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Abstract. Quasi two dimensional systems with competing interactions usually display
complex patterns in the relevant order parameter. In many cases these patterns are analog to
liquid-crystal phases, showing smectic, nematic or hexatic order. We show that order parameters
suitable for the characterization of these phases in systems with nearly isotropic competing
interactions emerge naturally from an analysis of a Landau model. We describe with some detail
the nematic case, which characterizes orientational order of striped domain walls. The Landau
model presents an isotropic-nematic transition of the Kosterlitz-Thouless type. Although for
the perfectly isotropic model long range nematic order is absent in infinite systems, we show
that in real systems of finite size nematic order of domain walls can be observed.

1. Introduction
In many natural systems complex patterns originate due to the presence of competing
interactions at different scales. Examples range from classical systems like magnetic ultrathin
films [1], diblock copolymers [2] and colloidal suspensions [3], to quantum systems like quantum
Hall samples [4] and high Tc superconductors [5]. These pattern forming systems may present
positional as well as orientational order, the origin of which depends on microscopic interactions.
In the case of magnetic ultrathin films, of a few atomic monolayers thick, strong anisotropy
perpendicular to the film plane forces the magnetization to be out of plane. In this case
short range ferromagnetic interaction competes with antiferromagnetic dipolar interaction. As
a consequence, the system shows ordered striped phases, of alternating magnetization along one
direction, as is seen in Figure 1.

In Figure 2 similar patterns can be observed in a completely different system, a block
copolymer. In this case, elongated polymer chains with different types of building “blocks”
compete between them and produce phase segregation, giving rise to complex patterns in two
and three dimensions.

Figure 3 shows a schematic representation of microemulsion phases. Microemulsions are
mixtures of anfiphilic molecules which have an hydrophilic head and an hydrophobic tail. When
in contact with water and oil, as depicted in the figure, they tend to phase separate giving rise
to different kinds of ordered patterns with an order similar to liquid crystals [7, 8].



Figure 1. Fe/Cu(001) ultrathin films. The images, taken with scanning electron microscopy
with polarization analysis (SEMPA), show a sequence of characteristic patterns and topological
defects. From [1].

Figure 2. SBS block copolymers annealed on a bare silicon wafer and a PS brush-coated wafer
respectively. From [6].

The equilibrium pattern in these systems depends in general in details of the interactions,
like anisotropies, anchoring with a substrate, whether interactions are short or long range.
Usually the kinematics shows several well defined time scales, and the ultimate equilibrium
pattern is difficult to attain due to very long relaxation times. Despite these important
characteristics, even the ideal equilibrium phases in simple situations are poorly understood.
In general, there is a characteristic temperature TC where the system begins to phase separate
and a characteristic length scale sets in, usually called the modulation length, lm. Below this
characteristic temperature the equilibrium pattern adopts a labyrinth-like structure, like in



Figure 3. (a) A lamellar microemulsion phase with water, oil and surfactant layers. (b)
Schematic representation of a random bicontinuous phase in which there is a random surfactant
surface separating oil and water regions. From [9].

Figure 2. These patterns show neither positional nor orientational order, but a well defined
stripe-like structure with a characteristic modulation length is easily recognized. Upon further
lowering temperature or changing concentration of one species orientational order of the stripes
begins to be observed at a temperature TN . Domains of elongated stripes form and a new
characteristic length appears in the system, ls. Locally positional order develops together with
orientational order of stripe domains walls. This regime may show long range orientational
order but only short range positional order. In the presence of anisotropies or anchoring a
further transition to a state with full positional order can happen at a temperature TS .

Although this phenomenology is well known, the theoretical description of this sequence
of phase transitions and the changing orders associated with them is usually done in terms of
analysis of elasticity of domain walls [10, 11] instead of, e.g. microscopic approaches. A long time
ago Brazovskii [12] proposed a Landau-type model for systems with nearly isotropic competing
interactions. He obtained the important result that, although the Landau expansion in the
model had only square and quartic powers of the order parameter, a first order phase transition
induced by fluctuations was observed, contrary to what could be expected a priory. The essential
feature behind this behavior is that the dominant low energy mode is not the usual k = 0 one,
but a mode with k 6= 0, which in fact defines the modulation length of the order parameter.
Brazovskii’s analysis had a strong influence on subsequent work on these kind of systems, for
example in explaining the low temperature behaviour of diblock copolymers [13] and the also well
known Swift-Hohenberg model for the onset of instability in Raleigh-Bénard convection [14, 15].
Nevertheless, analysis of the Brazovskii’s model were limited to the isotropic-stripe transition,
which was the last one described above in the possible sequence of phase changes. The low
temperature stripes or modulated phase is strongly unstable in two dimensions, as recognized
long time ago by Swift and Hohenberg [14]. Nevertheless, stripes with long range orientational
order are seen in experiments in many different systems belonging to the Brazovskii class.
Clearly, a more comprehensive theoretical description of orientational phases in systems with
isotropic or nearly isotropic competing interactions is needed.

An extension of the Brazovskii model, capable of describing phases with orientational but



not necessarily positional order, has recently been discussed by us [16, 17]. We have identified
a suitable order parameter of domain wall orientation, similar to the director of nematic liquid
crystals. Interestingly, this order parameter emerges naturally from a proper analysis of the
Landau expansion for the kind of systems of the Brazovskii class. The resulting Landau free
energy describes the two relevant transitions from isotropic to nematic and from nematic to
stripes, in agreement with experimental observations.

Here we first describe a nematic-like order parameter suitable for quantifying orientational
order of domain walls in two dimensional stripe-forming systems. Then we outline the
derivation of a Landau free energy where this order parameter emerges naturally from symmetry
considerations. We present and discuss the results of a mean field calculation of this free
energy and show that the model has a nematic-isotropic second order phase transition [16].
The consequences of fluctuations around the mean field solution are also discussed [17]. We
show that, although in two dimensional systems with isotropic competing interactions there is
no true long range nematic order, in typical experimental scales nematic long range order can
be observed.

2. The nematic order parameter
The kind of order we want to describe is exemplified in Figure 4.

Figure 4. Computer simulation of the temperature evolution of patterns in a two dimensional
Heisenberg ferromagnet with perpendicular anisotropy and competing dipolar interactions [18].

Competition between short range attraction and long range repulsion, or short range
ferromagnetic and long range antiferromagnetic interactions usually gives rise to stripe-like
patterns of the order parameter, which is generically represented by a density or magnetization
φ(~x).

Domain walls are observed at the transitions between positive and negative values of the
order parameter. In order to quantify the degree of orientation of domain walls one can define
the director field, defined as the gradient of the order parameter:

N(~x) ≡ ∇φ(~x) = (∂xφ, ∂yφ) (1)



Figure 5. Schematic representation of a stripe phase with a dislocation. The arrows represent
the director field, which is a local measure of orientation of domain walls.

Defined in this way the director is a vector which defines a vector field over the area of the two
dimensional system. But this is not exactly the kind of order parameter we are seeking for. It
is clear from Figure 5 that orientational order does not depend on up-down or left-right vector
directions, both orientations along the perpendicular to the domain walls are equivalent. One
way to incorporate this symmetry is to define a tensor order parameter, similar to the tensor
order parameter of nematic liquid-crystals. In terms of the gradient of the density φ, the local
tensor order parameter is defined as:

Qij(~x) ≡ φ(~x)
(
∂i∂j −

1
2
∂2δij

)
φ(~x), (2)

where i, j = {x, y}. This tensor is symmetric and traceless, and in two dimensions it has only
two independent elements, which essentially represent the mean orientation of domain walls and
the strength of the orientational order.

In order to get some feeling of the physical content of this order parameter it is useful to
write it in reciprocal space. Introducing the Fourier transforms:

Q̃ij(~k) =
∫
d2xQij(~x) e−i~k·~x Qij(~x) =

∫
d2k

(2π)2
Q̃ij(~k) ei~k·~x, (3)

we get

Q̃ij(~k′) =
∫
d2k

(
kikj −

1
2
k2δij

)
φ̃(~k)φ̃(~k′ − ~k) (4)

The mean global order parameter is given by:

〈Qij〉 =
∫
d2x Qij(~x) = 〈Q̃ij(~k′ = 0)〉

=
∫
d2k

(
kikj −

1
2
k2δij

)
〈φ̃(~k)φ̃(−~k)〉 (5)

Choosing the x-axis as the principal axis, the only relevant element of the tensor is:

〈Qxx〉 =
∫
d2k k2 cos (2θ)C(~k) (6)



where kx = k cos θ and ky = k sin θ and C(~k) is the structure factor of the system. Written
in this way the orientational order parameter quantifies the degree of anisotropy of the domain
pattern. In a completely isotropic phase, for example a liquid phase or a mosaic of domains with
no preferential direction, the corresponding isotropy in the structure factor will be reflected in
a zero value of the orientational order parameter. This is illustrated in Figure 6.

〈Q〉 ∼ 1

〈Q〉 ∼ 0.8

〈Q〉 ∼ 0.1

Figure 6. Structure factor of a model with competing exchange and dipolar interactions in
d = 2 for three different temperatures. The pictures from top to bottom are characteristic of
the stripes, nematic and isotropic phases respectively. Taken from [19].



The three figures represent the structure factor of a model for ultrathin magnetic films with
strong perpendicular anisotropy, which has short range ferromagnetic interactions competing
with long range dipolar interactions [19]. The top figure shows C(~k) for a very low temperature,
where the equilibrium state of the system presents almost perfectly straight stripes of up and
down magnetization. C(~k) presents two very narrow peaks at a wave vector corresponding to
the modulation length of the stripes. The system has both orientational and positional order.
The second figure corresponds to a higher temperature. The two peaks are considerably broaden
and positional order has been lost. Nevertheless orientational order is still present, as confirmed
by the high value of the tensor order parameter 〈Q〉 ≈ 0.8. This corresponds to a nematic-like
phase. The third figure shows an almost rotationally invariant structure factor. This isotropy
reflects an absence of orientational order and corresponds to a disordered high temperature
phase.

3. The extended Brazovskii model
The dominance of a mode with a non-zero wave vector at low energies can be studied through
a phenomenological model of the Landau-Ginzburg type, first analyzed by Brazovskii [12]:

H =
∫

d2k

(2π)2
φ(~k)

(
r0 +

1
m

(k − k0)2 + . . .

)
φ( ~−k) +

+ u0

∫
d2k1

(2π)2
d2k2

(2π)2
d2k3

(2π)2
d2k4

(2π)2
φ(~k1)φ(~k2)φ(~k3)φ(~k4) δ(~k1 + ~k2 + ~k3 + ~k4) (7)

This model, when considered at mean field level, gives rise to a isotropic-stripes transition which
is second order. Below Tc the order parameter varies in a sinusoidal way:

φ(~x) = A cos (~k0 · ~x). (8)

Brazovskii showed that including fluctuations in a self-consistent way, the model leads to a first
order phase transition induced by fluctuations. The low temperature striped phase, dominated
by a mode with k0 wave vector, has positional long range order in the form of two symmetric
delta function peaks in the structure factor, at least near the transition. At lower temperatures
other modes come into play and the profile of the order parameter changes developing sharp
domain walls as T → 0. Although applied to some two dimensional systems, it is known that
the low temperature stripe phase is strongly unstable in this case. Angular fluctuations of the
dominant wave vector of modulus k0 does not cost energy, as shown in Figure 7. Some kind of
anisotropy in the interactions or pinning to a substrate are necessary in order to stabilize the
phase.

Nevertheless, it was recently shown that orientational order of domain walls can persist even
in the case of ideal isotropic interactions [16, 17]. Let’s analyze the implications of isotropy for
the interaction term, which in general will be a function u(~k1,~k2,~k3,~k4), with wave vectors k1,
k2, k3 and k4 as shown in Figure 7:

• Isotropy forces the wave vectors to lay on a circle of radius k0 and hence u(~k1,~k2,~k3,~k4) =
u(θ1, θ2, θ3, θ4).
• Conservation of total momentum allows to eliminate one of the four k′s.
• Fixing two of them, the other two are automatically fixed by the requirement that the four

vectors lay on the circle.
• Because of rotational invariance, the interaction can only depend on the difference between

the two independent angles:

u(θ1, θ2, θ1 + π, θ2 + π) = u(θ1 − θ2) = u(θ)



Figure 7. The wave vectors present in the quartic interaction term must lie on a circle of radius
k0 for perfectly isotropic interactions. This fact alone determine the form of the quartic term of
the Landau expansion, as explained in the text.

• Finally, index permutation invariance in u(~k1,~k2,~k3,~k4) implies u(θ) = u(θ+π), then u can
be expanded in Fourier series:

u(θ) = u0 + u2 cos (2θ) + u4 cos (4θ) + . . . (9)

In the previous expression for the interaction we recognize the first, constant term, as that
present in the original Brazovskii’s model, eq. (7). But symmetry considerations led us to
conclude that an infinite number of additional terms must be considered in the expansion, and
it turns that all of them are relevant in a Renormalization Group sense [16]. From the form
of eq. (9) one sees that all the cosine terms share a nematic symmetry, i.e. they are invariant
with respect to rotations θ → θ+ π. Keeping the first two terms, we can rewrite the Brazovskii
energy in the form:

H = HBr + u2

∫
d2k

(2π)2
Tr Q̃2, (10)

where HBr is given by (7), Tr Q̃2 is the trace of the nematic tensor squared, and Q̃ij(~k) is given
by eq. (4).

An analysis of this Hamiltonian in the self-consistent or Hartree approximation gives the
following results [16, 17]:

• If u2 = 0 we recover the Brazovskii’s Hamiltonian, which has a low temperature smectic
phase with a stripe-isotropic first order transition induced by fluctuations. In two
dimensions this solution is unstable, and then TBr → 0.
• If u2 > 0 the nematic term has a repulsive character, and the only possible solution for the

nematic order parameter is 〈Q(T )〉 = 0.
• When u2 < 0 the nematic energy is attractive and the model shows a nematic-isotropic

phase transition. The transition is second order in the mean field approximation, with
〈Q(T )〉 ∝ (Tc − T )1/2 and the critical temperature is given by Tc = 2/(mk2

0)
√
u0/|u2|.

A representation of the mean field phase diagram for the extended model can be seen in
Figure 8. We see that the stripe phase is depressed to zero temperature. This is because



of strong fluctuations in the orientation of the dominant wave vector k0 in two dimensions. In
reference [20] a criticism to the results in [16] was raised, based on the fact that the stripe solution
is strongly unstable for isotropic interactions in two dimensions. In the reply to that comment
[21] we clarified the controversy, which was probably funded in a misinterpretation of our main
conclusion, i.e. the existence of a nematic phase with a finite critical temperature, in addition
to the stripe (smectic-like) phase which is depressed to zero temperature as a consequence of
fluctuations. As we said before, this fluctuations can be made weaker by means of anisotropies
originated e.g. by an underlying lattice which breaks rotational symmetry. In this case it is
expected that TBr will have a finite value.

Figure 8. Mean field phase diagram of model (10).

We must also consider the effect of fluctuations on the mean field nematic solution.
Considering Gaussian fluctuations around the saddle point solution we arrive to a correction
term contributing to the free energy of the form [17]:

δF = ρs(T )
∫
d2x |~∇ϕ(~x)|2, (11)

where ϕ(~x) represents angular fluctuations of the director and ρs(T ) is the temperature
dependent stiffness. This free energy term has the form of the two dimensional XY model,
and then shares all of its physical properties. In particular it implies that the phase transition is
of the Kosterlitz-Thouless type [22]. The low temperature nematic phase has not true long range
order, because correlations decay algebraically. Instead, it presents quasi-long-range order. In
particular, the nematic order parameter is depressed below its mean field value in a way given
by:

〈Q〉 = 〈Q〉MF exp(−W ) (12)

with
W =

T

4πρs
ln
(
L

a

)
, (13)

where L is the linear dimension of the system and a a microscopic interparticle distance. It is
then clear that in the thermodynamic limit L/a→∞ we have 〈Q(T )〉 → 0 logarithmically, and
the there is no long range order at any finite temperature. Nevertheless, in some real systems,
the actual situation if far from the ideal thermodynamic limit. For example, in ultrathin films of
Fe/Cu(001) studied in [1] typical scales are L ≈ 10−3m and a ≈ 10−10m. At room temperature,
where most of the experiments are done, W ≈ 7/32 and then 〈Q〉 ≈ 0.8 〈Q〉MF . Our conclusion is
that, even in cases with perfectly isotropic interactions it is possible to observe a low temperature
nematic phase, with long range order up to the scales characteristic of many experimental
samples. The experimental characterization of these orientational phases in diverse systems as
magnetic ultrathin films, block copolymers and microemulsions is an important challenge.



4. Perspectives
We showed that the emergence and evolution with temperature of systems forming striped-
like patterns can be conveniently described by an effective free energy which incorporates a
nematic-like order parameter in a Landau expansion. This leads to a new perspective on the
low temperature phases of two dimensional systems with competing isotropic interactions.

Many points remain to be clarified, we conclude by enumerating some of them:

• Is it possible to identify a microscopic origin for the phenomenological nematic term ? or
in other words, what kind of microscopic Hamiltonians can give rise to the phenomenology
described by the present Landau model ?
• What is the real importance of the other (infinite) terms in the expansion of quartic coupling

function ? Can this question be answered by a RG analysis ?
• What are the effects of adding anisotropies on the low temperature phase of the systems ?

What are the effects of confining or limiting lateral dimensions ?
• Are these equilibrium properties important from a dynamical perspective ? What is the

nature of the relaxation dynamics of these pattern forming systems ?

We think that all these important questions are still to a great extent unresolved.
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