Angra Neutrino Project: status and plans

 J.C. Anjos¹, A.F. Barbosa¹, E. Casimiro¹, R.M.O. Galvão¹, H.P. Lima Jr.¹, J. Magnin¹, <u>H. da Motta¹</u>, A. Schilhtz¹, R. Shellard¹, F.R.A. Simão^{1,} A. Berstein², N. Bowden³, W. Fulgione⁴, R.Z. Funchal⁵, M.M. Guzzo⁶, E. Kemp⁶, O.L.G. Peres⁶, D. Reyna⁷, H. Nunokawa⁸

¹Centro Brasileiro de Pesquisas Físicas – CBPF - Brazil
 ²Lawrence Livermore National Laboratory – USA
 ³Sandia National laboratories – USA
 ⁴Istituto Nazionale di Astrofisica – Istituto di Fisica dello Spazio Interplanetario – Italy
 ⁵Instituto de Física – Universidade de São Paulo – USP -Brazil
 ⁶Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas – UNICAMP – Brazil
 ⁷Argonne National Laboratory – USA
 ⁸Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro – PUC-RJ - Brazil

Why the interest in antineutrino detectors?

Search for new methods on safeguards verification

Antineutrinos can not be shielded and are produced in very large amounts

Antineutrinos produced in reactors can reveal fissile composition of nuclear fuel

Non-intrusive: Remotely monitor real-time reactor state: thermal power and fissioning material

Non intrusive method to check reactor activity

Detection of Antineutrinos

$$\overline{\nu_e} + p = n + e^+$$

The antineutrino interacts with a proton producing...

- A 1-7 MeV positron
- A few keV neutron
- mean time interval 28 μ sec

- Both final state particles deposit energy in a scintillating detector over 100s of microsecond time intervals (depending on the medium)
- Both energy depositions and the time interval are measured

The Basic Technical Idea

• Relation between delivered thermal power and antineutrino flux

Reactor power x neutrino flux

Number of antineutrinos

Antineutrino Emission Spectrum from Reactor Fuel

	Mean energy per fission (MeV)	Start of Cycle	End of Cycle
$^{235}\mathrm{U}$	201.7 ± 0.6	60.5%	45.0%
238 U	205.0 ± 0.9	7.7%	8.3%
239 Pu	210.0 ± 0.9	27.2%	38.8%
$^{241}\mathrm{Pu}$	212.4 ± 1.0	4.6%	7.9%
N understand in the second sec	eutrino fluxes from main fuel compor 235 236 237 238 238 238 247 238 238 247 247 247 247 247 247 247 247	5U 9Pu 1Pu 3U	Antineutrino spec measured by ILL g 1983-1989
1	4 0 0 10	Energy (MeV)	

ctra group

Checking reactor activity:

San Onofre (USA)

Fuel composition Virtual experiment:

Simulated spectrum: 235U = 0.614, 239Pu = 0.274,238U = 0.074,241Pu = 0.038,fitting spectrum: $235U = 0.631 \pm 10\%$, 239Pu = 0.260,238U = 0.074,241Pu = 0.035,

Very Near Detector: Standard 3 volumes Design A) Target (R₁=0.5m; h₁=1.3m)

Acrylic vessel + lqd scintillator(+Gd)

B) Gamma-Catcher ($R_2=0.8m h_2=1.9m$)

- Acrylic vessel + lqd scintillator
- **C) Buffer** (R_3 =1.4m; h_3 =3.10m)
 - Steel vessel + mineral oil
- **D)** Vertical Tiles of Veto System

E) X-Y Horizontal Tiles of Veto System

Plastic scintillator padles

above and under the external steel cylinder: muon tracking through the detector

Phase I: Setup infrastructure at the Angra site:

- 20' container near the reactor building
- Measurement of local muon flux:
- Cerenkov detector (Auger test tank)
- Muon telescope (4 Minos type scintillator planes)
- Measurement of radioactive background: (rocks and sand)

Phase II: Deploy LVD tank

▶1 ton gadolinium doped liquid scintillator tank

▶test signal+background

≻Tests with Californium source

Final site selection for underground laboratory

Phase III:

Construction of the underground laboratory.

Construction of three volume detector and muon veto.

Deployment of detector parts, integration and commissioning.

Phase IV (2013?): high precision measurement of θ_{13} ?

- Near (reference) detector:
 - 50 ton detector (7.2 m dia)
 - 300 m from core
 - 250 m.w.e.
- Far (oscillation) detector:
 - 500 tons (12.5 m dia)
 - 1500 m from core
 - 2000 m.w.e.
 (under "Frade" peak)
- Very Near detector:
 - 1 ton prototype project
 - < 50m of reactor core</p>
- **Detector Construction**
 - Standard 3 volume design

Detector Operation

Remote data acquisition

The detector continuously acquire data, recording events that may be classified as:

- Neutrino events
- VEM
- Other (ex: muons)

Data is locally (Angra) stored and sent to a central station at CBPF

Angra Project: Present Status

- Meeting September 05, 2006 with Eletronuclear representatives to define next steps.
- Detailed project under way to be presented to the Minister of Science and Technology and to FAPESP.
- Start to test components at CBPF and UNICAMP: (phototubes + VME electronics)

Conclusions

- Previous experiments demonstrate a good capability of using Antineutrinos for Nuclear reactor distant monitoring.
- High precision thermal power and fuel composition measurement can be acchieved.
- **Better accuracy for antineutrino spectra of U & Pu is needed.**
- Good opportunity develop experimental neutrino physics in Brazil and to contribute to new safeguards techniques.
- Short baseline Neutrino Oscillations : collaboration with Double Chooz? High precision experiment around 2013?