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We consider a class of single-particle one-dimensional stochastic equations which include external field,
additive, and multiplicative noises. We use a parameter 6 € [0, 1] which enables the unification of the tradi-
tional It6 and Stratonovich approaches, now recovered, respectively, as the #=0 and #=1/2 particular cases to
derive the associated Fokker-Planck equation (FPE). These FPE is a linear one, and its stationary state is given
by a g-Gaussian distribution with q=%<3, where 7=0 characterizes the strength of the confining
external field and M =0 is the (normalized) amplitude of the multiplicative noise. We also calculate the
standard Kurtosis «; and the g-generalized kurtosis «, (i.e., the standard kurtosis but using the escort distribu-
tion instead of the direct one). Through these two quantities we numerically follow the time evolution of the
distributions. Finally, we exhibit how these quantities can be used as convenient calibrations for determining
the index ¢ from numerical data obtained through experiments, observations, or numerical computations.
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I. INTRODUCTION

The random walk is the simplest model of diffusive pro-
cesses in physics. If there is no wind, or any other source of
symmetry breaking, a drunk has a probability of 1/2 to take a
step to the right and the same probability to take a step to the
left at each instant. Underneath this model there is a formal
mathematical theory known as stochastic calculus, which in
some sense can be interpreted as an extension of the standard
differential calculus taught in undergraduate courses. The
stochastic as well as the standard calculus is based on the
definition of the integral. Let us define the stochastic integral
by

1G(n]= f dW()G(1"), (1)

where G(r) is a left-continuous function (i.e., a function
which is continuous from the left at all the points where it is
defined) and W(z) is a Wiener process [1,2]. As in the Rie-
mann integral definition, the formal stochastic integral (also
known as Riemann-Stieltjes integral) is a infinite discrete
sum of very small intervals [dW(¢")] of a stochastic function.
When we perform this sum we must make a choice; more
precisely the function G(¢') has to be evaluated in some
point inside each interval. This choice defines what kind of
stochastic calculus will be performed henceforth. The two
most famous procedures are Itd calculus and Stratonovich
calculus. In the first, It6 calculus, the function is evaluated at
the beginning of the intervals:

n
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where ms-lim stands for mean-squared limit [1], i.e., a sec-
ond moment convergence; n is the number of subintervals in
which we divide the interval [#,,7]; and AW;=W;,-W,_,. In
the Stratonovich calculus we take the arithmetic average be-
tween the integrate function values at the beginning and at
the end of the intervals as follows:

I{G(#)] = ms-lim >, MAW,.. (3)

n—% ;-1 2

A unified form, with a linear interpolation, can be pro-
posed [3-8] for the stochastic integral, namely,

I[G()]=ms-lim >, [6G;+ (1 — )G, JAW,,  (4)

n—;_1

where 0= 6#=1. Notice that the two traditional procedures
can be recovered easily. Indeed, if #=0 we obtain the Itd
approach, and if #=1/2 we obtain the Stratonovich ap-
proach. Moreover, if 6=1 we recover the so-called
backward-Ito [9] stochastic approach, also known as isother-
mal convention [3-5,7,8], or even as kinetic form [10,11].
We argue here that, in fact, it is possible to go one step
further and generalize Eq. (4). Indeed, we can assume that
the values of 6, at each interval dW(¢'), are given by an
arbitrary distribution p(6) (f éd Op(6)=1). In particular, if this
distribution is p(6)=8(0-6,), we recover the three cases
mentioned above for suitable values of @), namely, 6,=0
(Itd), 6,=1/2 (Stratonovich), and 6,=1 (backward It6). An
interesting remark arises when p(6) is constant. In this case
(6)=1/2, which coincides precisely with the average value
corresponding to the (frequently adopted) Stratonovich ap-
proach. In some sense, this is what seems to happen in most
experiments, where the act of measuring is not instantaneous
but in a time window. It is argued in [12] that the Itd par-
ticular case is the only one to be strictly consistent with
causality. However, from a different viewpoint, it is argued
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in [13] that It6 calculus cannot provide a probability density
function for the energy of a Brownian particle, in contrast
with the Stratonovich calculus which correctly satisfies this
requirement. Moreover, it is argued in [10,11] that only the
backward-Itd approach, i.e., the kinetic form, is the only one
to be consistent with the generalized Einstein relation. As we
see from this diversity of statements, the problem still has
open points. However, this discussion does not constitute the
main scope of the present paper. Consistently, we address the
generic case, i.e., for arbitrary values of 6 (which could in
fact correspond to different experimental realizations).
Therefore, based on definition (4), we calculate the following
integral:

t

I{W(n)] = f dW(")W(t')

)

=ms-lim >, [6W; + (1 — O)W,_, JAW,

n—i=1
= %{[W(r)]2 —[W(t) P = (1-20)(t—10)}.  (5)

Let us remind here that, in this equation, the limits #=0, 6
=1/2, and 6#=1, respectively, correspond to the Itd, Stra-
tonovich, and kinetic approaches. For more details about the
derivation of the last equation, see the Appendix.

In addition to the ingredients of stochastic calculus that
we have mentioned above, some other concepts will be nec-
essary in the present paper. In particular, escort mean values
[14,15] are convenient theoretical tools for describing basic
features of some probability densities, mainly those densities
which decay as power laws that naturally appear in the study
of complex systems dynamics, such as those obeying nonex-
tensive statistical mechanics [16]. This theory generalizes the
Boltzmann-Gibbs (BG) statistical mechanics and is governed
by an entropic index g, which equals unity for the BG case.
The characterization of a probability density by its set of
escort mean values, if all of them converge, is a natural ex-
tension of the well-known characterization of a distribution
in terms of its standard moments, which corresponds to g
=1. The g-generalized theory has been applied to calculate
many features of several complex systems, such as (i) the
velocity distribution of cells of Hydra viridissima that fol-
lows a g=3/2 probability density function (PDF) [17]; (ii)
the velocity distribution of (cells of) Dictyostelium discoi-
deum that follows a ¢=5/3 PDF in the vegetative state and a
g=2 PDF in the starved state [18]; (iii) the velocity distribu-
tion in defect turbulence [19]; (iv) the velocity distribution of
cold atoms in a dissipative optical lattice [20]; (v) velocity
distribution during silo drainage [21,22]; (vi) the velocity
distribution in a driven-dissipative two-dimensional dusty
plasma, with ¢g=1.08=0.01 and ¢=1.05*0.01 at tempera-
tures of 30 000 and 61 000 K, respectively [23]; (vii) the
spatial (Monte Carlo) distributions of a trapped '*°Ba* ion
cooled by various classical buffer gases at 300 K [24]; (viii)
the distributions of price returns at the stock exchange
[25-27]; (ix) the distributions of returns of magnetic field
fluctuations in the solar wind plasma as observed in data
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from Voyager 1 [28] and from Voyager 2 [29]; (x) the distri-
butions of returns of the avalanche sizes in the Ehrenfest
dog-flea model [30]; (xi) the distributions of returns of the
avalanche sizes in the self-organized critical Olami-Feder-
Christensen model, as well as in real earthquakes [31]; (xii)
the distributions of angles in the hamiltonian mean field
(HMF) model [32]; (xiii) the distribution of stellar rotational
velocities in the Pleiades [33]; (xiv) the distribution of trans-
verse momenta in high-energy proton-proton collisions [34];
and (xv) in the action of spin glasses [35]. In fact, before the
g-generalized theory had been proposed, some of its associ-
ated distributions were already found (with different names,
naturally) in various fields of physics, for example, (i) the
so-called « distribution (for velocities) in plasma physics
[36]; (ii) the well known ¢ distribution [37], which is a
g-Gaussian distribution with particular values of ¢; and (iii)
the famous Cauchy-Lorentz distribution, which is a g=2 dis-
tribution and appears frequently in many branches of phys-
ics, particularly in optics [38].

In the present work we use Eq. (5) to write unified Lange-
vin and Fokker-Planck equations (FPEs). In Sec. II, after
deriving these equations, we will show that the steady solu-
tions of the FPE are ¢ Gaussians (see later on for their pre-
cise definition) whose entropic parameter ¢ depends on the
noise and drift amplitudes, and also on the choice of a sto-
chastic approach represented by the parameter 6. In Sec. III
we introduce a generalized kurtosis based on [15] to charac-
terize the temporal evolution of the distribution. After that,
we integrate numerically the FPE with an initial distribution
different from its asymptotic form. In particular, we consider
as initial distributions ¢ Gaussians characterized by an index
q; (q;# q). Our numerical results show how the convergence
towards the attractor behaves as a function of the parameter
6. Finally, we compare the standard kurtosis (¢=1) with the
one calculated using escort mean values, namely, ¢ kurtosis.
Our results show that the standard kurtosis has a divergence
at ¢g=7/5, while the ¢ kurtosis has no divergence in the range
—1<g=3. In addition to that, we show that the standard
kurtosis and the ¢ kurtosis are monotonic functions of the
entropic parameter ¢, which suggests that they could be used
as calibration curves to determine, from numerical data, the
most appropriate value of g. Let us now describe the conse-
quences of the unification on the Langevin and Fokker-
Planck descriptions.

II. FOKKER-PLANCK EQUATION AND ITS SOLUTIONS

A stochastic differential equation (SDE) is not completely
defined by itself. If the Langevin equation has multiplicative
noise, we must choose what approach, Itd or Stratonovich,
will be used to integrate it. This is the well-known It6-
Stratonovich dilemma [1-3] and is ultimately solved by tak-
ing into account the specific features of the system under
investigation. For instance, if the noise has a finite correla-
tion time 7, (even if the limit 7,—0 is used to derive the
SDE) or the noise comes from external sources, the Stra-
tonovich choice is the adequate one. Instead, the Itd formal-
ism is the correct choice if 7, is strictly zero or the noise
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comes from internal sources [1,39]. For external noise
sources we mean those which have a parameter that permits
one, in principle, to turn off the noise or even those that are
not influenced by the system itself. In contrast, internal noise
sources are those which fluctuations are due to inherent
parts of the mechanism by which the state of the system
evolves. This kind of noise cannot be turned off by man-
ipulating a parameter [40]. A very interesting and enlighten-
ing discussion about the Stratonovich-Itd dilemma can be
found in [40]. This controversy between the two approaches
appears in the form of the so-called noise-induced drift
which is an effect of the state dependence of the noise
strength.

Based on proposal (4) we will write an unified Fokker-
Planck equation that contains, as special cases, the It
(6=0) and Stratonovich (0#=1/2) forms. To do it, let
us consider the quite general SDE for a stochastic variable

u(r):
du(t) = a[u(r),t]dt + b[u(r),t]dW(z), (6)

where alu(t),t] is a deterministic external force given, for
instance, by a potential, b[u(z),1] is the state-dependent noise
amplitude, and dW(r)=&(r)dr is a Wiener increment [£(7) is
a Gaussian zero-mean white noise]. We will use a shorter
notation for the dynamic variable u(f) omitting its time de-
pendence, so from now on u=u(r), alu(t),t]=a(u,r), and
blu(t),t]=b(u,t), unless it is indispensable for the clarity of
the text.

We are interested in the dynamics of the distribution
function of u#, so once we have the Langevin equation
we may obtain a FPE for the probability density P(u,t) by
the Kramers-Moyal expansion [2] 9,P=3,-,(-3,)"[D"P],
where the coefficients D™ are given by

1 t+¢€ —x]"
D(")(x,t) =—lim —([u( =]
n!le-o0 €

(7)

u(t)=x .

To calculate these coefficients, we need to write the Lange-
vin equation in the integral form

1+e

u(t+ e)—x=f+edt'a[u(t’),t']+f dW(t")b[u(t'),t'],

()

and assume that a(u,r) and b(u,r) can be expanded as
alu(t+e),t+€]l=alx,t+ €| +a'[x,t+€le+ -+, (9)
blu(t+ €),t+ €] =b[x,t + €]+ b'[x,t + €]e+ ---, (10)

where @’ and b" means differentiation with respect to u. Put-
ting Egs. (9) and (10), up to first order on ¢, into Eq. (8) and
iterating the result, we get

(u(t+e) —xy=ealu,t +¢€) +b'(u,t + €)b(u,t + €

><<f+E W(t’)dW(t’)> (11)
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=da(u,t+ €) + Ob' (u,t + €)b(u,t + €)]. (12)

If the noise in the Langevin equation is & correlated, after
repeated iterations it is possible to show that, at € order, the
terms of the Kramers-Moyal expansion with n=3 vanish.
Using this arguments we can calculate the first two coeffi-
cients of that expansion, namely,

Ky(u,t) = D (u,0) = a(u,t) + 6b' (u,t)b(u,1),  (13)

D(u,t) = DP(u,1) = b*(u,1). (14)

This procedure leads to the following Fokker-Planck equa-
tion:

JaP J 19

Prialy au{Kg(u,t)P— 2(m[D(u,t)P]}. (15)
We recover, for =0 and 6=1/2, respectively, the Itd and
Stratonovich forms currently found in the literature. As ex-
pected, the difference between the two forms appears in the
drift term K, not in the diffusion term. If we deal with a FPE
in the Stratonovich form, we should include the above-
mentioned noise-induced drift term %&M[D(u)], which is un-
necessary in the It6 form. We can write these FPE as a con-
tinuitylike equation 9,P=-4d,j(u) if we define j(u)=K,(u)P
—%&M[D(M)P] as a probability current. In this case, the sta-
tionary solution of the FPE can be obtained elegantly from
zero-flux boundary conditions j(*)=j(u)=0. It is very in-
teresting to notice that this probability current can be rewrit-
ten as j(u)=Ko(u)P—3[D(w)*?,{[D(u)]'->°P}, which al-
lows us to rewrite the FPE as

% =- aiu{Ko(u)P - %[D(u)]”l%{[D(u)]l‘Z(’P}}.

(16)

Notice that here, in contrast with Eq. (15), 6 only appears

in the diffusion term, and not in the drift one. The demon-

stration of the equivalence between Egs. (15) and (16) is
straightforward and can be found in Appendix, Sec. 2.

Let us now consider a family of models represented by
Langevin equations of the type

i = f(u) + g(u)&(1) + (1), (17)

where &(r) and 7(r) are uncorrelated zero-mean Gaussian
white noises with autocorrelation function given by

(EMER))=2M8t—1"), (nt)n(t'))=2A8(t-1"),
(18)

where M =0 and A>0. Equation (17) can be rewritten as

i = f(u) + gw) (), (19)

where the additive and multiplicative noise terms were
replaced with an effective multiplicative noise given by
g(uw)=v{M[g(u)?+A}/C and {(¢) is a zero-mean Gaussian
white noise with autocorrelation function given by
() (')y=2C8(t—1") (C>0). A possible demonstration of
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this relation is given in the Appendix. Notice that Eq. (19) is
of the form of Eq. (6) with dW(¢)={(r)dt. As we want to
analyze the influences of the additive and multiplicative
noises separately, we will use Eq. (17) instead of Eq. (19)
henceforth.

Following the same procedure adopted to calculate the
coefficients of the FPE associated with Eq. (6), we can easily
calculate the Kramers-Moyal coefficients for Eq. (17). They
are

Ko(u) = fu) +26Mg(u)g’ (u), (20)

D(u)=A + M[g(u)]*. (21)
These results lead us to the following FPE:

dP(u,t) B

a %‘{U(u) +26Mg(u)g’ (u)]P(u,1)}

& 2
+Mﬁ{[g(u)]2P(u,t)}+A§P(u,t), (22)

which is basically Eq. (15) with an additional term due to
additive noise.

For f(u) derived from a potential-like function V(u)
=(7/2)[g(u)]? the stationary solution has the form P(u,)

oce;BV(“) [41], where the g-exponential function is defined as
follows: ej;E[l+(1—q)x]J'r/('_‘1), with [z],=z if z>0, and
zero otherwise; ej=e*. If we consider the simple case g(u)

oy, then the stationary-state distribution is a ¢ Gaussian, i.e.,
2
P(u,) OCe;B” , where ¢ and B are given by

= T+2M(1 - 6)

2A ’ @3)

_T+2M(2-6)

=————. 24
1= oM - 0) 24)
We can verify that these results unify those obtained in [41],
moJrrSeM specifically g= :‘2% for the It6 case (6=0) and ¢
=", for the Stratonovich case (6=1/2).

Let us remind at this point that the g-Gaussian form pre-
cisely is the one which, under appropriate constraints, ex-

tremizes the entropy

1- f dx[p(x)]?

Spl=kg , (25)

-1

where S| =Sp;=—kg[dxp(x)In p(x). For further connections
between the structure of Fokker-Planck-like equations and
entropy, as well as the validity of the H theorem, see [42,43].

III. GENERALIZED MOMENTS AND KURTOSIS

As already mentioned, the ¢ Gaussian is the distribution
form which extremizes entropy (25) under appropriate con-
straints. There are many theoretical reasons suggesting that,
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in the extremization of Sq, it is convenient to express the
constraints that are being imposed in an escort mean value
form. Escort mean values (or ¢ moments) are useful tools to
analyze power-law distributions that frequently appear in the
study of complex systems. They are defined as

(A(x)), = f A(x)fy(x)dx, (26)
where the escort probability density is given by
q
fyo) =L @)
f [f(x)])%dx

The characterization of a probability density in terms of
its escort mean values is a natural extension of the well-
known characterization of a distribution in terms of its stan-
dard moments if all of them are finite. The physical interpre-
tation of g-generalized mean values demands an explanation.
The quantities that are physically important in order to char-
acterize a distribution are, for instance, the most probable
value, the range of the typical values, the width of the dis-
tribution, its asymmetry, and so on. Such information is con-
veniently contained in the set of successive mean values of
the distribution as long as they are finite. What can be done
whenever all moments above a given one diverge? For ex-
ample, if we are dealing with the Cauchy-Lorentz distribu-
tion, how can we characterize its width (obviously finite for
any given such distribution)? Certainly not through its sec-
ond moment since it diverges. By appropriately choosing the
value of ¢ (see below), its width can be characterized by its
g variance (i.e., its variance with the escort distribution),
which will also be finite.

In [44], the correct set of all escort mean values is shown,
together with the set of all associated normalizing quantities
that characterize a given probability density f(x), even if it
decays as slowly as a power law. Based on a generalization
of the Fourier transform, namely, the g-Fourier transform,
defined by [45]

FLAO = J fO gy (g=1),  (28)

it is possible to expand the g-characteristic function and ob-
tain the correct exponents values necessary to perform the
calculations of the ¢ moment. The family of escort mean
values which arises from this procedure is given by

| et
T — (29)
f [f(x)]mdx
where
g,=1+n(g-1). (30)

The kurtosis, usually defined in terms of the ratio between
the fourth (n=4) and three times the squared second moment
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(n=2) of a given distribution, is regarded as a measure of
how different a given distribution is from a Gaussian. There-
fore the ¢ kurtosis, defined in terms of ¢ moments, is the
analogous measure for ¢ Gaussians. Its mathematical forms
are defined, respectively, as follows:

f b A1 dx

-0

K, = . (31)

+0

[ PP dxy

-0

Notice that the standard kurtosis can be regarded as a par-
ticular case (¢=1) of Eq. (31). Notice also that the number 3
in the denominator of Eq. (31) plays no special role and can
equally well be replaced with the g-dependent value exactly
corresponding to ¢ Gaussians, instead of that for Gaussians.

To calculate the correct value of ¢ we shall now consider
a typical situation arising in complex systems, such as those
commonly addressed within g thermostatistics. Usually these
systems asymptotically behave as power-law probability
densities, i.e.,

SO ~ 7 (x| ==, y>1). (32)

It is clear that, if f(x) is not defined on a bounded interval,
the standard linear moments (x") may diverge above some
value of n. Therefore, the standard procedure to characterize
the probability density through all its moments cannot be
implemented. However, in [44] it is shown how the escort
mean values can overcome such difficulties. In this work, the
relation is established between the exponent vy of the power-
law distribution and the escort mean value parameter ¢. It is
given by

1
q=1+;. (33)

So, once we know the power-law exponent y, we will have
the correct value of ¢, and hence the values g, which enable
the calculation of the escort mean values of the probability
density.
2

For the special case where f(x)=eéﬁx (a Q Gaussian), we

have
e ~ WO (n] —o0). (34)

Hence, y=2/(Q-1), for 0>1. In this case, relation (33)
becomes

0-1

> (35)

g-1=

A Q Gaussian is normalizable for Q <3; for Q<1 it has a
compact support and an unbounded support for 1 =Q <3. Its
second and fourth moments diverge for 5/3<Q<3 and
7/5<Q<3, respectively. But their second and fourth Q
moments are finite for Q<<3. These two Q moments can
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be analytically calculated [44,46] and written in terms of
gamma functions,

(
0 3
ﬁ_r( -1 E)
0 % for 1<Q<3
2e- ”F( 01 -5)
1
(x2>Q=< '3_7, for =1
o 253)
_QQ , for 0<QO<I1,
\Z(I_Q)F<1—Q+E>
(36)
(
0 3
3[{2F< ~1 5)
0 % for 1<Q<3
r|l —=_ 4, =
40-1) F(Q—1+2)
3 1
<X4>2Q_1=< %, for =1
334F<1Q '+%)
_QQ , for 0<Q<I.
2
EEEa
(37)

We intend to compare the temporal evolution of the dis-
tributions given by the FPE of the previous section to its
stationary states, which we already know to be Q Gaussians.
To do it, it is convenient to normalize the Q kurtosis by its
stationary value, kp(%)=lim, ., ko(t), which is given by
Egs. (36) and (37),

Ko(%)
)
0-1 2
] 0 3\ for 1 <Q<3
(ERETER
o-1 2)\p-1 2
=41, for 0=1
;%543 %+3)
—Q 2 2 fro<o<l.
%
\ 1-0 2
(38)

In Fig. 1 we can see the temporal evolution of the normal-
ized Q kurtosis obtained by the numerical integration of the
FPE. In the left column, we show the temporal evolution for
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- Q=1416..
L | — Q=1.666..
5 | Qe1916..

| 6=0
. | Q=1.666...

10g10 t

FIG. 1. On the left column are the temporal evolution of Q
kurtosis for Itd (#=0), Stratonovich (#=1/2), and backward Itd
(#=1) stochastic procedures. The numerical results are normalized
by its stationary value KSQ’=KQ(W). In (a) we have Q=1 and Q;
=5/4, (b) Q=7/5 and Q;=1.65, and (c¢) Q=1.666... and Q;
=1.916 66.... As expected, for sufficient large times the numerical
results approach unity. The right column shows the temporal evo-
Iution of the normalized Q kurtosis with a fixed 6. In (a) we have
Q=1 and Q,;=1, 5/4, and 3/2; (b) shows the results for Q=7/5 and
Q;=1.15, 7/5, and 1.65; and (c) the results for Q=5/3 and Q;
=1.416 66..., 5/3, and 1.916 66....

the three stochastic procedures above mentioned: Itd (6=0),
Stratonovich (#=1/2), and backward 1td (6=1). In the right
column we show the same temporal evolution of the normal-
ized Q kurtosis but now with #=0 and different values of Q;.
As expected, the kurtosis approaches monotonically its sta-
tionary value for all values of parameter Q;.

In Fig. 2 we can compare the behavior of the standard
kurtosis and the Q kurtosis given by Eq. (38). As we can see,
the Q kurtosis diverges at Q=-1, but is finite for —1<Q
<3, while the standard kurtosis diverges for 7/5<Q <<3. As
expected, the Q kurtosis coincides with the standard one for
Q=1. Furthermore, the Q kurtosis is a monotonically de-
creasing function of Q. Based on this feature, experimental-
ists could use it as a calibration curve that allows the deter-
mination of the proper value of the entropic index Q for a
given system.

IV. CONCLUSIONS

Based on stochastic integrals which unify the Itd, Stra-
tonovich, and kinetic approaches, we obtain two different
[namely, Egs. (15) and (16)], although equivalent, forms of a
unified Fokker-Planck equation. Form (15) recovers, as par-
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FIG. 2. The standard kurtosis «; and the Q kurtosis k as func-
tions of Q. We verify that both have the same value of 1 for O=1.
For 0> 1, the use of « is generically more convenient than using
k. Indeed, the latter one diverges at Q=7/5, while x, remains
finite up to the maximal value Q=3. In contrast, for Q<1, «y is
more convenient than Ko Indeed, Ko diverges at Q=-1, whereas «;
remains finite down to Q — —o. In the Q — —o limit, «; saturates at
the value of 3/5.

ticular instances, equations currently available in the litera-
ture. Form (16) is herein introduced. Both Fokker-Planck
forms exhibit an explicit dependence on the unifying param-
eter 6. One of these forms [Eq. (15)] exhibits this depen-
dence only in the drift term, which [see Eq. (13)] is in turn
composed by a deterministic part and a noise-induced part.
In the other form [Eq. (16)], # only appears in the diffusion
term. It appears therefore that, in general, the noise-induced
drift is equivalent to a nonlinear diffusion term (only for the
particular values =0 and 6=1/2 the diffusion coefficient is
linear).

We present, based on escort mean values, an explicit form
for the Q- generalized kurtosis to study the convergence to-
wards the Q-Gaussian stationary solution. Paper [46] focuses
on the porous-medium equation (homogeneous nonlinear
Fokker-Planck equation). In the present paper we deal with
another interesting equation, namely, a linear inhomogeneous
one, whose stationary state also has the Q-Gaussian form,
which once again allows us to calculate explicit forms for the
O kurtosis. As expected, the H theorem also holds for the
linear inhomogeneous Fokker-Planck equation, and this can
be verified by Eq. (24) in Ref. [43].

In order to follow the time evolution toward the
(Q-Gaussian stationary states, we have evaluated the ap-
proach of the Q kurtosis to its stationary-state limits for dif-
ferent values of 6. The difference in this convergence (see
Fig. 1) for the same ¢ Gaussian with different s is due to a
change in the multiplicative noise amplitude needed to com-
pensate the change in the 6 value [see Eq. (24)].

Finally, we propose that, if a system is well described by
nonextensive statistical mechanics and has a Q-Gaussian
form for its probability density function, the Q kurtosis can
be used as a calibration curve to determine, from data, the
best value of the entropic index Q.
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APPENDIX

1. Integral I,[W(t)]= f;OdW(t')W(t')

Here, we perform, in detail, the calculation of the stochas-
tic integral of the function G(r)=W(z) in terms of discrete
sums. The definition of the unified stochastic integral is

n

I[G(t)] = ms-lim S, = ms-1im >, [6G, + (1 —

n—oo n—.;-1

0G| ]AW,.

(A1)
If G(1)=W(), we have

Sn = 2 [QWiAWi'i' (1 - a)Wi—lAWi]'

(A2)
i=1
The terms W, AW; and W,_;AW; can be written as
Wiy

—

2WAW; = (W) + (AW)> - (W, — AW,)?, (A3)
Wi AW, = (Wiy + AW)? = (W) = (AW)%.

Wi (A4)

Notlce that in both equations we have terms like (W2
-Wi l) under a summation. Therefore, only the first and the
last terms need to be taken into account in the summation.

+ Dl 20(9P

J
D20_[D1—20P]=D20 (1
du du

aD
-20)D7*p— .

So,

1 D  d D 14
KoP - —[D]” {[D]1 *Py=KyP--{-260—P+—[DP](=K,P+ 6—P-~—[DP],
2 du du du 2 du

where KyP+ 00,DP=K,.
3. Equivalence between u=f(u)+g(u)&(t) + 7(t)
and u=f(u)+g(u){@)

Suppose two different Langevin equations for the stochas-
tic processes u(f), both with the same deterministic drift
force f(u) but with different noise sources,

= fu) + g &) + (1), (A10)
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Indeed, all the others mutually cancel, and we finally have

n

W2(1) = W2(t) + 2 (AW,)?

i=1

n

2 WiAWi = )
i=1 2

(AS)

W2(1) = W2(t0) — 2 (AW,)?

i=1

n

> Wi AW, =
i=1 2

(A6)

Taking this last two equations into account and the fact that
ms-lim,,_,,.2", (AW,)*=t—t,, we obtain
I W(t)] = ms-lim S,

n—oow

1
= S{WOP - [W) P - (1 -26)(r = 1)},
(A7)
which is the same result presented in Eq. (5).

2. How to get Eq. (15) from Eq. (16)

In Sec. IT we claim that Egs. (15) and (16) are equivalent.
To prove this statement, we only need to show the following
equality:

19
KoP - —[D]” DI Py =KoP - ——[DP]
where the dependence on the dynamical variable # was omit-
ted. To do this, we perform the derivative on the left-hand
side:

oD J
P—+D—] =-20—P+—[DP]. (A8)
J Jdu du

(A9)
|
= fu) + gu){(1). (A11)
The mean-value solution of both equations is
(u(®)) = f dr' f(u). (A12)
0

Let us calculate the variance corresponding to both equa-
tions. From the first one we obtain
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(Lu(2) = ()P =( J ar' J dr"{glu(t")]1&(t") + n(¢" ) Helu(")JEE") + n(t")}) (A13)
0 0
= J odt’ f dr"{glu(t")1glu() (&) EE")) + (e ) n(?");
0 —_—
=2M (1" ") =2A8(t'-1") ( Al 4)
+glu(t") K&« ) n(2")) + glu) KERX") 7))}
%{_J | S —
=0 =0 (A15)
= f odt’ CM{glu(t')]}* +24). (A16)
From the second one we obtain
([u(r) = ()] = f dr’ f dr"glu(t")Jglu(") KL ("))
208" -") (A17)
=f a2l (A18)
0

If we want that both Langevin equations give us the same mean-squared value for the stochastic process u(r), we must match
the integrands of Eqs. (A13) and (A17). This leads to the following relation among noise terms:

_ Mgw)]* +A
gw="—"

(A19)

This result shows that equations like Eq. (17) can be rewritten as in Eq. (19), with an effective multiplicative noise term given

by Eq. (A19).
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