 0.99. The result demonstrates that satisfactory accuracy in

the density matrix reconstruction can be achieved with this method.

(a) (b)

Fig. 5.3: Real parts of the reconstructed density matrices for an “AB” system. (a) State |11〉
and (b) after the application of the CNOT gate over the state |11〉, resulting in the
state |10〉, where CNOTij denotes a Controlled-NOT gate with the qubit i as control
and the qubit j as target. The �delity was over 0.99 in both cases. The rows and
columns represent the standard computational basis in binary order, with 〈00| starting
from the leftmost column and 〈11| being the rightmost column.

SECTION: 5.2

“ABX” Spin System

As we obtained in the previous chapter, the signal due to spins “AB” and “X” in the

“ABX” spin system can be written in the form of the following equations, respectively

(see Eqs. (4.40) and (4.43)):
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21−n



−A B −C D E F G K

A B C D −E −F G K

A −B −C D −E F −G K

−A −B C D E −F −G K

G E K F B D −A −C

−G E −K F −B −D −A −C

−G −E K F −B D A −C

G −E −K F B −D A −C


×



S̄p,1,2( (ω1+ω2)
2
− M−

2
− π(J13+J23)

2
− πJ12)

S̄p,1,2( (ω1+ω2)
2
− M−

2
− π(J13+J23)

2
+ πJ12)

S̄p,1,2( (ω1+ω2)
2
− M+

2
+ π(J13+J23)

2
− πJ12)

S̄p,1,2( (ω1+ω2)
2
− M+

2
+ π(J13+J23)

2
+ πJ12)

S̄p,1,2( (ω1+ω2)
2

+ M−

2
− π(J13+J23)

2
− πJ12)

S̄p,1,2( (ω1+ω2)
2

+ M+

2
+ π(J13+J23)

2
− πJ12)

S̄p,1,2( (ω1+ω2)
2

+ M−

2
− π(J13+J23)

2
+ πJ12)

S̄p,1,2( (ω1+ω2)
2

+ M+

2
+ π(J13+J23)

2
+ πJ12)



=
1

2n
×



Tr{ρ02Ĩ1+}

Tr{ρ04Ĩ1+Ĩ2z}

Tr{ρ04Ĩ1+Ĩ3z}

Tr{ρ08Ĩ1+Ĩ2z Ĩ3z}

Tr{ρ02Ĩ2+}

Tr{ρ04Ĩ1z Ĩ2+}

Tr{ρ04Ĩ2+Ĩ3z}

Tr{ρ08Ĩ1z Ĩ2+Ĩ3z}



, (5.3)

where

A = sin θ−

cos θ−−sin θ−
, B = sin θ−

cos θ−+sin θ−
,

C = sin θ+

cos θ+−sin θ+ , D = sin θ+

cos θ++sin θ+ ,

E = cos θ−

cos θ−+sin θ−
, F = cos θ+

cos θ++sin θ+ ,

G = cos θ−

cos θ−−sin θ−
, K = cos θ+

cos θ+−sin θ+ and n = 3.
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21−n



1 1 1 1 1 1

−S −1 P −P 1 S

S −1 −P P 1 −S

−1 1 −1 −1 1 −1

Q 0 −Y −R 0 M

−M 0 R Y 0 −Q


×



S̄p,3(ω3 + −M+−M−
2

)

S̄p,3(ω3 − π(J13 + J23))

S̄p,3(ω3 + M+−M−
2

)

S̄p,3(ω3 + −M++M−

2
)

S̄p,3(ω3 + π(J13 + J23))

S̄p,3(ω3 + M++M−

2
)



=
1

2n
×



Tr{ρ02Ĩ3+}

Tr{ρ04Ĩ1z Ĩ3+}

Tr{ρ04Ĩ2z Ĩ3+}

Tr{ρ08Ĩ1z Ĩ2z Ĩ3+}

Tr{ρ08Ĩ1−Ĩ2+Ĩ3+}

Tr{ρ08Ĩ1+Ĩ2−Ĩ3+}


, (5.4)

where

S = sin(θ−+θ+)
sin(θ−−θ+)

, P = cos(θ−+θ+)
cos(θ−−θ+)

,

Q = (2 cos(θ−−θ+)+2 cos(θ−+θ+))
sin(θ−−θ+)

, Y = (2 sin(θ−−θ+)−2 sin(θ−+θ+))
cos(θ−−θ+)

,

R = (2 sin(θ−−θ+)+2 sin(θ−+θ+))
cos(θ−−θ+)

, M = (2 cos(θ−−θ+)−2 cos(θ−+θ+))
sin(θ−−θ+)

and n = 3.

As we mentioned in the previous chapter, there are 14 allowed transitions. The �rst

12 out of 14 transitions are �rst order transitions and the last two transitions are multiple

quantum transitions. The multiple quantum transitions, which are not present in weakly

coupled systems, add further information to a single spectrum. This feature allows one

to reduce the number of experiments needed to complete the tomography of the density

matrix. Equation (5.3) contains 8 coe�cients of the expansion (ρ = 1
2n
ID+

∑4n−1
s=1 ρsPn,s),
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while Eq. (5.4) contains 6 coe�cients. Solving these two equations, we can determine

14 coe�cients of the density matrix with one measurement. To determine the remaining

coe�cients we need additional measurements with di�erent preparatory pulses. For three

weakly coupled spins, we need twelve separate measurements, ten measurements to ob-

serve spins 1 and 2 and two measurements to observe spin 3 [25]. In “ABX” systems, we

found that it can be reduced for example to nine experiments which are shown in Table

(5.3).

Observe on spins 1 and 2 (“AB”) Observe on spin 3 (“X”)

III, IIX, IIY, IXI, IY I,XXX III, IIX, IIY

Tab. 5.3: Nine pulse sets that, together, yield complete tomography on an “ABX” spin system.

We have found that the number of experiments necessary to perform QST in an

“ABX” system can be reduced in respect to three weakly coupled qubits. Therefore

our method can reduce the experimental e�ort required for the complete density ma-

trix reconstruction. To test the method derived in the previous chapter (or Eqs. (5.3)

and (5.4)), we have implemented the quantum teleportation protocol, a process by which

quantum information is transmitted without sending the physical system initially carrying

the information [79]. The results demonstrate that good accuracy in the density matrix

reconstruction can be achieved with the method.

SUBSECTION: 5.2.1

Quantum Teleportation

Quantum teleportation is one of the most striking phenomena on quantum information

processing. Discovered in 1993 [79], it was described in a quantum circuit by Brassard et

al. [80] in 1998 (see Fig. (5.4)). The protocol implements a process by which quantum
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information is transmitted from one location to another without sending the physical sys-

tem initially carrying the information along the path connecting the two locations [79]. It

has applications in quantum communications [81] and fault-tolerant quantum computing

[82], among others. Therefore it is desirable to peruse high precision quantum telepor-

tation at long distance and as well as at atomic scale. The �rst reported teleportation

experiments were performed with photons in 1997 [83, 84]. The �rst complete teleporta-

tion experiment was done by Nielsen et al. using NMR in 1998 [85].

The quantum teleportation protocol is described ideally in terms of two parties, Alice

and Bob. Alice has in her possession an unknown state |ψ〉 = a|0〉 − b|1〉 of a single

quantum bit, labeled here as qubit 1. Here, a and b are normalization factors. The goal

of teleportation is to transport the state of that qubit to Bob. To run the protocol, Alice

performs joint measurements on her qubit and a second qubit, which is entangled with

a qubit in Bob's possession. Then, Bob's qubit is unitarily transformed according to the

result of Alice's measurements. The protocol described as a quantum circuit which was

proposed by Brassard, Braunstein, and Cleve [80], is shown in Fig. (5.4).

Fig. 5.4: Quantum circuit diagram for the teleportation protocol. Here C1 and C2 are denoted
as qubit 1 and qubit 2, respectively and H is denoted as qubit 3. Numbers written at
the bottom of the picture are marks that indicate the steps of the teleportation. H's
inside the rectangles are Hadamard gates and |φ〉 = (|0〉+ |1〉)/

√
2.

The top line of the circuit in Fig. (5.4) represents the qubit that Alice wants to

teleport, the second and third lines represent the entangled pair that will be shared by

Bob and Alice, while the second qubit is with Alice and the third with Bob. The circuit
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is divided into di�erent blocks. We will now go through each step in the circuit. In the

�rst step, the qubit to be teleported is prepared in the state |ψ〉 = (a|0〉 − b|1〉), where

a and b are equal to 1√
2
. So, the overall quantum state starts in a tensor product of the

three individual states; let's call this |ψ1〉:

|ψ1〉 = |ψ〉A|0〉A|0〉B = a|000〉 − b|100〉, (5.5)

where subscript A is used to denote Alice's systems, and subscript B to denote Bob's

system. At the second step, qubits 2 and 3 are entangled, a Hadamard gate on second

qubit and then a CNOT gate with the second qubit as control and the third qubit as

target are applied, resulting in the state:

|ψ2〉 = |ψ〉A(|0〉A|0〉B + |1〉A|1〉B)/
√

2. (5.6)

Then, Alice and Bob share a two qubit entangled state. In the next step, qubits 1 and 2

are rotated to the Bell basis leading to the state:

|ψ3〉 =
1

2
[|00〉(a|0〉 − b|1〉) + |01〉(a|1〉 − b|0〉)

+|10〉(a|0〉+ b|1〉) + |11〉(a|1〉+ b|0〉)]. (5.7)

In the last step, Bob's qubit is changed according to the Alice's qubits state. This step

can be done performing controlled operations with Alice's qubits as controls and Bob's

qubit as the target. At the �nal, we will have:

|ψ4〉 = |φ〉A|φ〉A|ψ〉B, (5.8)

where φ = |0〉+|1〉√
2

and ψ = |0〉−|1〉√
2

. So, the state |ψ〉 will be transferred to the lower output,

whereas both other outputs will come out in the state φ = |0〉+|1〉√
2

. In other words, the

output will be |φφψ〉.

For the present experimental implementation we have used a sample of trichloroethy-
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lene dissolved in deuterated chloroform (see previous section). Experiment was performed

at room temperature using Varian 500-MHz spectrometer. Quantum gates were optimized

using the GRAPE algorithm (see Table (5.2)), and the density matrices were reconstructed

using the results of the previous chapter. To perform teleportation we make use of the

Hydrogen nucleus (H), and the two Carbon nuclei (C1 and C2), teleporting the state of

C1 to H. In the beginning of the experiment we must create the pseudo-pure state from

the thermal equilibrium state. The thermal equilibrium density matrix for three spins in

the high temperature limit, given by:

ρeq ≈
I

23
+

~β
23

3∑
k=1

ωkI
k
z =

I

8
+

~βγcB0

8
[I1
z + I2

z +
ωH
ωC

I3
z ], (5.9)

can be transformed into a pseudo-pure ground state:

ρ =
1− ε

8
I + ε|000〉〈000|, (5.10)

where β = 1/kBT is the Boltzmann factor, ωk are respective chemical shifts, I is the iden-

tity matrix, Ikz is the z component of the nuclear spin angular momentum operator for the

kth spin and ε = ~ωkβ ' 10−5 at room temperature. We have used spatial averaging for

the preparation of the pseudo-pure state (see chapter (2)). The sequence used to initialize

the spin system to the pseudo-pure state is given in Fig. (5.5).

Fig. 5.5: Pulse sequence used to prepare three-qubit pseudo-pure state, where Gz is the magnetic
�eld gradient along z axis.
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So the spin system is initialized in the pseudo-pure state |ψ0〉 = |000〉 (Fig. (5.6)(a)).

Then after the initialization, the �rst two steps of the circuit in Fig. (5.4) are imple-

mented: In the �rst step the state to be teleported |ψ〉 = a|0〉 − b|1〉, with a = b = 1/
√

2,

is prepared on the �rst qubit and both other inputs to |0〉 and, in the second step, a

pseudoentangled pair is created between the second and third qubits. In Fig. (5.6), we

show the experimental density matrices for the pseudo-pure state, |ψ0〉 = |000〉, and after

the �rst two steps, |ψ1〉 = |ψ00〉 and |ψ2〉 = (|ψ00〉 + |ψ11〉)/
√

2. The �delity was over

0.97 in all these cases according to Eq. (5.2).

(a) (b)

(c)

Fig. 5.6: Experimental three-qubit density matrices for the teleport experiment. From (a) to (c)
are shown the real parts of the reconstructed density matrices of the pseudo-pure state,
|ψ0〉 = |000〉, �rst step, |ψ1〉 = |ψ00〉, and second step, |ψ2〉 = (|ψ00〉+|ψ11〉)√

2
, of the tele-

portation, respectively. The rows and columns represent the standard computational
basis in binary order, with 〈000| starting from the leftmost column and 〈111| being the
rightmost column.
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The result for the third step is shown in the computational basis and in the Bell basis

in Fig. (5.7). As it can be seen in the Fig. (5.7), the state of the third qubit is conditioned

to the state of the two �rst qubits, and the �delity of the third step was 0.96.

(a)

(b)
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Fig. 5.7: Experimental density matrices: The real part of the reconstructed density matrix of
the third step of the teleportation in (a) the computational basis, |ψ3〉, (b) the Bell
basis. The state is in an equal mixture of the four di�erent possible combinations. For
clarity, we zoomed on the submatrices along the diagonal to show the four di�erent
states in Eq. (5.7) more clearly (|ψ±1 〉 = (1/

√
2)(|0〉±|1〉) and |ψ±2 〉 = (1/

√
2)(|1〉±|0〉).

The rows and columns represent the standard computational basis in binary order, with
〈000| starting from the leftmost column and 〈111| being the rightmost column.

To complete the teleportation, we need to implement the controlled-NOT operation

between the Alice's qubits and Bob's qubit. Since the strength of the interaction between

qubits one and three is very small in our case, we have implemented the �nal step, shown

in Fig. (5.4), in a di�erent manner. The CNOT13 gate with the �rst qubit as control

and the third qubit as target can be entirely constructed out of two SWAP12 gates and

one CNOT23 gate with the second qubit as control and the third qubit as target [86]:

CNOT13 = SWAP12 CNOT23 SWAP12, where SWAP12 = CNOT12 CNOT21 CNOT12

swaps qubits 1 and 2. The second SWAP gate does not need to be implemented since

we can leave qubits 1 and 2 swapped. Therefore, we have implemented the �nal step as

in Fig. (5.8). The �nal density matrix is shown in Fig. (5.9), the third qubit is in the

|ψ〉 = (|0〉− |1〉)/
√

2 state, independently of the two other qubits. The �delity of the �nal

density matrix was found to be 0.94.

Fig. 5.8: Final step of the teleportation protocol.
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(a) (b)

Fig. 5.9: Experimental density matrix: the real part of the �nal reconstructed density matrix
in (a) the computational basis, |ψ4〉 = ( |0〉+|1〉√

2
)( |0〉+|1〉√

2
)|ψ〉 = ( |0〉+|1〉√

2
)( |0〉+|1〉√

2
)( |0〉−|1〉√

2
)

and (b) the Bell basis. The rows and columns represent the standard computational
basis in binary order, with 〈000| starting from the leftmost column and 〈111| being the
rightmost column.

It is important to note that all NMR experiments were performed using regular shaped

pulses. As we showed, the number of experiments needed to implement QST in “ABX”

systems can be reduced with respect to three weakly coupled spins. Therefore our method

can reduce the experimental e�ort required for complete density matrix reconstruction.



6
NMR Implementation of

Two-Dimensional YANG-BAXTER

Equation

The Yang-Baxter Equation (YBE) is a su�cient condition for the integrability of a model.

This means that if a model is constructed from the Yang-Baxter Equation, it will be called

an integrable model, which means that it can be solved exactly, i.e., we will know its eigen-

values and eigenfunctions. This mathematical construction was introduced by C.N. Yang

and R. Baxter in di�erent contexts. So, the Yang-Baxter Equation originally arose in

Yang's study of the many body problem in one-dimension with repulsive delta-function

interaction [1], and Baxter's solution of the eight vertex model from statistical mechan-

ics [2, 3]. It turned out to be one of the basic equations in mathematical physics, and

more precisely for introducing the theory of quantum groups. The Yang-Baxter Equation

also plays an important role in quantum �eld theory, statistical mechanics, group theory,

completely integrable statistical models, Knot theory, braided categories, quantum com-

puting, etc [87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98]. Recently it turns up gradually that

121
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the Yang-Baxter Equation is naturally linked to the quantum information and computing

[38, 39]. It is found that the Yang-Baxter Equation is closely related to quantum entan-

gled states [40, 41], the braiding operations in the Yang-Baxter Equation are universal

quantum gates [42, 43, 44, 45, 46]. The Yang-Baxter Equation attracts much attention in

recent years and is being studied in the context of quantum correlation and entanglement,

and topological quantum computing intensively [47, 48, 49, 50, 51, 52, 53, 54]. The YBE

is a universal gate for quantum computation; some solutions of the YBE are unitary and

therefore can be seen as a quantum gate.

Hu, Xue and Ge in 2008 gave an explicit optical realization of the Yang-Baxter Equa-

tion [4]. By the use of the Temperley-Lieb algebra, they made a remarkable reduction

that obtained a Yang-Baxter Equation with dimension 2, the minimum dimensional Yang-

Baxter Equation so far. This makes it possible to be implemented in quantum optics with

current technology. In this chapter, we test the two-dimensional (2D) Yang-Baxter Equa-

tion (YBE) using Nuclear Magnetic Resonance (NMR). We present a practical scheme to

test the YBE in the framework of quantum information. Then we experimentally test the

validity of 2D YBE in NMR. The equality of the two sides of the Yang-Baxter equation

is directly veri�ed.

At the �rst, we start with quantum optics and introduce simplest form of the Yang-

Baxter Equation in two-dimension and show how we can implement the 2D Yang-Baxter

Equation in quantum optics, then we go to Nuclear Magnetic Resonance part and also

show how we can implement the 2D Yang-Baxter Equation in NMR with experimental

results.



6. NMR Implementation of Two-Dimensional YANG-BAXTER Equation 123

SECTION: 6.1

Implementation of the Yang-Baxter Equation in Quantum

Optics

In this part, we show how we can implement the 2D Yang-Baxter Equation in quantum

optics. For implementation of the 2D Yang-Baxter Equation in quantum optics, there are

two ways, polarization qubit and location qubit. we brie�y describe these two ways.

SUBSECTION: 6.1.1

Reduction of the 4D YBE to the 2D YBE

The basic formula of the 4D Yang-Baxter Equation states that a matrix Ř acting on

the tensor product ν ⊗ ν, satis�es [4]:

Ř12(u) Ř23(
u+ υ

1 + β2uυ
) Ř12(υ) = Ř23(υ) Ř12(

u+ υ

1 + β2uυ
) Ř23(u), (6.1)

where Ř12 = Ř ⊗ 1, Ř23 = 1 ⊗ Ř, u and υ are parameters, which usually range over all

positive real numbers (they are called spectral parameters), and β−1 = ic (c is the light

speed in vacuum).

Ř is the two-particle scattering matrix depending on the relative rapidity tanh−1(βu).

When βu = 1, Ř = b which is a braid matrix, and the Yang-Baxter Equation reduces to

the braid relation b12 b23 b12 = b23 b12 b23. This equation implies the scattering of particles

1 and 2, followed by scattering of particles 2 and 3, and then scattering of particles 1 and

2, is equal to the scattering of particles 2 and 3, followed by scattering of particles 1 and

2, and then scattering of particles 2 and 3, when they satisfy the Yang-Baxter Equation

with suitable spectral parameters.

The Yang-Baxter Equation is an abstract equation and the quantities in the equation

may have di�erent meanings in di�erent problems. For instance, it has been found re-
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cently that the braid matrix and the Yang-Baxter Equation are connected to entangled

quantum states [99]. The Bell-basis entangled states in four-dimension can be obtained by

applying braid operation that satis�es the Yang-Baxter Equation on the computational

basis. Here the matrix in the Yang-Baxter Equation becomes a transformation that trans-

forms the computational basis to the Bell-basis states. There have been active studies in

this direction, interested readers can refer to [100] and references therein for more details.

The 4D Yang-Baxter matrices have 2D counterparts which are unitary and much sim-

pler. Furthermore, the 4D YBE, after some calculations and simpli�cations, as described

in [4], can be reduced to the corresponding 2D YBE. Therefore, we have used the 2D

YBE for our experimental implementation.

After some calculations described in [4], the 2D YBE can be written as:

A(u) B(
u+ υ

1 + β2uυ
) A(υ) = B(υ) A(

u+ υ

1 + β2uυ
) B(u), (6.2)

A(u) = ρ(u)

1+β2u2+2iεβu
1+β2u2−2iεβu

0

0 1

 , (6.3)

B(u) =
ρ(u)

1 + β2u2 − 2iεβu

1 + β2u2 2iεβu

2iεβu 1 + β2u2

 , (6.4)

where A(u) and B(u) are unitary matrices, ρ(u) is a normalization factor and ε = ±1.

Since these matrices A(u) and B(u) are unitary, then the implementation of the 2D Yang-

Baxter Equation is easier than the 4D Yang-Baxter Equation. For the convenience of a

experimental test, A and B are represented as functions of an optical parameter θ, the

angle between the optical axes of an optical device and the vertical direction. The two

sets of parameters are related by using the following transformation:

1 + β2u2 + 2iεβu

1 + β2u2 − 2iεβu
≡ e−2iθ, (6.5)
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and

ρ(u) ≡ eiθ. (6.6)

Then, A(u) and B(u) unitary matrices become simple matrices in two-dimension:

A(u) =

e−iθ 0

0 eiθ

 ≡ A(θ), (6.7)

and

B(u) =

 cos(θ) −i sin(θ)

−i sin(θ) cos(θ)

 ≡ B(θ). (6.8)

Therefore in terms of these new parameters (Eqs. (6.5) and (6.6)), the 2D Yang-Baxter

Equation can be re-written as:

A(θ1) B(θ2) A(θ3) = B(θ3) A(θ2) B(θ1), (6.9)

where the angles θi are related to a rotation orientation from the vertical direction. These

three parameters in the Yang-Baxter Equation θ1, θ2 and θ3 are not independent, and

they are related to each other through the following equation [4]:

(e−2iθ2 + 1)[i− sec(θ1 − θ3) sin(θ1 + θ3)] = 2i. (6.10)

After simplifying Eq. (6.10), relation between the optical angle parameters can be written

as:

tan(θ2) =
sin(θ1 + θ3)

cos(θ1 − θ3)
. (6.11)

This equation holds for the angle parameters appearing in the Right-Hand-Side and

the Left-Hand-Side of YBE. For the equality in the Eq. (6.9) to be established, the angle

parameters (θ1, θ2 and θ3) must satisfy Eq. (6.11).

The method, that we have used for �nding the �nal form of the A(θ) and B(θ) versus
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the rotation are the same. The two unitary matrices A(θ) and B(θ) can be optically

performed with the aid of the polarization qubit or location qubit of a single photon.

Therefore, there are two ways to implement the 2D YBE, polarization qubit and location

qubit. In the following subsections, we brie�y describe these two methods.

SUBSECTION: 6.1.2

Using the Polarization Qubit to Implement the 2D YBE

The polarization qubit can be achieved by encoding the qubit in the photon's po-

larization with the corresponding transformations implemented by wave plates, such as

Half-Wave Plates (HWPs) and Quarter-Wave Plates (QWPs). A wave plate is an optical

device that alters the polarization state of a light wave travelling through it. Two com-

mon types of wave plates are the Half-Wave Plate (HWP), which shifts the polarization

direction of linearly polarized light, and the Quarter-Wave Plate (QWP), which converts

linearly polarized light into circularly polarized light and vice-versa. A Quarter-Wave

Plate can be used to produce elliptical polarization, as well. HWP and QWP are shown

in Fig. (6.1).

(a) (b)

Fig. 6.1: (a) Half-Wave Plate (HWP) and (b) Quarter-Wave Plate (QWP).
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The action of a QWP upon the basis states of a polarization qubit is given by [22]:

UQ(δ) = e−iδσye−i(
π
4

)σzeiδσy =
1√
2

1− i cos(2δ) −i sin(2δ)

−i sin(2δ) 1 + i cos(2δ)

 , (6.12)

where σi are Pauli matrices and δ is the angle between the QWP axis and the vertical

direction. Then, the action of a HWP upon the basis states of a polarization qubit is

given by:

UH(δ) = U2
Q(δ) = −i

cos(2δ) sin(2δ)

sin(2δ) − cos(2δ)

 . (6.13)

According to [22], the sandwich con�guration of one HWP and two QWPs enables

one to perform any unitary change of the photons polarization state. So, the terms A(θ)

and B(θ) can be decomposed into a combinations of operators of a qubit in linear optics

as the following manner:

A(θ) = UQ(
π

4
) UH(

θ

2
− π

4
) UQ(

π

4
), (6.14)

B(θ) = UQ(
π

2
) UH(

θ

2
) UQ(

π

2
). (6.15)

Eq. (6.13) implies that Eqs. (6.14) and (6.15) can be associated to the action of the

QWP (UQ). We need UQ(π
4
), UQ(π

2
), UQ( θ

2
− π

4
) and UQ( θ

2
) for the calculation of A(θ) and

B(θ) matrices. The sequence of pulses to implement them in a experimental setup can

be written as (time goes from left to right):

UQ(
π

4
) = (

π

2
)y → (

π

2
)z → (

π

2
)−y, (6.16)

UQ(
π

2
) = (π)y → (

π

2
)z → (π)−y, (6.17)
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UH(
θ

2
− π

4
) = UQ(

θ

2
− π

4
) UQ(

θ

2
− π

4
)

= (θ)y → (
π

2
)−y → (π)z → (

π

2
)y → (θ)−y, (6.18)

UH(
θ

2
) = UQ(

θ

2
) UQ(

θ

2
) = (θ)y → (π)z → (θ)−y, (6.19)

where (θ)x = e−iθIx , (θ)y = e−iθIy and (θ)z = e−iθIz . Using the above equations, we can

write the Left-Hand-Side and the Right-Hand-Side of the YBE. For calculation the both

sides of the YBE, �rst we must calculate A(θ) and B(θ). First, we calculate A(θ). By

substituting Eqs. (6.16) and (6.18) into the Eq. (6.14) and by considering the relation

below:

(θ)x = (
π

2
)−y → (θ)z → (

π

2
)y, (6.20)

A(θ) can be calculated as follows:

A(θ) = (
π

2
)−x → (2θ)y → (

π

2
)x = (2θ)z. (6.21)

Let us now calculate B(θ). By substituting Eqs. (6.17) and (6.19) into the Eq. (6.15)

and by considering the relation below:

(θ)−z = (π)y → (θ)z → (π)−y, (6.22)

B(θ) can be calculated as follows:

B(θ) = (
π

2
)−z → (2θ)y → (

π

2
)z = (2θ)−x. (6.23)

The optical operations of A(θ) and B(θ) in terms of Quarter-Wave Plates (QWP) and

Half-Wave Plates (HWP) are shown in Fig. (6.2).
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(a)

(b)

Fig. 6.2: Realization of operations (a) A(θ) and (b) B(θ) by optical elements. UQ(θ) and UH(θ)
are the matrices of QWP and HWP, respectively, and θ is the angle between the optical
device axes and the vertical direction.

The two sides of the Yang-Baxter Equation are implemented by two series of wave

plates as illustrated in Fig. (6.3).

(a)
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(b)

Fig. 6.3: Optical realization of the (a) Left-Hand-Side and Right-Hand-Side of the Yang-Baxter
equation. The angles of these QWPs (�lled) and HWPs (empty) must satisfy the
relation given in Eq. (6.11).

SUBSECTION: 6.1.3

Using the Location Qubit to Implement the 2D YBE

The location qubit can be implemented by encoding the qubit in the single-photon

path with the corresponding transformations implemented by beam splitters (BSs), phase

shifters (PSs), and mirrors. A beam splitter is an optical device that splits a beam of

light in two.

In this case the action of operators A(θ) and B(θ) are related to the unitary action of

the Mach-Zehnder interferometer with angles correspondences as:

A(θ) = UMZ(ϕ2 = ϕ1 = 0, φ1 = −φ2 = θ), (6.24)

B(θ) = UMZ(ϕ2 = −ϕ1 = θ, φ1 = φ2 = 0). (6.25)

The Mach-Zehnder interferometer is a device used to determine the relative phase shift

variations between two collimated beams derived by splitting light from a single source.

The unitary action of Mach-Zehnder interferometer is given by:
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UMZ = ei
Φ
2

e−iφ1−φ2/2 cos(λ
2
) ie−iφ1−φ2/2 sin(λ

2
)

ie−iφ1−φ2/2 sin(λ
2
) e−iφ1−φ2/2 cos(λ

2
)

 , (6.26)

where the total phase Φ = φ1 + φ2 + ϕ1 + ϕ2 and phase di�erence λ = ϕ2 − ϕ1. The

schematic of the Mach-Zehnder interferometer is shown in Fig. (6.4).

Fig. 6.4: Schematic of the Mach-Zehnder interferometer.

After some calculation, A(θ) and B(θ) (Eqs. (6.24) and (6.25)) can be written as:

A(θ) = e
θ
2

e−iθ 0

0 eiθ)

 = e
θ
2 e−iθσz ∼= (2θ)z, (6.27)

B(θ) =

 cos(θ) i sin(θ)

i sin(θ) cos(θ)

 = eiθσx = (2θ)−x. (6.28)

The whole optical setup to implement both sides of the 2D YBE, Eqs. (6.28) and

(6.27), is shown in Fig. (6.5). The angle parameters obey the same relation in Eq. (6.11).
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(a)

(b)

Fig. 6.5: Schematic setup for implementing either side of the 2D YBE, Eqs. (6.28) and (6.27), by
means of location qubit. (a) Implementation of the Left-Hand-Side. (b) Implementation
of the Right-Hand-Side. The relations of di�erent parameters are refereed to Eq. (6.11).

As we can see, the �nal forms of the A(θ) and B(θ) operators for these two qubit

options, polarization qubit and location qubit, are the same (Eqs. (6.21) and (6.23) in

polarization qubit and Eqs. (6.27) and (6.28) in location qubit). Therefore, the Left-

Hand-Side and the Right-Hand-Side of the 2D YBE for polarization qubit and location

qubit are the same. Hence for experimental implementation of the 2D YBE in quantum

optics, there is not any di�erence between these two ways. For more details about the

implementation of the 2D YBE in quantum optics see [4]. But in this thesis, we have

implemented the 2D YBE using Nuclear Magnetic Resonance. In the next section we

thoroughly explain how we can implement the 2D YBE using NMR and then we have

shown the experimental results.
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SECTION: 6.2

Implementation of the 2D YBE in NMR

In this section, we describe the experimental implementation of the 2D YBE using

NMR. We want to show that when we apply the Left-Hand-Side of the 2D YBE to one

qubit and the Right-Hand-Side of the 2D YBE to another qubit, then we must have the

same state for those qubits. At the �rst, we must calculate the Left-Hand-Side and the

Right-Hand-Side of the 2D YBE as a sequence of RF pulses. Our experiment is based on

the results described in [4].

In the previous section, we have found the �nal forms of the A(θ) and B(θ) operators

(Eqs. (6.21) and (6.23) in polarization qubit and Eqs. (6.27) and (6.28) in location qubit).

Now we can calculate each side of the 2D YBE. For the Left-Hand-Side of the 2D YBE,

we have:

A(θ1) B(θ2) A(θ3) = (2θ1)z → (2θ2)−x → (2θ3)z. (6.29)

After some calculation and using these relations:

(θ)−z = (
π

2
)y → (θ)−x → (

π

2
)−y, (6.30)

(
π

2
)y → (θ)z = (θ)z → (

π

2
)y+θ, (6.31)

the Left-Hand-Side of the YBE takes the form below:

A(θ1) B(θ2) A(θ3) = (2θ1 − 2θ2 + 2θ3)z → (
π

2
)−y−2θ2+2θ3 → (

π

2
)y+2θ3 . (6.32)
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The Right-Hand-side of the YBE, after some calculation the same as above, becomes:

B(θ3) A(θ2) B(θ1) = (
π

2
)−y → (−2θ3 + 2θ2 − 2θ1)z →

(
π

2
)y+2θ2−2θ1 → (

π

2
)−y−2θ1 → (

π

2
)y. (6.33)

Now it is straightforward to design the NMR experimental setup for implementation

of the 2D YBE, as described in the this section. For the experimental implementation,

we have used a sample of iodotri�uoroethylene dissolved in deuterated-acetone (see Fig.

(6.6)). Data were taken with a Varian 500-MHz spectrometer at room temperature,

quantum gates were optimized using the GRAPE algorithm (see chapter (3))[11] and the

method which is explained in [101]. In this sample, the phase decoherence times (T2) for

F1, F2 and F3 are approximately 0.08 s, 0.09 s and 0.08 s, respectively. The coupling

constants and chemical shifts are given in Table (6.1). Table (6.2) show the control pa-

rameters for each GRAPE pulse used in this experiment (see chapter (3)).

Fig. 6.6: The structure of the iodotri�uoroethylene molecule.

(Hz) F1 F2 F3

F1 11834.8 69.86 47.65

F2 69.86 0 −128.1

F3 47.65 −128.1 −17325.7

Tab. 6.1: The parameters of �uorine labeled iodotri�uoroethylene molecule. The diagonal terms
in the table are the chemical shifts (in Hz) of the �uorines. The o�-diagonal terms are
the coupling constants, also in Hz.
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Pulse Time step Total time Fidelity

R1
x(
π
2
) 1 µs 1000 µs 0.9999

R2
x(
π
2
) 1 µs 1000 µs 1

R3
x(
π
2
) 1 µs 1000 µs 0.9999

Tab. 6.2: Control parameters input into the GRAPE algorithm for iodotri�uoroethylene
molecule.

We have done this experiment three times. In the �rst time, all quantum gates were

optimized using GRAPE algorithm and the results were not good. In the second time,

GRAPE algorithm was improved and the results were better than the �rst time. In the

last time, we have improved again GRAPE algorithm and we have also considered the

errors before and after each pulse [101] and the results were very good. Now, we want to

explain each step of the 2D YBE experiment and show the results.

In the beginning of the experiment, we must create a pseudo-pure state from the ther-

mal equilibrium state. The thermal equilibrium density operator for three spins (homonu-

clear) in the high temperature limit, given by:

ρeq ≈
I

23
+

}β
23

3∑
k=1

ωkI
k
z =

I

8
+

}βωF
8

[I1
z + I2

z + I3
z ], (6.34)

using the techniques described in chapter (2), can be transformed into a pseudo-pure

ground state:

ρ =
1− ε

8
I + ε|000〉〈000|, (6.35)

where ωF = γFB0, β = 1/kBT is the Boltzmann factor, ωk are their chemical shifts, I is

the 8 × 8 identity matrix, Ikz is the z component of the nuclear spin angular momentum

operator for the kth spin and ε = ~ωkβ ' 10−5 describes the thermal polarization of the

system at room temperature (see chapter (2)). The spectrum for the system at thermal

equilibrium state is shown in Fig. (6.7). In this experiment, qubit 2 is important and the

results are shown just for qubit 2. The thermal equilibrium spectra of the �uorine just
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for qubit 2 is shown in Fig. (6.8).

Fig. 6.7: The �uorine spectrum of the system, obtained by applying selective readout pulses to
the system in its thermal equilibrium state.

Fig. 6.8: The �uorine spectrum of second qubit, obtained by applying selective readout pulse to
the system in its thermal equilibrium state.
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We have used spatial averaging for preparation pseudo-pure state (see chapter (2)).

So the spin system is initialized in the pseudo-pure state |ψ0〉 = |000〉 (see Fig. (6.11)).

We have used two di�erent pulse sequences to prepare the pseudo-pure state. In the �rst

and second experiments, we have used the same pulse sequence to prepare pseudo-pure

state and the pulse sequence for preparation the pseudo-pure state is given in Fig. (6.9).

Fig. 6.9: The pulse sequence for preparation pseudo-pure state in the �rst and second experi-
ments. Gz is the magnetic �eld gradient in the z direction. The pulse sequence does
include the refocusing π pulses.

In the third experiment, the pulse sequence for preparation of the pseudo-pure state

was di�erent; we used the Controlled-transfer gates which is described in [66] (see chapter

(2)). The quantum circuit for preparation of the pseudo-pure state is realized by shaped

pulses, free evolution and magnetic �eld gradient in the z direction. When we use this

method for preparation pseudo-pure state, we will obtain better results. The pulse se-

quence is depicted in Fig. (6.10) and the spectrum for the system (just for second qubit

(F2)) at pseudo-pure state is shown in Fig. (6.11).
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Fig. 6.10: The pulse sequence for preparation the pseudo-pure state, where φ1 = 98.2◦, φ2 =
135.6◦ and Gz is the magnetic �eld gradient in the z direction. The pulse sequence
includes the refocusing π pulses.

Fig. 6.11: Pseudo-pure spectrum of iodotri�uoroethylene for second qubit.
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After the initialization in the pseudo-pure state, the 2D YBE circuit is applied to

qubits one and three but before applying the 2D YBE, qubits one and three must be in

the superposition of the states (|ψ〉 = 1√
2
(|0〉+ |1〉)). For this reason, the 90◦ pulse about

y axis is applied on qubits one and three. After preparing the superposion of the states

on qubits one and three, operations corresponding to the Left-Hand-Side and the Right-

Hand-Side of the 2D YBE are applied on qubits one and three, respectively. The quantum

circuit diagram for preparation of the superposition states and the Left-Hand-Side and

Right-Hand-Side of the 2D YBE on the �rst and third qubits (�rst step) is shown in Fig.

(6.12).

Fig. 6.12: The quantum circuit diagram for �rst step of the 2D YBE experiment.

In the �nal step, the Hadamard gate is applied to qubit two and then a Controlled-

Swap gate with the second qubit as control is applied [102]. The total quantum circuit

diagram for implementation of the 2D YBE is shown in Fig. (6.13).
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Fig. 6.13: The total quantum circuit diagram for implementation of the 2D YBE. F1, F2 and F3

are denoted as qubit 1, qubit 2 and qubit 3, respectively. The �rst part is separated
from the �nal part by the blue line.

By substituting Eqs. (6.32) and (6.33) into the �rst part of the quantum circuit in

Fig. (6.13) which are related to the Left-Hand-side and the Right-Hand-Side of the 2D

YBE and doing some calculation and simpli�cation, then the �rst part of the quantum

circuit in Fig. (6.13) can be changed to the the quantum circuit in Fig. (6.14).

Fig. 6.14: The �rst part of the quantum circuit after simpli�cation.
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The Controlled-Swap gate in the �nal part can be obtained by applying two Controlled-

NOT(CNOT) gates and one To�oli gate as shown in Fig. (6.15).

Fig. 6.15: Schematic of the Controlled-Swap gate logic circuit.

The �nal part of the quantum circuit diagram for implementation of the 2D YBE

(Hadamard gate on second qubit and Controlled-Swap gate with second qubit as con-

troll) is shown in Fig. (6.16).

Fig. 6.16: The quantum circuit diagram for the �nal step of the 2D YBE experiment (it con-
sists Hadamard gate on second qubit and Controlled-Swap gate with second qubit as
controll). The pulse sequence includes the refocusing π pulses.
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In the �nal step, after applying the Hadamard gate on second qubit and the Controlled-

Swap gate with the second qubit as controll and when we measure qubit 2, the total mag-

netization of qubit 2 must be a product of the another two states (〈σ2
x + iσ2

y〉 = Tr(ρ1ρ3)

where ρ1 = |ϕ1〉〈ϕ1| and ρ3 = |ϕ3〉〈ϕ3| (see Fig. (6.13)))[102]. In the �rst part, the 2D

YBE is applied on qubits 1 and 3, it means that the states of qubit 1 and 3 must be the

same as each other (ρ1 = ρ3 = ρ). Therefore the total magnetization of qubit 2 would be

〈σ2
x + iσ2

y〉 = Tr(ρ2) ∼= 1 when the angle parameters (θ1, θ2 and θ3) satisfy the relation in

Eq. (6.11).

In the Fig. (6.14) (�rst part of the 2D YBE circuit), there are three angles (θ1, θ2 and

θ3) and the experiment is done for two di�erent choices of these three angles, which we

will call correct angles and wrong angles. Correct angles mean that the angle parameters

(θ1, θ2 and θ3) satisfy the relation in Eq. (6.11) , whereas the wrong angles do not. First,

we consider correct angles. In Fig. (6.14), θ1 = −θ3 and θ2 = 0 are chosen. So, the �rst

part of the quantum circuit diagram for implementation of the 2D YBE is changed as in

Fig. (6.17).

Fig. 6.17: The �rst part of the quantum circuit in Fig. (6.14) when θ1 = −θ3, θ2 = 0 and θ3

varies between 0 and 2π.
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The total magnetization of qubit 2 is shown in Fig. (6.18) when θ1 = −θ3, θ2 = 0 and

θ3 varies between 0 and 2π. The results are very close to 1 when the angle parameters

satisfy the relation in Eq. (6.11). For the normalization, we have used the �uorine spec-

trum at pseudo-pure state as reference.

Fig. 6.18: The total magnetization of qubit 2 when θ1 = −θ3, θ2 = 0 and θ3 varies between 0
and 2π. The blue line is theoretical, the green dashed line is simulation and the red
circles are experimental.

The histogram in Fig. (6.19) shows the distribution of the total magnetizations of

qubit 2. From this diagram, we see that the magnetization of qubit 2 is 0.998± 0.001.
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Fig. 6.19: The histogram of the experimental data when θ1 = −θ3, θ2 = 0 and θ3 varies between
0 and 2π.

In Fig. (6.20), we show the results of implementation of the 2D YBE for three times

when θ1 = −θ3, θ2 = 0 and θ3 varies between 0 and 2π.

Fig. 6.20: Comparison between the three times of implementation 2D YBE for correct angles
when θ1 = −θ3, θ2 = 0 and θ3 varies between 0 and 2π.

Now, let us consider the wrong angle case. The experiment has been done for three

di�erent values of θ1, θ2 and θ3 when these angles do not satisfy the relation in Eq. (6.11).

First, θ2 = θ3 = 0 and θ1 varies between 0 and 2π, these angle parameters do not satisfy

the relation in Eq. (6.11) except for θ1 = 0, π, 2π (these three angle parameters satisfy

the relation in Eq. (6.11) and the total magnetization of qubit 2 is one). Therefore, the

�rst part of the quantum circuit diagram for implementation of the 2D YBE is changed

as in Fig. (6.21).



6. NMR Implementation of Two-Dimensional YANG-BAXTER Equation 145

Fig. 6.21: The �rst part of the quantum circuit in Fig. (6.14) when θ2 = θ3 = 0 and θ1 varies
between 0 and 2π.

The total magnetizations of qubit 2 for these angle parameters are measured and the

total magnetization of qubit 2 must be less than one except when θ1 = 0, π, 2π. The total

magnetization of qubit 2 is shown in Fig. (6.22) when θ2 = θ3 = 0 and θ1 varies between

0 and 2π. It is clear that, when the angle parameters do not satisfy the relation in Eq.

(6.11), the total magnetization of qubit 2 is less than one.
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Fig. 6.22: The total magnetization of qubit 2 when θ2 = θ3 = 0 and θ1 varies between 0 and 2π.
The blue line is theoretical, the green dashed line is simulation and the red circles are
experimental. For the wrong angles, the total magnetization of qubit 2 is less than
one and for the correct angles, the total magnetization of qubit 2 is one.

We have also implemented 2D YBE for this wrong angles three times. The results of

implementation 2D YBE for three times when θ2 = θ3 = 0 and θ1 varies between 0 and

2π, are shown in Fig. (6.23).

Fig. 6.23: Comparison between the three times of implementation 2D YBE for wrong angles
when θ2 = θ3 = 0 and θ1 varies between 0 and 2π.

Second, θ1 = π
2
and θ3 = π

4
are chosen and θ2 varies between 0 and 2π. When θ2 varies

between 0 and 2π except for θ2 = π
4
, 5π

4
(these two angle parameters satisfy the relation

in Eq. (6.11) and the total magnetization of qubit 2 is one), the angle parameters (θ1, θ2

and θ3) do not satisfy the relation in Eq. (6.11) and the total magnetization of qubit 2 is

less that one. Therefore, the �rst part of the quantum circuit diagram for implementation

of 2D YBE is changed as in Fig. (6.24).
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Fig. 6.24: The �rst part of the quantum circuit in Fig. (6.14) when θ1 = π
2 , θ3 = π

4 and θ2 varies
between 0 and 2π.

The total magnetization of qubit 2 is shown in Fig. (6.25) when θ1 = π
2
, θ3 = π

4
and

θ2 varies between 0 and 2π. It is clear that, when the angle parameters do not satisfy the

relation in Eq. (6.11), the total magnetization of qubit 2 is less than one.

Fig. 6.25: The total magnetization of qubit 2 when θ1 = π
2 , θ3 = π

4 and θ2 varies between 0 and
2π. The blue line is theoretical, the green dashed line is simulation and the red circles
are experimental. For the wrong angles, the total magnetization of qubit 2 is less than
one.
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Third, θ1 = 2θ2 and θ3 = π
2
are chosen and θ1 varies between 0 and 2π. When θ1

varies between 0 and 2π except for θ1 = π
3
, π, 5π

3
(these three angle parameters satisfy the

relation in Eq. (6.11) and the total magnetization of qubit 2 is one), the angle parameters

(θ1, θ2 and θ3) do not satisfy the relation in Eq. (6.11) and the total magnetization of

qubit 2 is less that one. When θ1 and θ3 are equal to 2θ2 and
π
2
respectively, the �rst part

of the quantum circuit diagram for implementation of 2D YBE is changed as Fig. (6.26).

Fig. 6.26: The �rst part of the quantum circuit in Fig. (6.14) when θ1 = 2θ2, θ3 = π
2 and θ1

varies between 0 and 2π.

The total magnetization of qubit 2 is shown in Fig. (6.27) when θ1 = 2θ2, θ3 = π
2
and

θ1 varies between 0 and 2π. It is clear that, when the angle parameters do not satisfy the

relation in Eq. (6.11), the total magnetization of qubit 2 is less than one. The results

are shown when the angle parameters change a little, the total magnetization of qubit 2

changes, as well.
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Fig. 6.27: The total magnetization of qubit 2 when θ1 = 2θ2, θ3 = π
2 and θ1 varies between 0

and 2π. The blue line is theoretical, the green dashed line is simulation and the red
circles are experimental. For the wrong angles, the total magnetization of qubit 2 is
less than one.

The experiment in Fig. (6.27) did run for 13 times. Then the results are compared

with each other in Fig. (6.28). It is clear that, the results are very close to each other.

Fig. 6.28: The comparison between 13 times repeat the experiment in Fig. (6.26) with errorbar,
when θ1 = 2θ2, θ3 = π

2 and θ1 varies between 0 and 2π.



7
Conclusions

In this thesis, we �rst reviewed NMR and QIP fundamentals. Then, we presented a opti-

mal control algorithm and explained each step of this algorithm. For computing gradients,

there are several methods such as: exact methods using the eigendecomposition, �nite

di�erences, series expansions, and the standard method. For computing the control vector

update, the second-order BFGS method, the �rst-order steepest ascent and the conjugate

gradient methods can be used. The rest of the thesis consisted of two distinct works.

In the �rst work of this thesis, we performed Quantum State Tomography (QST) in a

two and three qubits systems consisting of strongly coupled nuclear spins, known in the

NMR literature as “AB” and “ABX” systems, respectively.

Quantum state tomography (QST) is commonly employed in many di�erent NMR

systems, such as quadrupolar nuclei or weakly and strongly coupled spin-1
2
systems, to

characterize the results of quantum information processing experiments. The main idea

of QST consists of expanding the density matrix in a set of basis operators. The con-

nection between the theory and experiment is made by deriving relations between the

150
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observed amplitudes in the NMR signal and the coe�cients of the expansion (e.g., Eq.

(5.1) in chapter (5)). Analytical solutions, for such relation, for weakly coupled system

are found in Ref. [25]. Strongly coupled systems contain second other transitions, not

present in weakly coupled ones, which can produce quite complex NMR spectra. In the

present thesis, we have found analytical solutions for “AB” and “ABX” systems, we have

shown that the number of experiments needed to implement QST in “ABX” systems can

be reduced with respect to three weakly coupled spins, and therefore decreasing the ex-

perimental e�ort required for complete density matrix reconstruction. To exemplify, the

quantum state tomography is performed in di�erent steps of the full quantum teleporta-

tion protocol. Because, the correct form of the Hamiltonian for strongly coupled systems

is considered, as well in the optimization of quantum gates, the results are obtained with

high �delity.

For QST, the reduction in the number of experiments is due to the fact that the NMR

signal of strongly coupled systems can contain lines related to second-order transitions not

observed in weakly coupled systems. Therefore a single second-order spectrum can contain

more information about the quantum state of the spin system than the �rst-order spec-

trum. This additional information can be used to reduce the total number of experiments

to perform QST. It may be possible to �nd analytical solutions for other types of strongly

coupled systems, with more qubits, but certainly not all of them. In cases where analytical

solutions are not possible we should use numerical methods for deriving such relations.

However, it is not the purpose of this thesis to cover all possible strongly coupled systems.

We tried to have a more accurate study of the teleportation, by applying a set of

pulses generated by the Gradient Ascent Pulse Engineering (GRAPE) algorithm on a

spatially averaged pseudo-pure state of three-qubit. Our implementation of teleportation

is performed using liquid state NMR quantum information processor and a Varian 500-

MHz spectrometer for the control and acquisition, applied to an ensemble of molecules

of labeled trichloroethylene. To perform teleportation we made use of the Hydrogen nu-
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cleus (H), and the two Carbon 13 nuclei (C1 and C2), teleporting the state of C1 to H.

Spectra from simulation are compared to experimental spectra for both of them (Carbon

and Hydrogen). The sample we have used for teleportation is an “ABX” spin system

in NMR technology because of the strong coupling between carbons. The Hamiltonian

of this sample is not diagonal and it is very complicated for doing tomography. For this

reason we diagonalized the Hamiltonian at the �rst, then we continued the research as de-

scribed in the context. Quantum teleportation is theoretically perfect, yielding an output

state which equals the input with a �delity F=1. In practice �delities less than one are

realized due to imperfections in the EPR pair, Alice's bell measurement, Bob's unitary

transformation, and etc. In this method which we obtained in chapters (4) and (5), any

given coe�cient in a product operator expansion of the density matrix can be obtained

from a �t to a single spectra multiplet. Exploring both theoretically and experimentally

of the real part of the reconstructed density matrices of four states shows that the method

which is described in this thesis, enjoys great preciseness.

The second work of this thesis is a study on the Yang-Baxter Equation in two-

dimensional. The Yang-Baxter Equation is directly veri�ed experimentally using Nuclear

Magnetic Resonance for the �rst time. The experiment proved the equality between the

two sides of the Yang-Baxter Equation if the parameters θ1, θ2 and θ3 satisfy Eq. (6.11).

It means that the validity of Yang-Baxter equation is guaranteed su�ciently when the

angle parameters satisfy the relation in Eq. (6.11). It is also the necessary condition

for the validity of the Yang-Baxter equation to make the angle parameters satisfy that

realation. The Yang-Baxter Equation provides a su�cient condition for the prediction of

the spectrum.

For implementation of the 2D YBE, we have used liquid state nuclear magnetic reso-

nance, applied to an ensemble of molecule of labeled Iodotri�uoroethylene. This molecule

consists of three qubits, F1, F2 and F3. There are three angles (θ1, θ2 and θ3) in the

Yang-Baxter Equation and the experiment is done for two di�erent choices of these three
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angles, correct angles and wrong angles. we have shown the results for correct angles and

wrong angles. The results showed, when the angle parameters satisfy the relation in Eq.

(6.11) (correct angles), the total magnetization of qubit 2 is 1 but when we have wrong

angles, the total magnetization of qubit 2 is less than 1. The results are shown that when

the angle parameters change a little the total magnetization of qubit 2 changes as well.

One important issue for higher dimensional is the role of entanglement in the Yang-

Baxter Equation. In higher dimensions, the operations in the Yang-Baxter Equation

will inevitably bring in quantum entanglement. It will be an interesting and signi�cant

subject for future study, and consequently the entangling power of the operations in the

Yang-Baxter Equation, namely the operations in either sides of the Yang-Baxter Equation

emerge naturally also an important topic. In higher dimensions, the operations will be

more complex and entanglement also comes into play.

Discovered from solving problems in many-body systems and statistical models in the

middle of the last century, variety of contexts of the Yang-Baxter Equation were revealed

and it has been applied to many di�erent area, such as quantum �eld theory, statistical

mechanics, group theory, and etc. Now, the Yang-Baxter Equation is playing an important

role in quantum information science which is a thriving area of frontier research. Using

the relation between Bell basis and the Yang-Baxter Equation enables the investigation of

quantum entanglement, and the relation between anyon and the Yang-Baxter Equation

entails exploring topological quantum computing. Many interesting applications of the

Yang-Baxter Equation lies ahead.



APPENDIX



A
Unitary Transformation

Let's suppose that we have the matrix equation:

Âx = λx, (A.1)

or:

Âx− λx = 0̂. (A.2)

Then which can be written as:

(Â− λ1̂)x = 0̂. (A.3)

This is called the characteristic equation. The λ′s are the eigenvalues and x is the eigen-

vector or more properly, the right eigenvector. If:

ÂTx = λx, (A.4)

then:

λxT = (λx)T = (ÂTx)T = xT Â, (A.5)
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where x is now referred to as the left eigenvector. There will be non-trivial solutions for

the characteristic equation only if:

det(Â− λ1̂) = 0, (A.6)

or:

det



a11 − λ a12 a13 . . .

a21 a22 − λ a23 . . .

a31 a32
. . . . . .

. . . . . . . . . ann − λ


= 0, (A.7)

which will yield to a polynomial known as the characteristic polynomial.

SECTION: A.1

Transforms

Two n×n matrices Â and B̂ are said to be similar matrices if there exists an invertible

n× n matrix, T̂ such that:

B̂ = T̂−1ÂT̂ , (A.8)

and the transformation from Â and B̂ is called a similarity transform. We can back-

transform B̂ to Â again:

T̂ B̂T̂−1 = T̂ T̂−1ÂT̂ T̂−1 = Â. (A.9)

Note that reversing the order of the T̂ matrices gives a di�erent matrix, Ĉ, but is still, of

course, a similarity transformation:

Ĉ = T̂ ÂT̂−1. (A.10)

Note, also, that Ĉ is similar to Â and to B̂:
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Ĉ = T̂ ÂT̂−1, (A.11)

Â = T̂−1T̂ ÂT̂−1T̂ = T̂−1ĈT̂ , (A.12)

B̂ = T̂−1ÂT̂ = T̂−1T̂−1ĈT̂ T̂ = (T̂−1)2Ĉ(T̂ )2. (A.13)

The reason that Â and B̂ (and Ĉ) are called similar is that they have several properties

in common. First, the determinants of Â and B̂ are the same:

B̂ = T̂−1ÂT̂ , (A.14)

detB̂ = det(T̂−1ÂT̂ ) = detT̂−1 detÂ detT̂ = detÂ. (A.15)

Next, the trace of Â and B̂ are equal:

B̂ = T̂−1ÂT̂ , (A.16)

Tr(B̂) = Tr(T̂−1ÂT̂ ) = Tr(T̂ T̂−1Â) = Tr(1̂Â) = Tr(Â). (A.17)

Two matrices related by a similarity transformation have the same eigenvalues. If we have

matrices Â and B̂ related by a similarity transformation and eigenvector matrix X̂ then:

B̂ = T̂ ÂT̂−1, (A.18)

ÂX = λX. (A.19)

Now, using the transformation matrix T̂ , we write:

B̂T̂X = (T̂ ÂT̂−1)T̂X = T̂ (ÂX) = T̂ (λX) = λT̂X. (A.20)

Thus, if X̂ is an eigenvector matrix of Â then T̂X is an eigenvector of B̂ and B̂ has the

same eigenvalues as Â.
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From a practical point of view, the order in which the (left-to-right) multiplication of

the matrices is done is irrelevant. That is, for the similarity transform:

B̂ = T̂−1ÂT̂ . (A.21)

If we make the de�nitions:

X̂ = T̂−1Â, (A.22)

and

Ŷ = ÂT̂ . (A.23)

Then we can write our similarity transform in two equivalent ways:

B̂ = X̂T̂ , (A.24)

or:

B̂ = T̂−1Ŷ . (A.25)

Each representing a di�erent order of multiplication of matrices T̂−1, Â and T̂ .

Another type of transform is the orthogonal transformation which uses the transpose

matrix:

B̂ = T̂ T ÂT̂ . (A.26)

This only works however, if:

T̂ T = T̂−1, (A.27)

and, this being the case, all of the properties of the similar matrices discussed above apply

here as well.

The last type of transformation that we shall be interested in, is the unitary transfor-

mation:

B̂ = (T̂ ∗)T ÂT̂ , (A.28)
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where:

(T̂ ∗)T = T̂−1. (A.29)

In other words, the matrix T̂ is unitary, if all the elements of T̂ are real then it is also

orthogonal. The determinant, trace and eigenvalues of the transformed matrix are invari-

ant under the transformation.

Very closely related to the unitary transformation is the hermitian transformation:

B̂ = (T̂ ∗)T ÂT̂−1, (A.30)

where now:

(T̂ ∗)T = T̂ . (A.31)

We can use these ideas in our investigation of eigenvalue equations.

If Â is hermitian then the matrices that diagonalize it will be unitary. An example of

a unitary matrix is:

T̂ =

 cos θ sin θ

− sin θ cos θ

 , (A.32)

(T̂ ∗)T =

cos θ − sin θ

sin θ cos θ

 . (A.33)

Simple multiplication will con�rm that

T̂ (T̂ ∗)T = 1̂. (A.34)

According to this relation:

B̂ = T̂−1ÂT̂ , (A.35)

we have:

H = X̂HdiagX̂
−1, (A.36)
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or:

Hdiag = V −1HV, (A.37)

where V is the unitary matrix of eigenvectors.
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