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We present a random-matrix analysis of the entangling power of a unitary operator as a function of the
number of times it is iterated. We consider unitaries belonging to the circular ensembles of random matrices
�the circular unitary �CUE� or circular orthogonal ensemble� applied to random �real or complex� nonentangled
states. We verify numerically that the average entangling power is a monotonically decreasing function of time.
The same behavior is observed for the “operator entanglement”—an alternative measure of the entangling
strength of a unitary operator. On the analytical side we calculate the CUE operator entanglement and
asymptotic values for the entangling power. We also provide a theoretical explanation of the time dependence
in the CUE cases.
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I. INTRODUCTION

In recent years many studies have been devoted to the
determination of entanglement growth laws for bipartite pure
states evolving from product states under globally unitary
dynamics, with either continuous �1–9� or discrete time
�10–19�. For not too small systems and weak couplings be-
tween subsystems, the general qualitative picture is that of
entanglement �subsystem entropy� growing smoothly from
zero, possibly in a nonmonotonic way, until arriving at an
asymptotic regime characterized by small oscillations around
an equilibrium value. However, when we come to the quan-
titative level a rich phenomenology is discovered �1–19�. Be-
sides chaos or regularity at the classical level, parameters
like subsystem dimensions, coupling strength, initial state,
time window, etc., also play important roles in determining
the law of growth of entropy �20�.

In this paper we concentrate on the regime of very long
times, i.e., after the system has relaxed to an equilibrium
state. More precisely, we are interested in the average value
of the asymptotic entropy over a suitable distribution of ini-
tially nonentangled states. This defines the asymptotic entan-
gling power �21� of the unitary dynamics.

If the classical dynamics is chaotic in the full phase space,
then, according to the Bohigas-Giannoni-Schmit conjecture
�22,23�, one should expect that random matrix theory will
succeed in describing the statistical features of the long-time
dynamics, in particular, the distribution of asymptotic entro-
pies. However, there is a much simpler statistical approach,
based on the assumption that a typical initial state submitted
to a “chaotic” dynamics must eventually evolve into a ran-
dom state, uniformly distributed on the sphere, as far as its
average properties are concerned. This hypothesis was tested
in several finite-dimensional quantum maps, with a satisfac-
tory quantitative agreement between theory and simulation
�13,15,16,24,25�.

The purpose of this paper is to compare the predictions of
random matrix theory and the mentioned “random state

theory” for the average asymptotic entanglement generated
by a globally unitary map. In random matrix theory the dy-
namics is explicitly introduced in the model: an asymptotic
state is generated by the repeated application of a random
unitary map to a nonentangled initial state �2�. We show that
the ensemble of states generated in this way does not coin-
cide in general with a uniform distribution on the sphere.

Our results are more conveniently stated in the language
of operators: the entangling power �21� of Un, where U is a
random unitary, decreases �on average� with increasing dis-
crete time n. The statement continues to be true if one sub-
stitutes for “entangling power” with “operator entanglement”
�26–28�, another useful measure of the entangling abilities of
a unitary �verified numerically in Sec. III�.

The following section �Sec. �2�� contains the definitions
and the exact setting of the problem. Sections III and IV
present our numerical and analytical results, respectively. A
brief discussion of the results is left to Sec. V.

II. DEFINITIONS AND SETTING

We restrict our analysis to the case of bipartite entangle-
ment of pure states in finite-dimensional Hilbert spaces. As a
measure of entanglement, we use the subsystem linear en-
tropy.

Consider a full system divided into two subsystems A and
B. The dimension of the full Hilbert space H is d=dAdB, with
dA and dB the subsystem dimensions. Let ���= ��A� � ��B� be
a pure separable state of the full system, corresponding to the
density matrix �= ������. In general, after n applications of
U, n�1, the new density matrix ��n�=Un�Un† will not cor-
respond to a separable state any more, due to the increasing
entanglement between the subsystems. This will manifest it-
self in growth of the linear entropy of the reduced density
matrices,

SL
�n������ � 1 − tr��A

�n��2 = 1 − tr��B
�n��2, �1�

where �A
�n�=trB��n� and �B

�n�=trA��n� �29�. For long times and
typical U and ���, the system comes into an equilibrium re-
gime, where the linear entropy shows small fluctuations
around a stationary average �see, e.g., �13,15–17,24��, given
by
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SL
������ � lim

N→�

1

N	
n=1

N

SL
�n������ . �2�

By doing an additional average on initial product states one
arrives at the asymptotic entangling power of U:

ep��U� � ŠSL
������‹���=��A�� ��B�. �3�

It is also useful to consider the time-dependent entangling
power, i.e., the initial-state average of Eq. �1�:

ep�n��U� � ŠSL
�n������‹���=��A�� ��B�. �4�

For n=1 this is just the entangling power of U.
Concerning the average over product states, we take ��A�

and ��B� to be independent random vectors, both of them
either real or complex, uniformly drawn from the corre-
sponding sphere �30,31�. In other words, the components of
��A� and ��B� are distributed like the columns of a matrix
belonging to either the orthogonal group �real case� or the
unitary group �complex case� �Haar measure is assumed in
both cases�. There are two reasons for these choices. �i� They
are perhaps the simplest nontrivial cases both from a concep-
tual point of view �30� and from the perspective of analytical
calculations. �ii� They will allow us to make contact with
closely related literature �e.g., Refs. �2,13,15,21��.

The problem is how to estimate ep��U� for a typical uni-
tary U. By “typical unitary” we mean an operator describable
�in a statistical sense� by any of the circular ensembles of
random matrix theory �RMT� �32�. Accordingly we shall
consider that U belongs either to the circular unitary en-
semble �CUE�, the unitary group with Haar measure, or to
the circular orthogonal ensemble �COE�, the latter being the
appropriate choice for unitaries displaying time reversal
symmetry �23�. This leaves us with four cases to analyze:
CUE or COE unitaries acting on random complex or real
states.

In order to check that our results are not exclusive of the
measure chosen for quantifying entangling strength �33�, in
addition to the entangling power we also studied the alterna-
tive measure called operator entanglement �26� �also known
as the Schmidt strength �28��, constructed as follows. A bi-
partite Hilbert space induces a bipartite structure in the space
of its linear operators, which, equipped with the Hilbert-
Schmidt product, becomes a bipartite Hilbert space itself.
Then, operators can be treated as the usual vectors, and stan-
dard measures for entanglement of states can be translated to
operators �21,27,31,34�. For instance, the linear entropy of
the unitary U reads �27�

SL�U� = 1 −
1

dA
2dB

2 	
k1,k2,l1,l2=1

dA

	
i1,i2,j1,j2=1

dB

Uk1i1,k2i2

�Ul1j1,l2j2
Ul1i1,l2i2

* Uk1j1,k2j2
* , �5�

where the matrix elements of U are related to a product
basis, i.e.,

Uk1i1,k2i2
= A�k1�B�i1�U�k2�A�i2�B. �6�

Of course, by substituting U by Un in the equations above we
obtain the operator entanglement as a function of time.

III. NUMERICAL RESULTS

We start with a numerical study, emphasizing the most
interesting features, but postponing a deeper analysis until
Sec. IV.

The main ingredients of our simulations are random states
�real or complex� and random matrices �CUE or COE�. They
were generated using the same methods as in Ref. �25�. Ran-
dom states are evolved by applying n times a quantum ran-
dom map. Then, the entropy of the final state is calculated
and averaged over maps and �if necessary� over states.

Figure 1 shows the entangling power of a unitary as a
function of time, averaged over CUE �Fig. 1�a�� or COE
�Figs. 1�b� and 1�c��. The cases �a�, �b�, and �c� correspond,
respectively, to complex or real initial states. In cases �a� and
�c�, due to invariance considerations, the average over states
is redundant and it suffices to consider a single state. For
similar reasons, the cases n=1 represent the average linear
entropy of standard bipartite pure states, either complex ��a��
or real ��b� and �c�� �see Sec. IV�.

In the three cases we observe that the average entangle-
ment is a decreasing function of the number of iterations.
This is the opposite to what is observed in weakly coupled
maps, i.e., the entropy increasing from a zero initial value.
However, we remark that our purpose is to model the equi-
librium itself, not the initial phase of relaxation to
equilibrium—this would require an explicit modeling of the
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FIG. 1. �Color online� �a� Linear entropy of states evolved from
a fixed initial separable state chosen arbitrarily and then propagated
by Un, with U belonging to the CUE averaged over 108 CUE ma-
trices. �b� Ensemble of 103 random, complex, separable initial states
propagated with 105 COE matrices. Shown is the linear entropy
averaged over matrices and states. �c� As in �a� but for 108 COE
matrices and one real state. In all cases subsystem dimensions are
dA=4 and dB=5. Statistical error bars are smaller than symbol di-
ameters. Horizontal lines correspond to analytical predictions; see
Sec. IV.
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weak coupling, as in Ref. �2�. The cases n=1 and n→�
correspond, respectively, to the predictions of random state
theory and random matrix theory. Even though these extreme
cases are our main concern, we also analyze the regime of
intermediate times because it contains valuable information,
e.g., about characteristic times for the transition between the
extremes.

Evidently the characteristic time for saturation is the
Heisenberg time nH�d �in our simulations d=20�. In the
CUE case the saturation happens abruptly at n=nH. We also
verified that the operator entanglement behaves in a similar
way by plotting the average linear entropy of Un as a func-
tion of n �see Fig. 2�.

Both figures exhibit a very curious characteristic: the
asymptotic value for CUE maps coincides, within numerical
precision, with the n=1 value for COE. We shall see in the
next section that, in the case of the entangling power �Fig. 1�,
such a coincidence is indeed exact, for all subsystem dimen-
sions dA and dB.

The features described above are ensemble properties.
Large fluctuations would prohibit their identification in indi-
vidual realizations, i.e., entropy as a function of time for a
fixed operator and a given initial state �see Ref. �2� for a
numerical illustration�.

IV. ANALYTICAL RESULTS

The purpose of this section is to explain analytically some
of the features present in Figs. 1 and 2. In some cases we
shall be able to understand the global appearance of the en-
tangling measures as functions of time, and derive quantita-
tive expressions for some limiting values �indicated with
horizontal lines in Figs. 1 and 2�.

The values for the entangling power at n=1 can already
be found in the literature:

ep�1��U��a� =
d − �dA + dB� + 1

d + 1
, �7�

ep�1��U��b�,�c� =
d3 − �dA + dB − 4�d2 − �3�dA + dB� − 1�d + 2�dA + dB − 1�

d�d + 1��d + 3�
. �8�

�The subscripts �a�, �b�, and �c� refer to each one of the cases
depicted in Fig. 1.� The first equality above corresponds to
the well-known entropy of random complex states �31�. The
second result can be found in Ref. �2�.

Concerning operator entanglement, the case n=1 was cal-
culated by Zanardi �26� for two qudits, i.e., dA=dB. Using
techniques to be described below, we obtained the CUE av-
erage of Eq. �5�:

�SL�U��CUE =
d2 − �dA

2 + dB
2� + 1

d2 − 1
, �9�

thus extending Zanardi’s result to arbitrary subsystem dimen-
sions. Inserting dA=4 and dB=5 in this formula we obtain the
value indicated with a horizontal line in Fig. 2.

A. Global features

All the functions depicted in Figs. 1 and 2 share the prop-
erty of decreasing in a monotonic way and coming to satu-

ration around the Heisenberg time. Or, equivalently, one can
say that the purity �one minus the linear entropy� grows and
then saturates. The most surprising case is the CUE, because
of the abrupt saturation at n=nH. This behavior is similar to
that of the form factor of the circular ensembles �23�, defined
as

��trUn�2� � ��tn�2� = 	
�,�=1

d

�ein���−���� , �10�

where the average runs over the CUE or COE. For the CUE
the form factor is piecewise linear:

��tn�2�CUE = 
n if 1 	 n 	 d ,

d if n � d .
� �11�

The explanation for this behavior is as follows. The form
factor is a function only of the eigenvalues of Un. If n=1 one
has the well-known random matrix spectrum which shows
strong correlations, e.g., level repulsion. For n
1 the spec-
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FIG. 2. �Color online� Linear entropy of the random operator Un

averaged over 107 realizations. U belongs to �a� the CUE, �b� the
COE. In both cases subsystem dimensions are dA=4 and dB=5.
Statistical error bars are smaller than symbol diameters. The hori-
zontal line corresponds to the analytical prediction; see Sec. IV.
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trum has been stretched and folded n times on the unit circle,
and, when n�d, the spectrum is almost completely uncorre-
lated �23�. Evidently, the same mechanism is responsible for
the saturation of the entangling measures.

The similarity between purity and form factor was already
noted by Gorin and Seligman �2�, who considered a
continuous-time Hamiltonian analog of the COE case in Fig.
1�c�. Now we show that such a connection can be established
rigorously for CUE maps. Consider either the entangling
power or the operator entanglement, Eqs. �4� and �5�, respec-
tively; insert the spectral decomposition for the correspond-
ing unitaries. We recall that eigenvectors and eigenvalues are
statistically independent in the circular ensembles. In all
cases the result can be written as follows:

S�n� = 1 − 	
�,�,�,=1

d

C����ein���+��−��−��� . �12�

On the left, S�n� represents any of the average entropies con-
sidered. The coefficients C��� contain the average over
eigenvectors and �where applicable� initial states. The time
dependence comes from the average over four eigenphases
�. Due to the invariance properties of the CUE and COE, the
averages above do not depend on the particular values of the
indices � ,� ,� ,, but only on their being all different, all
equal, equal in pairs, etc. Thus, one is left with the problem
of evaluating a few nontrivial averages �2�

�exp�in��� + �� − �� − ���� , �13�

�exp�in�2�� − �� − ���� , �14�

�exp�2in��� − ����� , �15�

�exp�in��� − ����� . �16�

For the CUE, we can show that all these four averages can be
expressed in terms of the basic form factors �36�

��tn�2�2, ��t2n�2�, ��tn�2� �17�

�this is immediate for averages �15� and �16��. The informa-
tion we have gathered is enough for concluding that in the
CUE cases one must have

S�n� = c1 + c2��tn�2�2 + c3��t2n�2� + c4��tn�2� , �18�

where ck are certain time-independent coefficients.
This result is not unexpected, as the same three basic

functions above also appear in the CUE average of �tn�4, cal-
culated by Haake et al. some years ago �23,35�,

��tn�4� = 2��tn�2�2 + ��t2n�2� − 2��tn�2�; �19�

and ��tn�4� is structurally very similar to the entangling mea-
sures we are considering:

��tn�4� = 	
�,�,�,=1

d

�ein���+��−��−��� . �20�

Whatever the exact values of ck in Eq. �18�, the preceding
analysis proves that for the CUE both entangling power and
operator entanglement decay quadratically and then saturate
abruptly. �Strictly speaking the decay is piecewise quadratic;
however this effect is not perceptible in our figures, nor in a
plot of ��tn�4� versus n �36�.�

The possible relationship between the form factor and the
entangling measures in the COE cases remains a conjecture
�Gorin and Seligman’s�; the required calculations are rather
more difficult and will not be attempted here.

B. Asymptotic values

As in the preceding section, the starting point for the cal-
culations of asymptotic values is the general expression �12�.
In the case of the entangling power the coefficients C��� are
the result of a double average over eigenvectors �e�� and
initial states ��� �16�,

C��� = ���e�������e���e�������e�

�trA�trB��e���e���trB��e���e����� . �21�

The calculation of the asymptotic entangling power requires
the time average �2�, which washes out the eigenvalue de-
pendence but enforces the pairing of indices: �=� and �
=, or �= and �=�. Thus, one arrives at �16,25�

ep��U� = 1 − ��	
�

��e�����4trA��A
��2

− 	
��j

��e�����2��e�����2�trA��A
��A

�� + trB��B
��B

����� ,

�22�

where �A
� and �B

� stand for the reduced density matrices of the
eigenvector �e��,

�A
� = trB�e���e�� , �23�

�B
� = trA�e���e�� . �24�

In cases �a� and �c� of Fig. 1 the average over initial states
is redundant. It suffices to consider just one fixed initial
product state. This is due to the invariance of the Haar mea-
sure with respect to left �right� group actions, for either the
unitary �a� or the orthogonal �c� group, combined with the
fact that local operations do not change the entropy �2� �re-
call that the eigenvectors of the CUE and COE are Haar
distributed in the unitary and orthogonal groups, respec-
tively�. So, in cases �a� and �c� we fix the initial state, e.g.,
���= �1�A � �1�B. In case �b� we must average ���A and ���B
over their respective spheres. In the unitary case �a� one has

RÔMULO F. ABREU AND RAÚL O. VALLEJOS PHYSICAL REVIEW A 75, 062335 �2007�

062335-4



ep��U��a� = 1 − 	
�

	
r,r�,s,s�

�U11,��4Urs,�Ur�s,�
* Ur�s�,�Urs�,�

* − 	
���

	
r,r�,s,s�

�U11,��2�U11,��2Urs,�Ur�s,�
* Ur�s�,�Urs�,�

*

− 	
���

	
r,r�,s,s�

�U11,��2�U11,��2Urs,�Urs�,�
* Ur�s�,�Ur�s,�

* � . �25�

The expression for the orthogonal case �c� is identical to the preceding one but with U a real unitary matrix. The remaining
case �b� will be exhibited in Ref. �36�.

In all cases, the last step is a group average of products of eight matrix elements �not always different� belonging to one or
two columns, i.e., one- and two-vector averages of monomials of order eight. For such averages we used the powerful
diagrammatic method devised by Aubert and Lam for the unitary group �37� and adapted by Braun to the orthogonal case �38�.
The method is based solely on the unitarity or orthogonality constraint and the invariance of the Haar measure under the group
actions. It provides explicit expressions for some integrals and recurrence relations for others. As the calculations are lengthy
but otherwise not illuminating, we skip intermediate steps �36� and jump to the final results:

ep��U��a� = ep�1��U��b�,�c�, �26�

ep��U��c� =
d4 − �dA + dB − 13�d3 − �12�dA + dB� − 47�d2 − 35�dA + dB − 1�d

�d + 1��d + 2��d + 4��d + 6�
. �27�

The first line says that the asymptotic average entropy in the
unitary ensemble coincides with the n=1 value for the COE
�see Eq. �8��, for all dimensions dA and dB. This confirms the
suspicion caused by examining the data in Fig. 1. However,
we have not been able to go beyond the mere analytical
verification of the conjecture. The deep reasons for such a
coincidence—if any—remain a mystery.

The second expression agrees with Gorin and Seligman’s
calculation �2�, who used a different method for averaging
monomials over the orthogonal group �39�.

For the case �b� we obtained

ep��U��b� =
X

Y
, �28�

with

X = d5 + 12d4 − �dA
2 + dB

2 − 41�d3

− �12�dA
2 + dB

2� + 2�dA + dB� − 30�d2

− �38�dA
2 + dB

2� + 18�d − 16�dA
2 + dB

2� + 56�dA + dB� − 40,

Y = �dA + 1��dB + 1��d + 1��d + 2��d + 4��d + 6� . �29�

One of the advantages of having explicit analytical ex-
pressions is that we can now quantify the differences be-
tween n=1 and n→�. For the CUE this represents the dif-
ference between the predictions of theories based either on
random states or on random dynamics. For instance, let us
consider the scaling with system size, taking for definiteness
dA=2 �which can be thought of as a definition of entangling
power according to the multiqubit Meyer-Wallach measure
�40��. Then, for large dB one has

ep�1��U��a� − ep��U��a� =
1

4dB
2 + ¯ , �30�

ep�1��U��b� − ep��U��b� =
1

3dB
2 + ¯ , �31�

ep�1��U��c� − ep��U��c� =
7

8dB
2 + ¯ . �32�

So the differences are always of second order in the system
size.

V. CONCLUSIONS

An initially nonentangled state evolving under a globally
chaotic dynamics displays asymptotically features of ran-
domness. This can be modeled by assuming that the state
becomes a completely random state, i.e., uniformly distrib-
uted on the sphere. Alternatively, one can assume that ran-
domness lies in the dynamics, and find out which is the en-
semble of final states obtained in this way. We showed that
both ensembles are different, i.e., the dynamics, even if cha-
otic, does not generate “canonical� random states. When one
includes in the model the information that states are gener-
ated dynamically, the ensemble-average entropy decreases
due to additional correlations among the state components.
This shows up as the difference n=1 vs n→�. The effect is
relatively small, i.e., second order in system size, but it can
be clearly detected in our figures, and might be important for
small systems.

A curious by-product of our studies is the conclusion that
the asymptotic entangling measures for CUE operators coin-
cide with the respective n=1 COE cases. Thus, the effect of
explicitly including the dynamics in the statistical modeling
is equivalent to imposing a time-reversal symmetry.
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Our results contain also a warning against excessively
strong interpretations of the Bohigas-Giannoni-Schmit con-
jecture, which associates classical chaos with quantum ran-
domness. Naively, one may be led to believe that more chaos
always leads to more entanglement. However, if U is classi-
cally chaotic, then Un is more chaotic, at least in the sense of
a higher rate of phase-space mixing. But we have seen here
that higher powers of U may be less entangling �41�.
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