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a b s t r a c t

The equilibrium tilt angle profile in a cell limited by two concentric cylinders filled with
nematic liquid crystals is determined for strong homeotropic anchoring at the surfaces. The
anchoring condition is such that the nematic director is perpendicular to the cylinder axes
and a radial nonuniform electric field is applied to investigate a Fréedericksz transition.
The distortions induced by the field remain in the plane perpendicular to the cylinder axes,
and a threshold field is analytically determined indicating a transition from a pure splay to
a splay-bend conformation of the director. It is shown that this transition can be induced
by the thickness of the region between the two cylinders, and can be detected even in the
absence of an external field. If the maximum value of the tilt angle is assumed as an order
parameter, its behavior near to the transition can be used to obtain the critical exponent,
which is the same as the one obtained in the mean field approximation. These results are
indications that nontrivial consequences may occur when complex fluids are subject to
non-planar geometries.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The liquid crystal alignment between two concentric cylinders has been analyzed by different authors since its original
proposition by Meyer [1–7]. Our aim is to consider the problem in a different perspective: first we solve it in a geometry
that is different from the one considered in the previous work and then we focus our attention on the order parameter
critical exponent. Specifically, we analyze the molecular orientation of a nematic sample contained between two cylinders
of radius a and b, such that b = ρ a > a, whose surfaces are homogeneous. In Ref. [3], the Fréedericksz transition was
investigated for a nonuniform field, for homeotropic anchoring, by searching an ‘‘escaped’’ splay-bend configuration as
shown in Fig. 1(a). In this work, we investigate the existence of a critical field for the distortion as shown in Fig. 1(b) and
investigate analytically the critical phenomenon. The initial alignment is purely radial, i.e., a conformation of the director
profile exists that corresponds to a pure splay deformation. In the presence of the electric field, for nematic liquid crystals
with a negative dielectric anisotropy (εa = ε‖− ε⊥ < 0), where ‖ and⊥ refer to the direction of En, a bend distortion can be
found in the system. This geometrywas considered by deGennes [2], in the one-constant approximation, and byWilliams [4]
with unequal elastic constants in the absence of the electrical field, with the deformations caused by a pretilt. Similar
problems have been considered in connection with Fréedericksz transition in confined geometries [8–11]. The problem
we face here is therefore a generalization of the model treated in Refs. [2,4], but now taking into account the effect of an
external field and investigating the exact problem near to the transition.
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Fig. 1. Nematic sample in a geometry formed by two concentrical cylinders. (a) The director ‘‘escapes’’ to the z-direction, perpendicular to a nonuniform
radial electric field. (b) The director lies in the polar plane, i.e., the plane perpendicular to the cylinder axes along z.

2. Fréedericksz transition

The director is defined as En = cosψ r̂ + sinψ θ̂, where ψ is the angle between En and r̂ in the polar plane. For the
geometry shown in Fig. 1(b), the problem has to be solved with the boundary conditions ψ(a) = ψ(b) = 0, considering
strong anchoring, i.e, the molecules are fixed at the surface. We assume that the electric field is the one generated by a
difference of potential V = V (a)−V (b) between the cylinders, as in Ref. [3], i.e., EE = V

(r ln ρ) r̂ . By neglecting the flexoelectric
contribution, the total elastic energy density is composed of the Frank expression (in which the twist term as well as the
saddle-splay term are absent) with a contribution coming from the dielectric coupling. In this manner, the total free energy
per unit length of the cylinder, in the limit of small distortion (ψ � 1), and neglecting terms independent of ψ , is given by

F = πK33

∫ b

a

[
r
(
dψ
dr

)2
−
h
r2
ψ2

]
dr, (1)

in which we have introduced the dimensionless quantities

h = k−
εa V 2

K33 ln2 ρ
and k =

K11
K33
− 1,

with K11 and K33, being, respectively, the elastic constants of splay and bend.
The transformation r = aex (that will be used hereafter) permits us to rewrite (1) in the simple form:

F = πK33

∫ ln ρ

0

[(
dψ
dx

)2
− hψ2

]
dx. (2)

By minimizing F , as given above, we obtain

d2ψ
dx2
+ hψ = 0, (3)

whose solution satisfying the boundary conditions is

ψ(x) = ψM sin
[
lπ
ln ρ
x
]

(4)

if (lπ)2/ ln2 ρ = h, for l = 1, 2, 3, . . . . The quantity ψM is the maximum amplitude of ψ(x), and, in the approximation we
are working, can be considered as very small; it corresponds to the value of ψ in the middle points between the cylindrical
surfaces when l = 1, i. e., ψ[(ln ρ)/2] = ψM.
The situation of the lower energy corresponds to l = 1. By using the definition of h (with h ≥ 0), we obtain for the critical

voltage in the cylinder geometry the general expression

V 2c =
π2K33
|εa|

(
1−

π2k
ln2 ρ

)
. (5)

This is the critical voltage for (cylindrical) Fréedericksz transition. If a voltage V < Vc is applied, the elastic energy does not
permit any deviation of non-distorted configuration; if, on the other hand, V > Vc, we can obtain a distorted situation, and
the director profile is given by Eq. (4), with l = 1.
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An important feature of the sample in this geometry is the existence of a Fréedericksz transition even in the absence of the
electric field. This phenomenonwas theoretically predicted byWillians andHalperin for a sample in a different geometry [3];
there, this phenomenon is defined as Fréedericksz-like transition. In fact, if Vc = 0, the relation (5) gives a threshold thickness:

ln ρc =
π
√
k
, (6)

which suggests the existence of a distorted situation without the application of an electric field. Nevertheless, it is necessary
that k > 0, which implies K11 > K33, a situation not common for usual liquid crystals. However, there is a class of liquid
crystals for which k > 0. In fact, there is a temperature dependence of this parameter for polymer liquid crystals [12,13],
and the ratio K11/K33 can be written as [14]

K11
K33
∝

(
Uh
KBT

)7/4
eUh/KBT . (7)

Eq. (7) shows that, for these materials, k decreases with increasing temperature.

3. Critical phenomenon

The dependence of the director on the relevant parameters in the vicinity of the transition can be analyzed by
investigating ψM. As a matter of fact, if ψM = 0, the system is non-distorted; if ψM 6= 0, the system is distorted. For
this reason, ψM can be assumed as an order parameter as is done for liquid crystals in common geometries [15]. In order to
investigate the critical behavior, let us consider the sample in the x-space, where it has (dimensionless) thickness d = ln ρ.
Therefore, there is a critical thickness given by dc (see Eq. (6)). The complete expression for the free energy can be rewritten
as

F [ψ(x)] =
∫ d

0

{(
k− δ2 − k

[
dψ
dx

]2)
cos2 ψ + (k+ 1)

[
dψ
dx

]2}
dx, (8)

with δ2 = (V/Vc)2/[k− (π/d)2], where a constant term was omitted. Minimizing the free energy, after some calculations,
we obtain the following differential equation:

1
2
sin 2ψ

{
k− δ + k

[
dψ
dx

]2}
+ (1+ k sin2 ψ)

d2ψ
dx2
= 0. (9)

By using the relationsψ(x/2) = ψM and (dψ/dx)x=d/2 = 0, it is possible to obtain a first integral of Eq. (9), and the function
ψ(x) can be given by∫ ψ(x)

0

√
1+ k sin2 ζ

sin2 ψM − sin2 ζ
dζ = x h, (10)

which, by means of the change of variables sinϕ = sin ζ/ sinψM, and integrating from x = 0 to x = d/2, can be put in the
form ∫ π/2

0

√
1+ k sin2 ψM sin2 ϕ
1− sin2 ψM sin2 ϕ

dϕ =
d
2
h. (11)

This equation givesψM as a function of the relevant parameters of the transition. In the limitψM → 0, it is possible to obtain
the critical potential found in Section 2.
To investigate the behavior of the order parameter in the vicinity of the transition, we expand Eq. (11) in series ofψM. By

neglecting higher order terms, we obtain

π

2
+
π

8
(1+ k)ψ2M =

d
2
h, (12)

giving

ψM =
2

√
k+ 1

√√√√ d
π

√
k−

V 2

V 2c

(
k−

π2

d2

)
− 1. (13)

One concludes that the behavior of ψM, when V → Vc, can be well described by

ψM ∝ (V − Vc)1/2. (14)
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Fig. 2. ψM × (V/Vc − 1) for k = 1.5 and d = 1. It is possible to observe that the order parameter increases with (V/Vc − 1)1/2 .

Fig. 3. Dependence of ψM on (d− dc) for k = 1.5.

This fact is illustrated in Fig. 2. The critical exponent is the same as the one found in mean field theory and accounts
for the usual behavior of the order parameter in the Fréedericksz transition in a hybrid cell when a planar geometry is
considered [15].
As shown in the in Section 2, there is a Fréedericksz transition even in the absence of the external (electrical or magnetic)

field. By putting V = 0 into Eq. (13), and using the definition of the critical thickness, the behavior of ψM can be expressed
as

ψM = f (k) (d− dc)β , (15)

with

β = 1/2 and f (k) = 2 4
√

k
π2(k+ 1)2

.

In Eq. (15), the thickness of the sample plays a role similar to the one of the temperature in usual second-order phase
transitions [16]. It follows that the critical exponent is the classical one, i.e., β = 1/2 (Fig. 3). The function f (k) is not a
monotonic function as shown in Fig. 4. One observes that f (k) has a maximum in k = 1, where f (1) =

√
π/2 ≈ 0.8. This

suggests that if d & dc, the director profile can be approximately given by (4), withψM given by (13) for V ranging from zero
to a value slight above Vc.
Eq. (7) shows that the parameter k has a temperature dependence. In this way, k can be faced as the parameter that

induces a transition in the ordering of the director. For a fixed thickness d, one easily finds kc = π2/d2. Substitution of this
result into Eq. (13), for V = 0, yields



R.T. de Souza et al. / Physica A 389 (2010) 945–950 949

Fig. 4. Behavior of f (k). Themaximumvalue of f < 1. The profile of the director iswell approximated by the configuration obtained in the small distortions
regime.

Fig. 5. Dependence of ψM on (k− kc) for d = 1.

ψM =
2√

π2

d2
+ 1+ (k− kc)

√
d
π

√
π2

d2
+ (k− kc)− 1 (16)

which is not in the usual asymptotic form in the vicinity of the transition. However, if d is small, it can be approximated as

ψM ≈

√
2d2

π2
(k− kc)1/2. (17)

Numerical simulations show that this approximation works well for d . 1.5, where the error is about 2% for k− kc ∼ 1. For
this range of thicknesses, the critical exponent is also 1/2 (Fig. 5). Since d = ln ρ, the limiting value d ≈ 1.5 is equivalent to
ρ = e1.5 ≈ 4.5, indicating that the behavior predicted by Eq. (17) works well for a significantly large range of separations
between the cylindrical shells containing the sample.

4. Concluding remarks

In this work, we have investigated the influence of an electrical field on a sample of liquid crystal confined in a complex
geometry, i.e., a nematic medium confined between two concentric cylinders. In the analysis presented here, different from
the previous analysis of the problem, the director is free to move only in the polar plane, i.e., in the plane normal to the
cylinders’ long axes. The threshold potential for Fréedericksz was determined and also a Fréedericksz transition in the
absence of the external field was predicted. By solving the exact differential equation, we have investigated the behavior
of the system in the vicinity of the transition and, in this manner, we have obtained the order parameter critical exponent
in two scenarios: In the presence and in the absence of an external field. In both cases, it is possible to consider that the
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‘‘intensive variable’’ driving the transition is the thickness of the sample and, by analogy to what happens in a usual second-
order phase transition, the critical exponent is the classical one, i.e., β = 1/2. In the case in which the elastic constants
are temperature dependent and the thickness is small, the same critical exponent is found. In this situation, the driving
parameter for the transition is the elastic anisotropy k. In our analysis, the elastic anisotropy has to be such that k ≥ 0 in
order to observe a Fréedericksz transition in the absence of the external field. This implies that K11 > K33, which is not true
for a large number of usual liquid crystal, but is true polymer liquid crystals. However, in the geometry used by Ref. [4], the
transition in the absence of the external field is possible for all the class of liquid crystals. Anyway, the critical exponents are
expected to be the same for both geometries. In a broad scenario, these results show us that nontrivial consequences may
occur when complex fluids are subject to non-planar geometries.
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