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Article history: In this manuscript we present a comprehensive study on the multifractal properties of
Accepted 31 March 2009 high-frequency price fluctuations and instantaneous volatility of the equities that compose

the Dow Jones Industrial Average. The analysis consists about the quantification of the
influence of dependence and non-Gaussianity on the multifractal character of financial
quantities. Our results point out an equivalent importance of dependence and non-Gaus-
sianity on the multifractality of time series. Moreover, we analyse /-diagrams of price fluc-
tuations. In the latter case, we show that the fractal dimension of these maps is basically
independent of the lag between price fluctuations that we assume.
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1. Introduction

Scale invariance and fractality, i.e., the absence of a characteristic scale, can be found in a widespread of natural and hu-
man created phenomena [1-8,10-12]. Mathematically, scale invariance of a certain function, f, of an observale ¢ is written as

f(a0) = 2’f(0), (1)

and it has consensually been taken as a signature of complexity [9]. Concerning time series and fractality,? if many of them
seem to be monofractal [15], i.e., they are characterised by a single scale exponent, just as in Eq. (1), several others, namely price
fluctuations in financial markets have shown a spectrum of locally dependent o exponents [13,14]. Analytically, this is noted as

F({20)") = 2 (@), @)

The previous equation (2), which corresponds to a signature of multiscaling and multifractality as well, has consistently been
associated with the main statistical features of price fluctuations. Consequently, this close relation has been prominent in
either developing dynamical models or validating previous approaches. In the former, pioneering works by B. MANDELBROT
have opened the door to a new treatment of financial markets dynamics [16].

In sequel of this manuscript we perform an extensive analysis of the statistical features of high-frequency (log-) price
fluctuations,

7(t) = InS;(t) — InSi(t — 1), 3)
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of the 30 equities that compose the Dow Jones Industrial Average (DJIA) from the 1st of July until the 31st December of 2004
in a total of around 50,000 data points for each equity, i, for which we removed the intra-day pattern [17] (S represents the
price). Previous studies on daily price fluctuations have shown the existence of multifractal behaviour [18]. Hence, with this
high-frequency analysis, it is our aim to study the multiscaling of price fluctuations at a level that is closer to the transaction
dynamics as it has been made for other financial observables [23]. Our study is driven on the evaluation of the multifractal
spectra of both of time series and (¢ = 1)-diagrams, (r;,1.1), describing the weight multi-scaling factors like heavy tails and
memory. In addition, we enquire into the absolute value of price fluctuations, |r; |, also called instantaneous volatility,
v =| 1 |, multifractal behaviour and analyse its weight on the multiscaling characteristics of price fluctuations.

To compute the multifractal features of our time series, we have chosen to apply MF-DFA [19] in lieu of the Wavelet
Transform Modulus Maxima (WTMM) [25] taking into account a recent comparative study where it has been shown that,
in the majority of situations, MF-DFA presents more reliable results [26]. For this procedure, it was proved that the zth order
fluctuation function, F,(s), presents the following scale behavior, F,(s)/s ~ s"?. The correspondence between MF-DFA and the
standard formalism of multifractals is obtained using Legendre transform

flo) = zoe — 1(2). (4)
We can relate exponent 7(z) with Hélder exponent, «,

oc:h(z)+z%, (5)
and

fo) = z[e —h(q)] + 1. (6)

For z = 2, h(2) = H, which corresponds to the Hurst exponent [27,28], and for z = 0, f(«) obtained from Egs. (4)-(6) corre-
sponds to the support dimension.

Multiscaling is introduced in a time series twifold: from memory and from asymptotic power-law probability density
functions. If we aim to size up the weight of non-Gaussianity, we must destroy memory in the signal. And from it, by using
the independence conjecture, we determine memory influence. Memory is basically destroyed if we shuffle time series ele-
ments. Doing that, we reorder the values of our original time series, but we keep the stationary probability density function
unalted. On the other hand, we can destroy non-Gaussianity by implementing the procedure that we call phase randomisa-
tion corresponding to a introduction of random phase in half of the series and their conjugates in the remaining half (see [20]
for details).

For both shuffled and phase randomised time series obtained from the original signal, we can also carry out a MF-DFA
analysis. For each case, we appraise multiscaling using exponents hg(2) for the shuffled time series, and h,,4(z) for the phase
randomised case. Assuming independency between multifractal factors, we have measured the contribution of correlations,
heor(2), by, heor(2) = h(2) — hgy(2). If only these two factors introduce multiscaling on the signal, then, when we perform the
phase randomisation process on a shuffled signal, we should obtain a Gaussian and uncorrelated signal, i.e., hsy.ma(2) = 3 for
all z. Theoretically, we can evaluate the contribution of non-Gaussianity, hjy:(z), from phase randomised time series with
Nppe(2) = hsnp (2) — hspp-ma(z). However, the probability density function of a finite time series is influenced by its size, partic-
ularly for small time series [21]. In this sense, comparing results obtained from times series with different probability density
functions, such is the case of {x*" (t)} and {x*"-™4(t)}, introduces error factors that we are not able to quantify. Regarding this
factor, we have opted to define an effective contribution of non-Gaussianity, hppr(z),

heor(2) = hgyy (2). (7)

Moreover, in order to avoid, or at least minimise finite size spurious features, we have chosen to compute every quantity for s
between 8 and 11,585, and z between —3 and 5. Within this range of values, we were able to obtain numerical curves which
concur to the theoretical scaling curve of independent and Gaussian time series.

Multifractality can be effectually quantified through the difference between scale exponents of z,;, and zyax,

Ah = h(Zmin) — h(Zmax)- (8)

Eq. (8) can be used for the original time series, Ah, and for the shuffled time series, Ahgy. From these values, we finally com-
pute the weight of non-Gaussianity, Ahg,/Ah, and of correlations 1 — Ahg,/Ah.

2. Results for time series
2.1. Multifractality for price fluctuations time series

In Fig. 1(left), we present our results for the multifractal spectrum of price fluctuations, shuffled, phase randomised, and
shuffled plus phase randomised time series. The values have been obtained by performing, for each moment 7, an average
over the 30 companies. Despite of the fact that it has been verified the influence of equities liquidity on the multifractal prop-
erties of financial time series, all companies of our data set have presented liquidity values within the same order of mag-
nitude turning out our average over the companies perfectly plausible. As can be seen, the price fluctuations time series
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Fig. 1. Left panel: Multifractal spectra f vs. o of the price fluctuations (M), shuffled time series (e), phase randomised (¢), and shuffled plus phase
randomised (A) time series of DJIA equities. As it is depicted, when elements that introduce multiscaling are removed the multifractal spectrum becomes
narrower. Right panel: Multifractal spectra fvs. o of the instantaneous volatility (W), shuffled time series (o), phase randomised (<), and shuffled plus phase
randomised (a) time series of DJIA equities. As it is shown, when elements that introduce multiscaling are removed the multifractal spectrum becomes
clearly narrower.

present a wide multifractal spectrum with o, = 0.364 and oy = 0.724. Furthermore, we verify a strong asymmetry be-
tween the part of the spectrum that goes from o, up to « (z = 0) and the remaining part of the spectrum. The asymmetry
in Fig. 1 is contrary to the f(a) curve that has been measured in fully developed turbulent flows [31] often considered a price
fluctuation analogue. Concerning the other time series, we observe that the multifractal spectrum of the shuffled time series
is slightly narrow than the spectrum for the original time series. In addition, the shuffled signals have larger spectrum than
the randomised and shuffled plus phase randomised signals. Analysing scaling exponent h(2), that is the common Hurst
exponent, H, we have obtained a value around % concomitant with a white noise sequence, and in accordance with the Effi-
cient Market Hypothesis (EMH) [32]. Furthermore, we have max(f(x)) = 1, i.e,, price fluctuations time series are fat-fractals
as it occurs for a large variety of other signals and non-linear phenomena [1][33]. For the h difference defined in Eq. (8) we
have obtained Ah = 0.15 and Ahg,; = 0.08. These values yield a weight of 54% for non-Gaussianity and 46% for correlations in
the multifractal properties of our time series. In spite of this result appears to be at odds with the H = 1, we must call atten-
tion to the fact that there is a more delicate relation for random variables, the statistical dependence [34], which cannot be
described by the Hurst exponent. The statistical dependence of financial observables [13,35,36] has been verified by means
of mutual information measures [37]. We attribute to this statistical feature the multiscaling of price fluctuations we have
perceived. This assignment is also supported by the structure of (¢ = 1)-diagrams that we analyse in Section 3.

From an analysis of moments 7 as a function of z, we observe that only the shuffled plus phase randomised signal are in
compliance with the theoretical curve, T = z/2 — 1, of an Gaussian time series of independent elements [38].

2.2. Multifractality for instantaneous volatility time series

Albeit volatility is not directly measurable, it plays a central role in financial modelling [39], and it is usually related to the
magnitude of price fluctuations. It is from this quantity that long-lasting covariances associated with asymptotic power-laws
are measured. As a matter of fact, the appropriate mimicry of a long-lasting autocorrelation function of the volatility asso-
ciated with a white noise character of the variable upon study is one of prime challenges in several areas of scientific re-
search. Aiming to appraise its potential multiscaling nature, we have performed a MF-DFA analysis on instantaneous
volatility time series. The main results are shown in Figs. 1 and 2. From our analysis, we have verified that there are clear
differences between multifractal spectra for price fluctuations and absolute values.

In first place, and against our primary expectations, we have observed that price fluctuations have a wider multifractal
spectrum. Specifically, we have computed Ah = 0.15 for price fluctuations, and Ah = 0.10 for volatilities. This corresponds
to a ratio of 3 over 2. As it happens for price fluctuations, the multifractal spectrum is asymmetric. We have also obtained
h(2) = 0.71, which indicates a strong persistency of volatility time series in accordance with previous empirical findings. We
clarify that, we expected to obtain a wider spectrum for instantaneous volatility because of correlations and non-Gaussianity
of this quantity. For shuffled instantaneous volatility time series, we have observed a shift of f(a), and a lessen of curve
width. On the other hand, when we turn instantaneous volatility into a Gaussian variable the multifractality tends do be
clearly diminished, though still present. This is in accordance to previous verifications about local fluctuations of the Hurst
exponent for financial time series [53] which introduce multifractality. Bearing in mind the value Ah = 0.10, the difference
between scaling exponents of the shuffled time series, Ahgy = 0.05, points non-Gaussianity and dependence as equally
responsible for the multiscaling of instantaneous volatility. From Fig. 2, it is visible that 74, almost coincides with the the-
oretical curve of an independent and Gaussian time series. Such a result indicates that the probability density function pre-
sents a nearly exponential decay. We corroborate this result with Fig. 3 in which we present absolute values probability
density function, p(»). In line with Fig. 3 we verify that p(v) fits for a F-distribution,

N4

F(v)  (4) [1-(-q g}ﬁ 9)
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Fig. 2. Scaling exponent 7 vs. z of the instantaneous volatility (upper left), shuffled (upper right), phase randomised (lower left), and shuffled plus phase
randomised (lower right) time series of DJIA equities. In all panels, the solid line T = £ — 1 represents the theoretical curve of Gaussian time series of
independent elements. Regarding instantaneous volatility results, it is visible the departure from Gaussian independent behaviour that persists when we
destroy the Gaussianity. In the lower left panel the dotted line represents the monofractal curve T = Hz — 1 with H = h(2) = 0.71 £ 0.01. If we considered
the phase randomised time series as a pure monofractal set we would have the best fit for H = 0.692 + 0.002, a bit ouside error margin of h(2).
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Fig. 3. Left panel: Instantaneous volatility probability density function P(2) vs. v averaged over DJIA equities. Symbols are the empirical PDF and the line the
best fit using a F-distribution, Eq. (9) (32/n = 4.4 x 10~ and R? = 0.999). Right panel: Multifractal spectra f vs. o of the price fluctuations (M), and of time
series {r(t)} that use shuffled (o), phase randomised (<>), and shuffled plus phase randomised () volatility time series of DJIA equities. As it is depicted, the
multifractal character of volatility plays an essential role at the multifractal nature of price fluctuations. This role is clear for the non-Gaussianity of v(t).

where 0 =0.32+0.02, $ =1.83 +£0.01, and g = 1.08 + 0.02. Taking into account error margins, the small deviation from
exponential decay given by numerical adjustment is in agreement with the slight deviation of 7 from the theoretical curve
that we have measured.

2.3. Effects of the signal and (instantaneous) volatility multifractal behaviour on price flctuations multiscaling

In this section, we assess the influence of the multifractal character of instantaneous volatility on the multifractal nature
of price fluctuations. To that, we have proceeded the following way. We have separated price fluctuations, r(t), considering
each element as the product of elements of two other time series, i.e., one comprising the signal of the price fluctuation,
s(t) = +1, and the other which takes into account the magnitude or instantaneous volatility, (t) =| r(t) |. Preserving the sig-
nal time series, we have multiplied {s(t)} by time series that were obtained after shuffle, vy(t), phase randomisation, mq(t),
and shuffle plus phase randomisation, v.mq(t), procedures. The results we have obtained are depicted in Figs. 3 and 4. From
Fig. 3, we see that the statistical properties of volatility do influence the multifractal spectrum of price fluctuations. If we only
shuffle {»(t)} elements, the u(t) time series,

u(t) =s(t)v(t),

just has a paltry narrower f(«) curve than {r(t)}. Explicitly, it has Ah = 0.13 in opposition to Ah = 0.15 of {r(t)}. This is an
unexpected result regarding the influence of {#(t)} ordering on its multifractal spectrum. However, when we destroy the



2516

1(2)

J. de Souza, S.M. Duarte Queirds/Chaos, Solitons and Fractals 42 (2009) 2512-2521

2

el 1(2)

04

2

u2)

04

Fig. 4. Scaling exponent 7 vs. z of time series {r(t)} that use shuffled (right), phase randomised (centre), and shuffled plus phase randomised (left) volatility
time series of DJIA equities. In all panels, the line T = 5 — 1 represents the theoretical curve for an independent and Gaussian time series. The importance of
the multifractal characteristics of volatility are demonstrated by the clear approach of these three results towards the theoretical curve of an independent
Gaussian process.

non-Gaussianity of instantaneous volatility probability density function, we basically destroy the multifractal spectrum of
price fluctuations, since Ah = 0.04, or Ah = 0.03 when we combine shuffling with phase randomisation procedures on
{v(t)}. The latter result also sets the influence of the signal ordering on the price fluctuations multifractal character at
the order of error in absolute accordance with previous analysis for other characteristics, namely the approach to the Gauss-
ian when of cummulative price fluctuations probability density functions [48].

As it has been observed [13,36], many of the dynamical and statistical properties of price fluctuations depend on the vol-
atility. Although it is a pivotal variable in finance, the truth is that the definition of volatility is still ambiguous [40]. If in
many situations it is presented has we have been doing, volatility is often determined as the standard deviation of price fluc-
tuations over windows of length I3 The latter definition is widely applied on stochastic volatility models. In that particular case,
superstatistical models have been applied in problems of financial origin [13,41,49] to define such models. Concisely, supersta-
tistics or “statistics of statistics” [42] is a compound method which has emerged within statistical mechanics. It is based on the
assumption of a local statistics dependent on a parameter that fluctuates (smoothly) on a time scale that is very large when
compared with the time needed for a system to reach a local equilibrium or stationarity. In a superstatistical context, it has been
proved that, if we have a set of local Gaussian random variables,

1 x>
Yo (X) = ano €XP | =552| (10)
and the inverse variance, 62, is associated with a I'-distribution,
x\7 X
I(x) (5> exp [f 5}, (11)
then, the stationary distribution given by
p) = [ Fo0r(e (o).
is equal to a Tsallis (or Student t-) distribution [43],
1
1 x2] ™
poo =z [1-(1-0%] " (12
where
2
a=T+5 0 (13)

In this way, superstatistics has been considered has the first dynamical foundation for non-extensive framework [44] that
has non-additive entropy, S, [45], as its cornerstone. Distribution (12) has regularly been used to fit price fluctuations of sev-
eral financial markets including the data set we have been analysing for which it has been found a value of g = 1.31 & 0.02
[24]. If we assume a superstatistical approach for the data set upon analysis from Eq. (13) we obtain y = 1.82.

In what follows, we analyse a discrete ARCH-like process [46] that can be catalogued as superstatistical. Explicitly, we
have generated time series, {y(t)}, from the product of an uncorrelated Gaussian signal, {o(t)}, with (w(t)) =0, and
((t)*) = 1 by an uncorrelated volatility signal, {a(t)},

y(t) = a(t)m(b),

such that o2 follows a I'-distribution with 7 = 1.82 as we have obtained. In this case, because we have neglected memory
on volatility, we compare the multifractal study of this time series with the results that we have presented at the beginning

3 When [ = 1 we obtain the instantaneous volatility definition.
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Fig. 6. Left panel: Multifractal spectra fvs. o of the {y(t)} (), and of time series {r(t)} that use shuffled (o) volatility time series of DJIA equities. Right panel:
Scaling exponent 7 vs. z of {y(t)} (e) and of time series {r(t)} that use shuffled (o) volatility time series of DJIA equities. The line T =% — 1 represents the
theoretical curve for an independent and Gaussian time series.

of this Section 2.3 for {u(t)} with a shuffled instantaneous volatility. We have opted for this comparison because, just as s(t),
w(t) does not contribute to the multifractal spectrum. The excerpt of the time series we have generated is presented in Fig. 5.
In the same figure, we comprove that {y(t)} follows PDF (12) with g = 1.3.

Afterwards, we have performed a multifractal analysis along the same lines as we made for the price fluctuations analysis.
Even though both multifractal spectra are very similar, we can verify a noticeable difference. As a matter of fact, we have
obtained Ao = 0.28 for {y(t)} with shuffled volatility time series, and Ax = 0.24 for the generated series that we have priory
analysed, i.e., an error of 17%, see in Fig. 6. This means that superstatistics can be considered as an acceptable first approach,
although models that consider long term memory in variance [47] are certainly more appropriate. Since the only source of
multifractality in this case is the asymptotic power-law behaviour of the stationary PDF P(y), {y(t)} should be in fact called a
bifractal with t(z) = 0 for z > 5.45.

3. Results for ¢-diagrams

A rich and interesting way of representing time series is by considering a mapping of the time series onto a plane where
each point signalled is obtained by pairing elements x, and x;,, of the time series as ordinate and abcissa, respectively. These
¢-diagrams and related methods [51] are frequently used on studies about biological [50], and dynamical systems [51].
Moreover, they have also been introduced to study daily fluctuations of some securities [52]. This type of representation, full
named ¢-diagram variability method [50], is in fact quite illustrative since it is a simple way of capturing regular aspects of
systems which are apparently irregular. Such regularities can be characterised by regions which are more visited in space
X X X¢4. Specifically, taking into account price fluctuations time series and the value of £ = 1 as an example, it allows one
to verify how prices evolve in segments of two time intervals. Next, we analyse the first return map of the price fluctuations.
In Fig. 7 we show the plot of r.,; versus r, for some of the companies of our set* [38]. Plots A and D present a very interesting
structure. Over the four quadrants (anticlockwise) we have got stripes with high density of points and “forbidden” regions close
to the axes. We assign to transaction costs the emergence of this banned regions. In the 3rd quadrant we can see a highly visited
region close to the origin, pointing that small falls in price induce small other small falls. We have investigated the probabilities
for each quadrant and we have found a very peculiar behaviour for DJ30.> The probabilities for each quadrant (anticlockwise)

4 The plotted companies have been chosen in order to represent different sectors of activity and ways of trading (NYSE and NASDAQ).
5 We have also calculated these probabilities for original data - intra-day trend mask the effects observed in first return maps - and, once again, we have
found the same behaviour, but with different probabilities.
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A

Fig. 7. Recurrence maps (step s = 1) for the companies Caterpilar (upper panels) and Intel (lower panels) for detrended data [(A) and (D)], shuffled data [(B)
and (E)], and shuffled plus phase randomised data [(C) and (F)]. (i = t).

Table 1

Probabilities for each quadrant (columns 2-4) of 30 companies of the DJ30. In column 6 is shown the difference between positives price fluctuations and
negative price fluctuations, and in column 7 is shown the sum of all returns. The last two columns have been obtained from trended data. Even though most
price fluctuations are negative (for most companies) though the sum is positive. Note also that there is a clear pattern for the quadrants for the 30 companies.

P1 PZ P3 P4 N(T,' >0)7N(T,‘<0) ZT,‘
aa 0.17 033 0.17 0.33 —269 4.99
aig 0.18 0.33 0.17 0.33 —55 4.16
axp 0.18 0.33 0.17 0.33 —157 1.38
ba 0.18 0.33 0.17 0.33 —262 4.01
c 0.18 0.33 0.16 0.33 132 4.80
cat 0.17 0.33 0.18 0.33 —477 6.55
dd 0.18 0.33 0.17 0.33 -130 5.09
dis 0.17 0.33 0.17 0.33 —237 5.02
ge 0.17 0.33 0.17 0.33 —280 4.71
gm 0.18 0.33 0.17 033 —366 250
hd 0.18 0.33 0.17 033 -113 0.76
hon 0.18 0.33 0.17 0.33 -269 1.11
hpq 0.17 0.33 0.17 0.33 10 534
ibm 0.18 0.32 0.17 0.32 —45 0.90
intc 0.19 0.32 0.18 0.32 172 2.23
jnj 0.17 0.33 0.17 0.33 —96 0.57
jpm 0.17 0.33 0.17 0.33 —276 0.76
ko 0.18 0.33 0.17 0.33 —289 6.22
mcd 0.18 0.33 0.16 0.33 33 1.15
mmm 0.18 0.33 0.16 0.33 —348 7.23
mo 0.18 0.33 0.16 0.33 —82 6.17
mrk 0.17 0.33 0.17 0.33 —298 1.16
msft 0.19 0.31 0.18 0.32 -16 1.58
pfe 0.17 0.33 0.17 0.32 -162 3.63
pgn 0.18 0.33 0.17 0.33 —62 5.16
sbc 0.18 032 0.17 0.33 —336 6.54
utx 0.18 0.32 0.17 0.33 —478 5.85
vz 0.17 033 0.17 0.33 —191 4.65
wmt 0.17 0.33 0.18 0.32 —583 4.03
Xom 0.17 0.33 0.17 0.33 —452 6.02
Average 0.17 0.33 0.17 0.33 -199 3.82

can be interpreted as follows: 1st quadrant - probability of two consecutive profits, P,; 2nd quadrant — probability of a profit
after a loss, P; 3rd quadrant - probability of two consecutive loss, Ps; 4th quadrant — probability of a loss after profit, P4. These
results are shown in Table 1. As it is easily observed, the dynamics of the system is basically a sequence os alternating ups and
downs since the fourth and second quadrants together represent 2/3 of the points plotted on 1-diagrams, with the probabilities
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Table 2
Fractal dimension of the r; x r,, space (¢ =1,2,10,50) for the companies of the DJ30 estimated with Hou algorithm.
de(£=1) dp (0 =2) de (£ =10) ds(¢ = 50) dp(¢ = 1) (shuf) df(¢ =1) (rand)

aa 1.45 1.42 1.43 1.45 1.45 1.68
aig 1.28 1.25 1.26 1.29 1.40 1.67
axp 1.46 1.44 1.45 1.44 1.45 1.67
ba 1.44 1.45 1.43 1.44 1.45 1.67
c 133 1.31 1.31 1.31 1.33 1.67
cat 1.37 1.37 1.36 1.41 1.41 1.67
dd 1.45 1.47 1.47 1.48 1.47 1.66
dis 1.50 1.50 1.50 1.51 1.51 1.66
ge 1.52 1.53 1.54 1.51 1.52 1.66
gm 1.46 1.43 1.46 1.45 1.46 1.67
hd 137 139 137 1.39 1.36 1.68
hon 1.48 1.46 1.48 1.47 1.48 1.67
hpq 1.46 1.46 1.47 1.47 1.50 1.67
ibm 1.43 1.47 1.44 1.45 1.45 1.64
intc 1.35 1.40 1.40 1.43 1.41 1.69
jnj 1.36 1.36 1.37 1.37 1.41 1.65
jpm 1.44 1.44 1.41 1.44 1.43 1.67
ko 1.46 1.44 1.45 1.44 1.45 1.67
med 1.44 1.45 1.43 1.44 1.45 1.67
mmm 133 1.31 1.31 1.31 133 1.67
mo 137 137 1.36 1.41 1.41 1.67
mrk 1.45 1.47 147 1.48 1.47 1.66
msft 1.50 1.50 1.50 1.51 1.51 1.66
pfe 1.52 1.53 1.54 1.51 1.52 1.66
pgn 1.46 1.43 1.46 1.45 1.46 1.67
sbc 1.37 1.39 1.37 1.39 1.36 1.68
utx 1.48 1.46 1.48 1.47 1.48 1.67
vz 1.46 1.46 1.47 1.47 1.50 1.67
wmt 1.43 1.47 1.44 1.45 1.45 1.64
xom 1.35 1.40 1.40 1.43 1.41 1.69

of having either two consecutive profits or two consecutive losses equal to 17%, in average. Interestingly, we have verified that,
although the number of negative price fluctuations surpasses the number of positive price fluctuations,
N(r; > 0) — N(r; < 0) = —199 (related to the skewness of the distributions), the cumulative sum of price fluctuations yields a
positive value for all equities, >°,r;(t) = 3.82 (in average). In other words, although during the period upon analysis there
was a larger number of negative price fluctuations than positive price fluctuations, the magnitude of the latter were greater
so that a positive evolution arose. As a matter of fact, during this period the DJIA index increased its magnitude from
10334.16 to 10783.01, or a rise of 4.8%.

Be aware that, looking at Fig. 7, there exists a clear pattern for these probabilities. In order to further show that these
characteristic patterns go beyond the uncorrelated essence of price fluctuations time series, we have performed immediate
1-diagrams for the shuffled signals. Some of the results are presented in Fig. 7 (B and E panels). Therein, it is visible that these
diagrams are different from the diagrams A and C, namely the accumulation around lines r.,; = 4, becomes less clear. Fur-
thermore, analysing shuffled plus randomised times series which we exemplify in Fig. 7 with panels C and F. As it can be
seen, these panels do not present of any pattern, forbidden stripes inclusive. Actually, both of the two latter representations
are more homogeneous. In our opinion, this is a clear evidence about the importance of dependencies and non-Gaussianity
on price fluctuations dynamics. At this point, it is absolutely necessary to stress that our profiles for 1-diagrams do not con-
tradict the EMH. In other words, if one tried to make use of this property for immediate trading, transaction costs would
surpass any possible (read likely) income.

Analysing ¢-diagrams for ¢ = 2,4,10 we have verified an equal occupancy of all quadrants, P; = P, = P3 = P4, = 25%,
which indicates the loss of any predictability on the time series. To quantify the properties of /-diagrams we have carried
out a fractal analysis using a modified box-counting algorithm [22,29,30]. Namely, we have mapped the space r; x r..; onto
interval [2°,2'%], and we have estimated the fractal dimension of this space structure for the 30 companies. It has also been
noticed that, for the majority of the companies the scale regime holds over a large range of scales. We have then used the
interval 22-28 to numerically obtain the fractal dimensions that are shown in Table 2. There, it is verifiable that the fractal
dimension varies slight as the step (s) is changed, as well as after shuffling (keeping the order of the diagram) time series
elements. However, it is strongly affected by phase randomisation, and, for this case, it presents values that are compatible
with a two-dimensional Gaussian distribution.

4. Final remarks

To summarise, our results indicate that dependence and non-Gaussianity have similar weights on the multifractal fea-
tures of high-frequency price fluctuations. Contrarily to some stylised facts, and especially for instantaneous volatility
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[53], we have not verified a solid asymptotic power-law decay of the probability density functions, i.e., fair deviations from
exponential decay. This result is substantiated by the clear approach of t(z) curves to the theoretical curve of a independent
gaussian signal when we perform a shuffling on time series elements. If we consider persistence as a major factor for mul-
tiscaling, it might be puzzling to verify that multifractality for price fluctuations is stronger than it is for magnitude price
fluctuations. Such an apparent contradiction is cleared up if we take into consideration that price fluctuations PDF appears
to be more fat tailed than instantaneous volatility PDF. Being like this, the former introduces a larger contribution to mul-
tiscaling. Besides, in respect of probability density functions, we have observed that a superstatistical approach to price fluc-
tuations appears to be valid as a first approach. Still on multiscaling, we have tried to appraise the robustness of
instantaneous volatility by means of measuring the effect of its possible multifractal nature on price fluctuations multifractal
properties. Our results have indicated that the non-Gaussinity of instantaneous volatility (price fluctuation magnitudes) is
the chief element of multifractal properties of price fluctuations. This occurs because the uncorrelated character of the signal
annihilates the influence of dependencies of instantaneous volatility leading to the non-Gaussianity of latter quantity the
chief role of introducing multifractality on price fluctuations time series. In this perspective, heteroskedastic (i.e., ARCH) ap-
proaches, within superstatistics is enclosed, to price fluctuations are validated.

Analysing ¢-diagrams obtained from price fluctuations time series, we have got sequences of immediate price fluctuations
around Cartesian axes that are forbidden. We have attributed this fact to transaction costs. We have also observed that de-
spite the number of negative price fluctuations is greater than the number of positive price fluctuations, the sum all returns
is in fact positive, which is in accordance with both price fluctuations skewness and economical evolution. By means of a
box-counting algorithm we have computed the fractal dimension of such diagrams. We have verified that, the fractal dimen-
sion varies slightly when time ordering is destroyed, and it is deeply affected by randomisation procedures. This provides an
important clue on the fundamental role of non-Gaussinity of price fluctuations in several properties usually observed.
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