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We analyze the distribution that extremizes a linear combination of the Boltzmann–Gibbs entropy and 
the nonadditive q-entropy. We show that this distribution can be expressed in terms of a Lambert 
function. Both the entropic functional and the extremizing distribution can be associated with a nonlinear 
Fokker–Planck equation obtained from a master equation with nonlinear transition rates. Also, we 
evaluate the entropy extremized by a linear combination of a Gaussian distribution (which extremizes 
the Boltzmann–Gibbs entropy) and a q-Gaussian distribution (which extremizes the q-entropy). We give 
its explicit expression for q = 0, and discuss the other cases numerically. The entropy that we obtain 
can be expressed, for q = 0, in terms of Lambert functions, and exhibits a discontinuity in the second 
derivative for all values of q < 1. The entire discussion is closely related to recent results for type-II 
superconductors and for the statistics of the standard map.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Generalized Fokker–Planck (FP) equations have been success-
fully employed to describe anomalous diffusion processes in a 
plethora of different contexts [2]. Diverse phenomena, like diffu-
sion in porous media [3–5], surface growth in fractals [6], black 
hole radiation [7], diffusion in optical lattices [8,9], heartbeat of 
healthy individuals [10], disordered superconductors [11,12], finan-
cial indices [13,14], among others, cannot be described in terms of 
linear FP equations [15]. All these complex systems are character-
ized by the presence of long-range space and/or time correlations. 
In order to deal with such systems, two main modifications of 
the linear FP equations have been proposed and are being worked 
upon, namely, fractional FP equations with nonlocal operators [16], 
and nonlinear FP equations with nonlinear transition rates [1]. In 
the latter case, q-statistics [17–19] has provided useful tools for 
the study of the entropy associated with nonlinear FP equations 
[20–23]. In particular, in a recent study on the thermostatistics 
of the overdamped motion of interacting particles, a nonlinear FP 
equation associated with a linear combination of entropies has 

* Corresponding author.
E-mail addresses: sicuro@cbpf.br (G. Sicuro), debarshee@cbpf.br (D. Bagchi), 

tsallis@cbpf.br (C. Tsallis).

been used to describe the diffusion of vortices in type-II super-
conductors [12]. On the other hand, in a numerical work on the 
nonlinear dynamics of the standard map [24], a linear combina-
tion of a Gaussian distribution and a q-Gaussian distribution has 
been successfully adopted as a fitting ansatz. A linear combination 
of a Gaussian and a q-Gaussian appears also in the model pro-
posed by Miah and Beck [25] for the velocity distribution of tracer 
particles in quantum turbulence. In their model, tracer particles 
spend some time in a normal liquid and in a superfluid alter-
nately. The q-Gaussian distribution emerges from the superfluid 
dynamic, whereas the Gaussian is related to the normal regime: 
the resulting distribution is therefore a linear combination of the 
two distributions. Remarkably, their model reproduces the experi-
mental data very well [25].

Motivated by these recent works, in the present paper, we sys-
tematically explore the connection between linear combination of 
two entropies and linear combination of the probability distribu-
tions that optimize each of these extropies separately. Although a 
linear combination of two entropies is not maximized by a linear 
combination of the two corresponding extremizing distributions, 
still in some cases this assumption can be adopted, within a cer-
tain error, as a working ansatz.

In order to do this, we employ the following approach. In Sec-
tion 2 we construct a nonlinear FP equation from a master equa-
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tion, assuming nonlinear transition rates. In Section 3 we show 
that the introduced FP equation can be associated to an entropy 
which is a linear combination of the Boltzmann–Gibbs (BG) en-
tropy and the nonadditive q-entropy. The exact stationary state 
solution of such a FP equation was found recently in terms of the 
Lambert W function, which in two limits yields the Gaussian and 
the q-Gaussian distributions [12,26]. Finally, in Section 4 we con-
sider a linear combination of these two probability distributions, 
namely a Gaussian and a q-Gaussian, that individually extrem-
ize the (additive) BG entropy and the nonadditive q-entropy re-
spectively. We reconstruct the entropy corresponding to the linear 
combination of the probability distributions using the prescription 
presented by Plastino et al. [27]. We obtain the exact expression 
of the entropy for the case q = 0, and we discuss numerically the 
other cases.

2. A nonlinear Fokker–Planck equation

A FP equation for a “walker” (i.e., the state of our system) in 
one dimension can be derived from a master equation on a one 
dimensional regular lattice with step size ϵ → 0+ [28]

∂ P (n, t)
∂t

=
+∞∑

m=−∞
P (m, t)w(n|m; t) − P (n, t)

+∞∑

m=−∞
w(m|n; t).

(1)

In the previous expression, P (n, t) is the probability of finding the 
walker in the position x = nϵ , n integer number, at the time t
and w(m|n; t) is the transition rate from the site x = nϵ to the 
site x = mϵ at the time t . In the ϵ → 0 limit, introducing a prop-
erly rescaled probability density p(x, t) ∝ 1

ϵ P (n, t), it is well known 
that a FP-type equation is obtained, the coefficients of which de-
pend on the form assumed by the transition rate w(m|n; t). In 
particular, if

w(m|n; t) ≡ w(m|n) = − f (nϵ)

ϵ
δn,m+1 + D

δn,m+1 + δn,m−1

ϵ2 , (2)

with

f (x) = −dφ(x)
dx

(3)

being the external force on the walker, φ the external confining po-
tential, and D > 0 the diffusion constant, the linear FP equation

∂ p(x, t)
∂t

= − ∂

∂x
[ f (x)p(x, t)] + D

∂2 p(x, t)
∂x2 (4)

is recovered in the ϵ → 0 limit taking x ≡ nϵ fixed.
Eq. (4) is however inadequate for the description of nonlin-

ear diffusion processes in which the transition rate can depend 
on a certain power of P . Indeed, the diffusion process of a spe-
cific walker takes place, in general, in presence of a large num-
ber of other diffusing walkers and it may happen, therefore, that 
w(m|n; t) depends also on the probability that the arrival site m is 
already occupied. A very simple assumption is

w(m|n; t)

= − f (nϵ)

ϵ
δn,m+1

+
[

a + b
Pν−1(n, t) + Pν−1(m, t)

2ϵν−1

]
δn,m+1 + δn,m−1

ϵ2 , (5)

in which we have introduced a nonlinear diffusion term. Here a, b
are real, positive constants and we assume ν ≥ 1. We can put 
b ≡ 1 without loss of generality. In the ϵ → 0 limit, we obtain the 
following generalized FP equation for the probability density distri-
bution p,

∂ p(x, t)
∂t

= − ∂

∂x
[ f (x)p(x, t)] + a

∂2 p(x, t)
∂x2 + 1

ν

∂2 pν(x, t)
∂x2 . (6)

The equation for the stationary distribution p(x) is

a + pν−1(x)
p(x)

∂ p(x)
∂x

= f (x),

and assuming lim
x→±∞

p(x) = lim
x→±∞

∂ p(x)
∂x

= 0, (7)

the solution can be written as

p(x) =
[

aW

(
pν−1

0

a
e

pν−1
0 −(ν−1)(φ(x)−φ0)

a

)] 1
ν−1

. (8)

Here φ0 ≡ φ(0), p0 ≡ p(0) is to be fixed by imposing normaliza-
tion, and W (z) is the Lambert function, defined as the solution of 
the equation W (z)eW (z) = z. Andrade et al. [12] showed that the 
nonlinear FP equation (6) with ν = 2 describes properly vortices 
in type-II superconductors; they also derived the stationary distri-
bution in Eq. (8) for this particular case. Eq. (6) has been recently 
obtained also by Casas et al. [26] in the analysis of the nonlinear 
Ehrenfest model. Observe that

p(x)
a≫1−−−→ p0 e− φ(x)−φ0

a , (9)

thus recovering the BG distribution. The previous formula shows 
that a ∝ T , i.e., a plays the role of a temperature. In contrast, by 
taking the a → 0 limit (low temperature limit), we have

p(x)
a→0−−−→ p0 exp2−ν

(

−φ(x) − φ0

pν−1
0

)

, (10)

where we have introduced the q–exponential function

expq(x) :=
{

exp(x) if q = 1,

[1 + (1 − q)x]
1

1−q
+ if q ≠ 1,

(11)

and [x]+ := x θ(x). The equation obtained for a = 0 and its solu-
tions were analyzed by Plastino and Plastino [20] in the study 
of diffusion processes in porous media, and later associated to a 
Langevin-type equation by Borland [29]. Its derivation from a mas-
ter equation is discussed in [30,31]. Finally, let us mention that 
Eq. (6) can also be discussed for ν < 1, see [32,33].

3. Entropy and stationary solution: from linear combination of 
entropies to the extremizing distribution

Schwämmle et al. [34] showed that we can associate an en-
tropic functional S[p] to Eq. (6) under the assumption that the 
entropy is trace-form

S[p] :=
+∞∫

−∞
s(p(x, t))dx, s(0) = s(1) = 0,

d2s(p)

dp2 ≤ 0. (12)

Here and in the following we will suppose that the space of possi-
ble states is the real line. For the sake of completeness, we sketch 
their main results here.

Let us consider a generic nonlinear FP equation of the form

∂ p(x, t)
∂t

= − ∂

∂x
[ f (x)p(x, t)] + ∂

∂x

[
'[p(x, t)]∂ p(x, t)

∂x

]
. (13)

In the previous expression, f (x) ≡ − dφ(x)
dx as before, whilst '[p] ≥

0 is a certain function of the distribution p. To preserve the norm, 
we require that

lim
x→±∞

p(x, t) = lim
x→±∞

f (x)p(x, t) = lim
x→±∞

∂ p(x, t)
∂x

= 0, ∀t.
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Let us now associate to the previous equation the generic trace-
form entropy in Eq. (12) and the free-energy functional

F [p] :=
∞∫

−∞
φ(x)p(x, t)dx − S[p]

β
, β > 0 . (14)

Imposing that the H-theorem holds, i.e. ∂ F
∂t ≤ 0, we obtain

'[p] = − p
β

d2s(p)

dp2 . (15)

If we now consider Eq. (6), Eq. (15) becomes

− 1
β

d2s(p)

dp2 = a + pν−1

p
. (16)

The constraints s(0) = s(1) = 0 fix the form of s(p) for ν > 1 as

s(p) = akβ

(
−p ln p + p − pν

aν(ν − 1)

)
, (17)

where k is a positive constant. Observe that s(p) is concave and 
has a maximum in the interval [0, 1] for

pmax =
[

aW
(

1
a

e
1

a(ν−1) −ν+1
)] 1

ν−1

.

The entropy associated with the nonlinear FP equation (6) can 
therefore be expressed as a linear combination of a BG entropy and 
a nonadditive q-entropy with entropic index ν:

S[p] = aβ SBG[p] + β

ν
Sν [p]. (18)

The nonadditive entropy Sq[p] is defined as follows [17]:

Sq[p] :=
1 −

∫ +∞
−∞ pq(x)dx

q − 1
. (19)

We can evaluate the corresponding distribution by extremizing 
the entropy functional (18) with the constraints 

∫
p(x) dx = 1 and ∫

(φ(x) − φ0)p(x) dx = u internal energy. Let us write the following 
Lagrangian functional:

L[p] = SBG[p] + Sν [p]
aν

− γ1

[∫
p(x)dx − 1

]

− γ2

[∫
(φ(x) − φ0)p(x)dx − u

]
, (20)

where suitable Lagrange multipliers have been introduced. Com-
puting δL

δp = 0 it is easily seen that the distribution maximizing 
the entropic functional (18) has the form of the stationary solu-
tion (8):

p(x) =
[

aW

(
pν−1

0

a
e

pν−1
0
a −γ2(ν−1)(φ(x)−φ0)

)] 1
ν−1

, (21)

where p0 is fixed by imposing the normalization condition.
By comparison with Eq. (8), if we impose that the stationary 

solution is the extremizing distribution for the functional (18), we 
have that

γ2 ≡ 1
a
. (22)

Let us from now on consider a harmonic potential

φ(x) = αx2, α > 0. (23)

Fig. 1. Stationary solution of Eq. (24) for different values of a and ν = 2 − q = 2.

Eq. (21) can be written as

p(2−ν)
a (x) =

[

a W

(
pν−1

0

a
exp

(
pν−1

0 − α(ν − 1)x2

a

))] 1
ν−1

.

(24)

Interestingly enough, for a ≫ 1, the distribution is a Gaussian one, 
the linear diffusive term being dominant. Instead, for a → 0, we 
recover a q-Gaussian shape with q = 2 − ν < 1. On the other hand, 
if q = ν = 1 the behavior is purely Gaussian for all values of a. The 
distribution, for ν = 2, is plotted in Fig. 1 for different values of a: 
as anticipated above, this particular case appeared in the study of 
the diffusion of N vortices in a type-II two-dimensional supercon-
ductor of size Lx × L y , L y ≪ Lx [12]. Observe that the distribution 
(24) maximizes the linear combination of entropies in Eq. (18) and, 
obviously, it is not merely a linear combination of the optimizing 
distributions of the two entropies.

4. The inverse road: from linear combination of distributions to 
the corresponding entropy

Let us search now for a trace-form entropic functional S̃[p] =∫ +∞
−∞ s̃(p(x))dx having a linear combination of a Gaussian and a 

q-Gaussian as extremizing distribution, i.e., a distribution given by 
a linear combination of the probability distributions extremizing 
the BG entropy and the Sq entropy respectively. As anticipated, a 
fitting ansatz in this form was recently used by Tirnakli and Borges 
[24] in the numerical investigation of the statistics of the standard 
map, and it appears also as solution of a model for turbulence [25]. 
In both models, however, it is not clear if any entropic functional 
S̃[p] could be associated to this limiting probability distribution 
function. We address this question here.

To derive the required entropic functional, let us proceed in 
generality. Let us suppose that a certain entropic functional of the 
form

+[p] =
+∞∫

−∞
σ (p(x))dx (25)

is given. From the maximum entropy principle, imposing the con-
straints 

∫
ϵ(x)p(x)dx = u and 

∫
p(x)dx = 1, we obtain the equation

dσ (p)

dp
− γ1 − γ2ϵ = 0, (26)

where ϵ plays the role of an energy function, and γ1 and γ2
are two Lagrange multipliers to be determined. Let us assume 
that the previous equation is solved by the distribution P = P (ϵ), 
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with P ′(ϵ) < 0 in its domain of definition.1 We assume also that 
there exists a value ϵ̄ ∈ R such that P : [ϵ̄, +∞) → (0, 1]. In par-
ticular, we have P (ϵ̄) = 1. Under these assumptions, the function 
ϵP (p) := P−1(p) is well defined in (0, 1]. Then2

σ (p) = γ

(∫ p
0 ϵP (y)dy

∫ 1
0 ϵP (y)dy

− p

)

, (27)

for some constant γ , where we have imposed limp→0 σ (p) =
limp→1 σ (p) = 0. Moreover, the condition γ ≥ 0 must be satis-
fied to guarantee concavity. Applying Eq. (27) to the distribution 
in Eq. (21) with ϵ(x) ≡ φ(x) − φ0, we recover the linear combina-
tion of a BG entropy and a Sq entropy.

Let us now evaluate the entropic functional + on a discrete 
probability distribution P = {pi}i=1,...,W , W ∈ N0. We have

+[P ] :=
W∑

i=1

σ (pi). (28)

The entropic functional in Eq. (28) satisfies the first three Khinch-
in’s axioms [35]. Indeed, under our hypotheses,

• +[P ] is a continuous function of its arguments;
• +[P ] is maximized by the uniform distribution;
• adding a zero-probability state, the entropy does not change, 

being σ (0) = 0 (expansibility).

The fourth Khinchin’s axiom is violated, unless + is exactly the 
Boltzmann–Gibbs entropy. The composability property [36] holds 
only for a specific two-parameter form of σ (p) [37,38] and, there-
fore, the entropy + is not composable in general. Our result 
in Eq. (27) is consistent with the uniqueness result obtained by 
Naudts [39] on generalized exponential families. A more general 
recipe for the construction of a trace form entropy optimized by a 
given energy density distribution function is discussed by Naudts 
[39] and Plastino et al. [27].

Observe that similar distributions optimize similar entropic 
functionals. Indeed, let us assume that two invertible probability 
distribution P1(ϵ) and P2(ϵ) = P1(ϵ) + δρ(ϵ) are given, δ ≪ 1. Let 
us introduce now

ϵ1(p) := P−1
1 (p),

ϵ2(p) := P−1
2 (p) = ϵ1(p) − δ

ρ (ϵ1(p))

P ′
1 (ϵ1(p))

+ o(δ). (29)

If we require

sup
0≤p≤1

∣∣∣∣∣∣∣

ϵ1(p)∫

ϵ1(0)

ρ(y)dy

∣∣∣∣∣∣∣
= K < +∞, K ∈ R+, (30)

the result follows from Eq. (27), observing that
∣∣∣∣∣

∫ p
0 ϵ1(y)dy

∫ 1
0 ϵ1(y)dy

−
∫ p

0 ϵ2(y)dy
∫ 1

0 ϵ2(y)dy

∣∣∣∣∣ ≤ K̃δ (31)

for some constant K̃ .
Let us consider now the following probability distribution func-

tion

1 Here we assume that the domain of P as function of ϵ does not coincide nec-
essarily with the set of physically acceptable values of ϵ , but with the values of ϵ
such that P (ϵ) is a well defined quantity.

2 Notice that any monotonic function of the obtained trace-form entropy is ex-
tremized, for the same set of constraints, by the same distribution.

p̃(q)
β1,βq,c(ϵ) = 1 − c

Z1
exp (−β1ϵ) + c

Zq
expq

(
−βqϵ

)
,

c ∈ [0,1], q ∈ (−∞,1]. (32)

Here Z1 and Zq are normalizing constants, depending on the ex-
pression of ϵ = ϵ(x). Observe that the function above has a dis-
continuity in the first derivative for ϵ = 1

βq

1
1−q and therefore we 

expect that it cannot be a solution of a regular FP equation. We 
can evaluate the quantity (27) by inverting the equation above. 
Obviously, the distribution in Eq. (32) is not the optimizing dis-
tribution of the linear combination of entropies in S[p] appearing 
in Eq. (18) for any value of its parameters, except in the trivial 
case q = 1. Remarkably enough, the distribution in Eq. (32), if used 
as a fitting ansatz, can approximate quite well the exact solution 
(8), this approximation becoming trivially exact for q = 1. Let us 
call now S̃[p] =

∫ +∞
−∞ s̃(p(x))dx the entropic functional associated 

to p̃(q)
β1,βq,c , obtained using the procedure sketched above. If we 

tune the parameters of p̃(q)
β1,βq,c to get the best fit of p(q)

a (x), for 
a fixed value of q, a and α, the two entropic forms S[p] and S̃[p]
are mathematically different but still very similar, as expected. As 
particular case, in Fig. 2 we consider ϵ(x) = x2 and the distribution 
in Eq. (24) obtained for a = 1 and ν = 3

2 ,

p(1/2)
1 (x) =

[
W

(√
p0 exp

(√
p0 − x2

2

))]2

.

We plot also the function p̃(1/2)
β1,βq,c(x) obtained as best fit of 

p(1/2)
1 (x), with β1, βq, c as free parameters, and the functions s(p)

and s̃(p). The plot of s̃(p) is obtained numerically using the param-
eters of the best fit. As expected, the entropic forms reconstructed 
using our method do not differ very much. Therefore a linear com-
bination of an Sq entropy and a Boltzmann–Gibbs entropy can be 
a good approximation to the true entropy maximized by a linear 
combination of a q-Gaussian and a Gaussian, and vice versa.

The q = 0 case can be treated analytically. In the notation 
above, we have

ϵp(0)
β1,βq,c

(p) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− 1
β1

ln Z1 p
1−c

for 0 ≤ p ≤ min{pc,1}
1
β0

− Z0
cβ0

p + 1
β1

W
[

Z0β1
Z1β0

1−c
c e

Z0β1
cβ0

(
p− c

Z0

)]

for min{pc,1} ≤ p ≤ 1.
(33)

Here we have introduced

pc := 1 − c
Z1

e
− β1

β0 . (34)

Let us suppose now that pc ∈ (0, 1). Firstly, let us compute

C(p) :=
p∫

0

ϵp(0)
β1,βq,c

(y)dy. (35)

For p ∈ [0, pc] we have

C(p) =
p∫

0

[
− 1

β1
ln

Z1 y
1 − c

]
dy = p

β1
− p

β1
ln

Z1 p
1 − c

. (36)

We have then that, for pc ∈ (0, 1) and p ∈ (pc, 1],

C(p) = C(pc)

+
p∫

pc

{
1
β0

− Z0

cβ0
y + 1

β1
W

[
Z0β1

Z1β0

1 − c
c

e
Z0β1
cβ0

(
y− c

Z0

)]}
dy
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Fig. 2. On the left, plot of p(1/2)
1 (x) and of the function p̃(1/2)

β1,βq ,c(x) obtained as best fit of p(1/2)
1 (x), with β1, βq, c as free parameters. Both functions are rescaled in such a 

way that their maximum is 1
2 . On the right, plot of s(p) and s̃(p).

Fig. 3. On the left, plot of s̃ for different values of q and β1 = βq = 2c = 1 obtained assuming ϵ(x) = x2. On the right, plot of the optimizing distribution p̃(0)

1,1, 1
2
(x): the dotted 

curve is the Gaussian distribution appearing in the linear combination.

= C(pc) + p − pc

β0
− Z0

p2 − p2
c

2cβ0
y

+ cβ0

2Z0β
2
1

{
2W

[
Z0β1

Z1β0

1 − c
c

e
Z0β1
cβ0

(
p− c

Z0

)]

− 2W
[

Z0β1

Z1β0

1 − c
c

e
Z0β1
cβ0

(
pc− c

Z0

)]

+ W 2
[

Z0β1

Z1β0

1 − c
c

e
Z0β1
cβ0

(
p− c

Z0

)]

− W 2
[

Z0β1

Z1β0

1 − c
c

e
Z0β1
cβ0

(
pc− c

Z0

)]}
. (37)

In the previous formula, we have used the fact that, for a, b > 0,

z2∫

z1

W
(

aebx
)

dx = 2W
(
aebx

)
+ W 2 (

aebx
)

2b

∣∣∣∣∣

z2

z1

. (38)

It follows immediately that

s̃(p)

γ
= −p + 1

C(1)

{
p
β1

− p
β1

ln Z1 p
1−c 0 < p ≤ pc,

C(p) pc ≤ p < 1.
(39)

The expression above is quite involved and nontrivial, and it has 
as extremizing distribution the function given in Eq. (32). Extend-
ing the application of our entropic form to the discrete case, in the 
spirit of Eq. (28), we observe that S̃[P ] cannot be put in the gen-
eral form presented in [40], despite the fact that it is trace-form 
and the first three Khinchin axioms are fulfilled. Computing S̃[P ]
on the uniform distribution P =

{
1

W

}

i=1,...,W
, we have

S̃

[{
1

W

}

i=1,...,W

]

∼ ln W
β1

for W ≫ 1. (40)

Finally, observe that the quantity p d2 s̃(p)

dp2 is not continuous, 

due to the discontinuity of the first derivative of p̃(q)
β1,βq,c(x) when 

pc ∈ (0, 1). This fact reinforces that the previous quantity cannot 
be used in a regular FP equation. Moreover, the discontinuity of 
the second derivative of s̃(p) prevents the existence of an escort 
distribution associated to this entropic form, and the definition of 
a Fisher information matrix, in the sense specified in [39].

In Fig. 3 we compare the result in Eq. (39) with other entropic 
functionals corresponding to different values of q. The curves are 
obtained by integration, as in Eq. (27), of the (numerically derived) 
inverse of the probability distribution function

p̃(q)

1,1, 1
2

= e−x2

2Z1
+

e−x2

q

2Zq

Zq =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2
√

π/
(

1
1−q

)

(3−q)
√

1−q/
(

3−q
2−2q

) q ∈ (−∞,1),

√
π q = 1,

√
π/

(
3−q

2q−2)

)

√
q−1/

(
1

q−1

) q ∈ (1,3).

(41)

5. Conclusions

In the present paper we discussed a FP equation that can be 
associated to an entropic functional given by a linear combination 
of the Boltzmann–Gibbs entropy and the nonadditive q-entropy. 
The stationary solution of this equation can be expressed in terms 
of a Lambert W function, as already pointed out by Andrade et 
al. [12] and Casas et al. [26]. This distribution smoothly interpo-
lates between two limiting distributions, namely, a Gaussian and 
a q-Gaussian. Clearly this solution is not a linear combination of 
a Gaussian and a q-Gaussian. Inspired by some numerical results 
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obtained in [24] on the standard map, we investigated also the 
inverse road, trying to reconstruct the entropy associated to the 
linear combination of a Gaussian and a q-Gaussian. In particular, 
using a procedure introduced recently in [27], we were able to re-
construct the analytical expression of the trace-form entropic func-
tional having a linear combination of a Gaussian and a q-Gaussian 
with q = 0 as extremizing distribution, showing that it can be 
expressed again in terms of Lambert functions. This entropic func-
tional has a quite involved expression and, moreover, it presents a 
(jump) discontinuity in the second derivative. Therefore, it is not 
possible to construct a proper FP equation associated to it.

As a closing remark, let us emphasize that, in spite of the 
conceptual differences that we have exhibited here (namely that 
entropic extremization and linear combination do not generically 
commute), the numerical discrepancies can be, for appropriate 
choice of the fitting parameters, almost negligible for a wide range 
of physical situations.
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