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It has been shown that a contracting universe with a dustlike (w � 0) fluid may provide an almost scale

invariant spectrum for the gravitational scalar perturbations. As the universe contracts, the amplitude of

such perturbations are amplified. The gauge invariant variable � develops a growing mode which

becomes much larger than the constant one around the bounce phase. The constant mode has its amplitude

fixed by Cosmic Background Explorer (COBE) normalization, thus the amplitude of the growing mode

can become much larger than 1. In this paper, we first show that this is a general feature of bouncing

models, since we expect that general relativity should be valid in all scales away from the bounce.

However, in the Newtonian gauge, the variable � gives the value of the metric perturbation �, raising

doubts on the validity of the linear perturbative regime at the bounce. In order to address this issue, we

obtain a set of necessary conditions for the perturbative series to be valid along the whole history of the

model, and we show that there is a gauge in which all these conditions are satisfied, for a set of models, if

the constant mode is fixed by COBE normalization. As a by-product of this analysis, we point out that

there are sets of solutions for the perturbation variables where some gauge-fixing conditions are not well

defined, turning these gauges prohibited for those solutions.
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I. INTRODUCTION

Cosmological models with a contracting phase preced-
ing a bounce to our present expanding phase have been
studied as extensions of the standard cosmological model.
They were analyzed in several contexts, including regular
and singular bounces [1–12]. In [3,6,13,14], it was shown
that if the contracting phase is dominated by a dustlike
fluid and the perturbations are seeded by quantum vacuum
fluctuations, the curvature perturbation � develops an al-
most scale invariant spectrum.

There are various ways to obtain a bouncing cosmology.
For each model there is a specific way to evolve the
perturbations through the bounce phase. However, one
can estimate the perturbations in the post-bounce phase
by imposing some general continuity conditions on both
background and perturbation variables. It was shown in [6]
that the curvature perturbation � is amplified in the con-
tracting phase and remains constant and scale invariant in
the expanding phase. Nevertheless, the Bardeen [15] po-
tential� develops a large growing mode in the contracting
phase, which is converted entirely into a decaying mode in
the expanding phase, differently from inflation where
the decaying mode is usually small. This behavior of the
perturbations was also obtained using models for the
bounce, which allows complete calculations of the pertur-
bations through the bounce [14].

Even though the growing mode of � couples only with
the decaying mode in the expanding phase (see, for ex-
ample, [6]), its large value at the bounce raises a problem

concerning the violation of linear perturbation theory
around this time. In a previous work [13], it was explicitly
shown, using a specific model, that indeed the Bardeen
potential grows larger than 1 at the bounce, but this mode
can be made harmless with a suitable gauge choice. Thus,
remains the question about whether this problem is a
general feature of bouncing models and, in case this is
true, whether such gauge choices are still efficient to solve
this problem in a broader class of models. In order to
address this point, we show that the ratio between the
Bardeen potential at the bounce and its constant value
long after the bounce is indeed very large in general.
Then we obtain a set of necessary conditions, for the metric
and matter perturbations, that must be satisfied in a valid
linear perturbation theory. The first part of this set is
defined by imposing that the metric perturbations remain
small when compared to their background values. The
second one comes through the imposition that the per-
turbed Einstein equations remain small when compared
with the background evolution. As these conditions are
applied to the perturbations, it is necessary and sufficient
that they should exist at least in one specific gauge. This
means that it should have at least one way of embedding
the reference metric in the spacetime in which the differ-
ence between the two metrics satisfies all conditions.
Finally, we apply these conditions for the perturbations
using a specific gauge, and we show that they are fully
satisfied whenever the constant modes of � or � in the
expanding phase are small.
This paper is organized as follows. In Sec. II we make a

brief review of linear perturbation theory around a back-
ground with homogeneous and isotropic spatial sections.
One can obtain an almost scale invariant spectrum when
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the perturbation freezes during a dustlike fluid domination.
Therefore, in this work, we consider the models in which
the spectrum of adiabatic perturbations is formed within
this mechanism. In Sec. III, we discuss the growth of
adiabatic perturbations in the contracting phase of bounc-
ing models with one or more fluids, and the relations
between the gauge invariant curvature (�) perturbation
and the Bardeen (�) potential. For the bounce crossing,
we review in Sec. III A a nonsingular bounce generated by
quantum gravity effects in which these two gauge invariant
variables remain finite and calculable. Then we show ex-
plicitly that the Bardeen potential becomes very large at
the bounce. Next, in Sec. III B, we discuss this issue for a
class of models and then compare with the results obtained
in the quantum bounce scenario, arriving at the same
conclusions. In Sec. IVA, we obtain the set of necessary
conditions that scalar adiabatic perturbations should satisfy
in order to keep linear perturbation theory valid all along
the contracting phase, during the bounce, and after it in the
expanding phase before recombination. Then we show in
Sec. IVB, using the uniform curvature gauge that all the
above-mentioned conditions are satisfied along all these
phases except for the bounce itself, where in Sec. IVC it is
shown that one must use the synchronous gauge in order to
keep all these necessary conditions satisfied. We end up
with discussions and conclusions in Sec. V.

II. LINEAR COSMOLOGICAL PERTURBATIONS

From the Einstein-Hilbert action, one can obtain the
second order Lagrangian for the Mukhanov–Sasaki [16]
variable

Lv ¼
Z

d3x
1

2

�
v02 � c2s�

ij@iv@jvþ z00

z
v2

�
; (1)

yielding the equations of motion for their modes with wave
number k,

v00
k þ

�
c2sk

2 � z00

z

�
vk ¼ 0; (2)

where

z ¼
ffiffiffiffi
�

p
xH cs

; � ¼ �

2
a2ð�þ pÞ; c2s ¼ dp

d�
: (3)

In this work, we define � ¼ 8�G=c4, H � a0=a, a is the
dimensionless scale factor of the background flat
Friedmann model, a prime denotes derivative with respect
to conformal time d� ¼ cdt=a, t being cosmic time,
x � a0=a is the red-shift function, � and p are the total
energy density and pressure of the matter content of the
model, respectively, and a subscript 0 denotes the present
value of the respective quantity; we define z with an addi-
tional factor a�1

0 compared to that defined in [16],

Eq. 10.43b.

Defining � � �=�c, where �c is the critical density
today and using the energy conservation equation

d�

dt
þ 3Hð�þ pÞ ¼ 0 ! d�

dx
¼ 3ð�þ pÞ

x
; (4)

one obtains

� ¼ 1

2xR2
H

d�

dx
; z2 ¼ 1

2c2sx�

d�

dx
; (5)

c2s ¼ x

3

�
1

x2
d�

dx

��1 d

dx

�
1

x2
d�

dx

�
;

z2 ¼ 3

2x4�

�
d�

dx

�
2
�
d

dx

�
1

x2
d�

dx

���1
;

(6)

where RH � H�1
0 ¼ c=ða0H0Þ is the comoving Hubble

radius and H0 is the present value of the Hubble function
H � a�1da=dt. Note also that H ¼ E=ðxRHÞ, where
E ¼ H=H0. For a single fluid with w ¼ p=� constant,

one gets � ¼ �w0x
3ð1þwÞ and

c2s ¼ w; z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wÞ

2w

s
x�1: (7)

From Eq. (7) we note that Eq. (2) reduces to the equation
for the perturbations found in [14,17] for a single fluid
dominated quantum bounce

v00
k þ

�
wk2 � a00

a

�
vk ¼ 0: (8)

Therefore, we can use this same Eq. (2) to evolve the
perturbations in the classical contracting phase and through
this particular quantum bounce [14,18], which we will
present in the next section.
Equation (1) formally looks like a Lagrangian for a free

scalar field with a time-dependent mass, which can be
readily quantized. Whenever the potential z00=z becomes
negligible with respect to the wave number k, vacuum
initial conditions can be imposed. This happens on the
onset of inflation or in the far past in the contracting phase
of bouncing models.
The Mukhanov–Sasaki variable has the following

relation with the gauge invariant Bardeen potential and
curvature perturbation [16], respectively,

D2� ¼ � ffiffiffiffiffiffiffi
4�

p
lpx

2H z2
�
v

z

�0
; � ¼ � ffiffiffiffiffiffiffi

4�
p

lp
v

z
; (9)

where lp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c3

p
is the Planck length andD2 the spatial

Laplacian. Using Eq. (2) one can also show that

� ¼ 1

x2c2sz
2

��
�

H

�0 þ 2�

�
: (10)

Since the Bardeen potential is a dimensionless quantity, v
must have dimensions of inverse length. From now on we
will deal with dimensionless quantities by conveniently
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multiplying all physical quantities by appropriate powers
of RH (e.g. v ! vRH, k ! kRH, � ! �=RH, etc.).

From the operator decomposition,1 we obtain

k2�k ¼
ffiffiffiffiffiffiffi
4�

p lp
RH

x
ffiffiffiffiffi
�

p
z2
�
v

z

�0
: (11)

Using the following definitions of power spectrum for
the Bardeen potential and gauge invariant curvature per-
turbation, �2

� � k3j�kj2=ð2�2Þ and �2
� � k3j�kj2=ð2�2Þ,

respectively, we get

�� ¼
ffiffiffiffi
2

�

s
lp
RH

x
ffiffiffiffiffi
�

p
k2

k3=2z2
��������
�
v

z

�0��������;

�� ¼
ffiffiffiffi
2

�

s
lp
RH

k3=2
��������
v

z

��������:

(12)

Note that the amplitude of the perturbations is multiplied
by a very small number lp=RH ¼ 9:9� 10�62h, where

h ¼ H0=ð100 Km s�1 Mpc�1Þ is the dimensionless
Hubble constant.

The general solution of themode Eq. (2) can be expanded
in powers of k2 according to the formal solution [16]

v

z
¼A1ðkÞ

�
1�k2

Z �

0

d ��

�z2

Z ��

0
d �����c2s ��z

2þ . . .

�

þA2ðkÞ
�Z �

��

d ��

�z2
�k2

Z �

0

d ��

�z2

Z ��

0
d �����c2s ��z

2
Z ���

��

d ����
���z2

þ . . .

�
;

(13)

where we have shown the terms up to order Oðk2Þ, �� is a
convenient choice of the integration constant, related to the
conformal time where the initial conditions are set (in the
case of bouncing models we make the choice �� ! �1).
The bounce takes place at � ¼ 0 and any function with an
over bar refers to its value calculated at ��, e.g., �f ¼ fð ��Þ. In
Eq. (13), the coefficients A1 and A2 are two constants
depending only on the wave number k through the initial
conditions. Once the solutions freeze (c2sk

2 � z00=z), i.e.,
when the mode is below its potential, the superhorizon
solutions above can be used. Since we are interested in
what happens with the amplitude of the spectrum after it
is formed in a dust-dominated evolution, it is enough to
analyze the superhorizon solutions. For long wavelengths
of cosmological relevance, this happens during the bounce,
of course, and around our expanding epoch. Under these
conditions, we can use Eq. (13) up to second order in k2 to
calculate ðv=zÞ0 in these situations, which reads

z2
�
v

z

�0 ’ �k2A1ðkÞ
Z �

0
d �� �c2s �z

2

þ A2ðkÞ
�
1� k2

Z �

0
d �� �c2s �z

2
Z ��

�1
d ���

��z2

�
: (14)

III. THE PROBLEM

In this section, we will calculate �� for long wave-
lengths using Eq. (14) after the decaying mode becomes
negligible in the expanding phase �0

� and near the bounce

�b
�. We will show exactly for the quantum bounce of

Refs. [14,19], and using general arguments for general
bounces that �b

� is many orders of magnitude larger than

�0
�. Nevertheless, in the next section, we will show how

the linear perturbation theory is still reliable near the
bounce in spite of the problem, which will be described
in the sequel.
Let us evaluate �b

� and �0
�. In the case of �b

�, we can

see from Eq. (14) that the term multiplying A1ðkÞ is the
decaying mode of the contracting phase, which goes to
zero at the bounce. Hence, when the solution gets close
enough to the bounce, the important contribution for �b

� is

�b
� ¼

ffiffiffiffi
2

�

s
lp
RH

xb
ffiffiffiffiffiffiffi
�b

p
k2

k3=2jA2ðkÞj: (15)

For �0
�, the term multiplying A1ðkÞ is the growing mode of

the expanding phase. However, the last term which multi-
plies A2ðkÞ can be written as

k2
Z �

0
d �� �c2s �z

2
Z ��

�1
d ���
��z2

¼k2
Z �

0
d �� �c2s �z

2

�Z 1

�1
d ���
��z2

�
Z 1

��

d ���
��z2

�
;

�k2B
Z �

0
d �� �c2s �z

2; (16)

where we defined the constant B � R1
�1 d �����z�2. We also

have discarded the last term in the sum because it corre-
sponds to a decaying mode in the expanding phase, and by
the positivity of the integrand, it will always be smaller
than B.
The presence of B, as we will see, makes the term

multiplying A2ðkÞ much more important than the one mul-
tiplying A1ðkÞ in the evaluation of �0

�. Hence, we get

�0
� ¼

ffiffiffiffi
2

�

s
lp
RH

x
ffiffiffiffiffi
�

p
k3=2

��������A2ðkÞB
Z �

0
d �� �c2s �z

2

��������; (17)

when the decaying mode becomes negligible.
The variable � has a much simpler evolution, in the

contracting phase the term

A2ðkÞ
Z �

�1
d ��

�z2
¼ A2ðkÞ

�
B�

Z 1

��

d ���

��z2

�

grows as the perturbations approach the bounce. In the
expanding phase the integral can be split as in Eq. (16),
where the first term is constant and the second becomes the

1The creation/annihilation operator decomposition of � in-
volves terms like �ka

y
k d

3k. Since the operator � is dimension-
less and ayk has unity of length L3=2, �k also has dimension of
length L3=2.
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decaying mode. Unlike �, this decaying mode around the
bounce has the same order of magnitude than its constant
mode. Thus, after the bounce the power spectrum of � is

�0
� ¼

ffiffiffiffi
2

�

s
lp
RH

k3=2jA2ðkÞBj: (18)

Generally, as we will show in the next sections,

x
ffiffiffiffiffi
�

p Z �

0
d �� �c2s �z

2 ¼ Oð1Þ:

Therefore, using Eqs. (17) and (18), we note that in the
expanding phase �0

� � �0
�. This shows that the power

spectrum of � is enough to assess the spectrum of � in
what concerns its constant mode. However, it is insensitive
to the large growing/decaying mode developed by �.

We will now evaluate �b
� and �0

� for a particular

quantum bounce [14,19,20] and then for a more general
case.

A. The example of the quantum bounce

References [14,19,20] show the canonical quantization
of a minisuperspace cosmological model describing a per-
fect fluid with p ¼ wq� on a Friedmann geometry with flat

spacelike hyper-surfaces. The corresponding Wheeler-
DeWitt equation reads

i
@�ð0Þða; TÞ

@T
¼ 1

4

@2�ð0Þða; TÞ
@	2

; (19)

where 	 � a3ð1�wqÞ=22=ð3ð1� wqÞÞ. This is just the time-

reversed Schrödinger equation for a one-dimensional free
particle constrained to the positive axis.

After imposing a Gaussian initial wave function, the
wave solution of this equation for all times in terms of a
reads

�ð0Þða; TÞ ¼
�

8Tb

�ðT2 þ T2
bÞ
�ð1=4Þ

exp

� �4Tba
3ð1�wqÞ

9ðT2 þ T2
bÞð1� wqÞ2

� i

�
4Ta3ð1�wqÞ

9ðT2 þ T2
bÞð1� wqÞ2

þ 1

2
arctan

�
Tb

T

�
� �

4

��
; (20)

where T is related to conformal time through d� ¼
½aðTÞ�3wq�1dT and Tb is an arbitrary constant related to
the width of the initial Gaussian.

Because of the chosen factor ordering, the probability
density ��ða; TÞ has a nontrivial measure and it is given by

��ða; TÞ ¼ að1�3wqÞ=2j�ð0Þða; TÞj2. Its continuity equation

coming from Eq. (19) reads

@��

@T
� @

@a

�
að3wq�1Þ

2

@S

@a
��

�
¼ 0; (21)

where S denotes the imaginary phase of the wave function
�ð0Þ. This implies in the de Broglie–Bohm interpretation

[21–24] that

@a

@T
¼ �að3wq�1Þ

2

@S

@a
; (22)

in accordance with the classical relations @a=@T ¼
fa;Hg ¼ �að3wq�1ÞPa=2 and Pa ¼ @S=@a.
Inserting the phase of Eq. (20) into Eq. (22), we obtain

the Bohmian quantum trajectory for the scale factor

aðTÞ ¼ ab

�
1þ

�
T

Tb

�
2
�
1=ð3ð1�wqÞÞ

: (23)

Note that this solution has no singularities and tends to the
classical solution when T ! �1. Solution (23) can be
obtained for other initial wave functions (see Ref. [19]).
Changing to cosmic time dt ¼ a3wqdT, we obtain the

Hubble function

1

a

da

dt
¼ HðtÞ ¼ 2Ta�3wq

3ðT2 þ T2
bÞð1� wqÞ

:

Solving Eq. (23) for T,

T ¼ �Tb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
a

ab

�
3ð1�wqÞ � 1

s
;

we obtain

H2 ¼ 4a
�6wq

0 x
�3ð1�wqÞ
b

9ð1� wqÞ2T2
b

�
x3ð1þwqÞ � x6

x
3ð1�wqÞ
b

�
; (24)

where xb � a0=ab.
Equation (24) is equivalent to the Friedmann equation

H2 ¼ �c2

3
��H2

0�q0x
6; (25)

with the additional term �H2
0�q0x

6. The quantity �q ¼
�q0x

6 is an effective density related to the quantum evo-

lution. Thus, the evolution of the scale factor is equivalent
to the one obtained by adding to the matter content, in the
classical Friedmann equation, a stiff negative energy fluid,

i.e., � ! �þ �s, where �s ¼ ��q0�cx
3ð1þwqÞ. Note,

however, that this is a quantum effect and therefore there
is no perturbation associated to this effective fluid. Note
also that away from the bounce phase (H2

0�q0x
6 �

�c2�=3) we obtain H2 ¼ H2
0�w0x

3ð1þwqÞ, where

�w0 ¼
�
2a

�3wq

0 x
�3ð1�wqÞ=2
b

3ð1� wqÞTb

�
2
: (26)

Comparing Eqs. (24) and (25), we obtain the important
relation for the dimensionless Tb,

SANDRO DIAS PINTO VITENTI AND NELSON PINTO-NETO PHYSICAL REVIEW D 85, 023524 (2012)

023524-4



Tb ¼ 2a
1�3wq

0 x
�3ð1�wqÞ=2
b

3ð1� wqÞ
ffiffiffiffiffiffiffiffiffi
�w0

p : (27)

In this bouncing model there is one single fluid. Hence,
Eq. (7) holds. Using Eqs. (23) and (27), we obtain

B ¼
Z 1

�1
d�

z2
¼ 4wq�

9ð1� w2
qÞ

ffiffiffiffiffiffiffiffiffi
�w0

p x
3ð1�wqÞ=2
b ; (28)

and

Z �

0
c2sz

2d �� � 2

5þ 3wq

3ð1þ wqÞ
2x

ffiffiffiffiffiffiffiffi
�w

p ; (29)

where �w ¼ �0wx
3ð1þwqÞ; in the last equation we have

neglected the evaluation of the primitive at � ¼ 0. Note
that in this simple model one must have wq � 0 in order to

obtain an almost scale invariant spectrum of perturbations.
Hence, as xb ¼ a0=ab 	 1010 (we expect that the bounce
occurs much earlier then nucleosynthesis), the quantity B
is indeed a large number.

From Eqs. (15) and (17) we obtain

�b
� ¼

ffiffiffiffi
2

�

s
lp

ffiffiffiffiffiffiffiffiffi
�0w

p
ffiffiffi
k

p
RH

jA2ðkÞjxð5þ3wqÞ=2
b (30)

and

�0
� ¼ 4lp

ffiffiffiffiffiffiffi
2�

p
wqk

3=2jA2ðkÞj
RH

ffiffiffiffiffiffiffiffiffi
�0w

p
3ð1� wqÞð5þ 3wqÞ

x
3ð1�wqÞ=2
b : (31)

As expected, �0
� does not depend on time. The ratio

between these two quantities is

�b
�

�0
�

¼ j�b
k j

j�0
kj
¼ �0w3ð1� wqÞð5þ 3wqÞ

4�ð ffiffiffiffiffiffi
wq

p
kÞ2 x

1þ3wq

b : (32)

As the Cosmic Microwave Background (CMB) observa-
tions [25] require �0

� � 10�5 and xb 	 1010, then �b
� 	

1, which turns questionable the validity of linear perturba-
tion theory at the bounce. We will now see that this issue is
also present in a much larger class of bouncing models.

B. More general bounces

The general solution for the Mukhanov–Sasaki variable,
Eq. (13), for the adiabatic perturbations, is valid in the
contracting and expanding phases when the dynamics are
given by general relativity (GR) and also through the
bounce itself, in the case of the quantum bounce discussed
above. For general bounces, one is not sure that the solu-
tion in Eq. (13) is valid through the bounce due to not
having any particular analytic solution in order to evaluate
it away from the bounce, as we did in the last subsection.
However, if the bounce is short enough an estimate of
Eq. (13) away from the bounce, when GR is valid, will
be sufficient to evaluate the orders of magnitude of
Eqs. (15) and (17) as long as a short bounce does not

change these figures too much due to the expected con-
tinuity of perturbations through it (see [26] for a general
discussion about matching conditions using the continuity
of the perturbations and [6] for its use in this context).
However, one could have a bouncing model with a long-
time scale. Thus, in our analysis we are assuming that the
characteristic time of the bouncing model is small enough
(usually of the order of lp) that we can ignore this phase.

In order to estimate (15) and (17) we must evaluate

B �
Z 1

�1
d�

z2
and I �

Z �

0
d �� �c2s �z

2:

For B, we first divide the integral in the pre- and post-
bounce branches

B ¼
Z 1

�1
d ��

�z2
¼

Z 0

�1
d ��

�z2
þ

Z 1

0

d ��

�z2
: (33)

In each branch the scale factor and, consequently, the red-
shift variable x can be used as a time variable. Performing
this transformation, we have

Z 0

�1
d�

z2
¼ �

Z xb

0

dx

E�z2
¼

Z xb

0

dx

jE�jz2 ; (34)

Z 1

0

d�

z2
¼ �

Z 0

xb

dx

Eþz2
¼

Z xb

0

dx

Eþz2
; (35)

where E� is the dimensionless Hubble function H=H0

during the contracting phase and, therefore, a negative
quantity; Eþ is the dimensionless Hubble function during
the expanding phase. We have assumed that xð�1Þ ¼ 0
but this is not necessarily true. However, one can always
assume that xð�1Þ=xb � 1, which is sufficient to estimate
the integral. Also, an asymmetric bounce will not, in
general, change too much the orders of magnitude we
will evaluate. Hence, we will assume for simplicity that
the bounce is symmetric

Z xb

0

dx

jE�jz2 ¼
Z xb

0

dx

Eþz2
�

Z xb

0

dx

Ez2
: (36)

Now we divide the above integral in two domains,

Z xb

0

dx

Ez2
¼

Z xc

0

dx

Ez2
þ

Z xb

xc

dx

Ez2
; (37)

where xc is the value of the red-shift function where the
new physics of the bounce begin to be relevant; xc could be
defined as the value of x in which d2a=dt2 ¼ 0 the tran-
sition from the decelerating behavior typical of GR to the
accelerating phase of the bounce. Note that the second
portion of the sum above cannot be written if the solution
Eq. (13) is not valid through the bounce. However, as xc is
generally of the same order of magnitude as xb, then
xc 	 1 (see the quantum bounce example, where

xc ¼ ½ð1þ 3wqÞ=4�1=½3ð1�wqÞ�xb � xb for 0<wq < 1). In

this case, the interval xc < x < xb is irrelevant when
compared to 0< x< xc and, therefore,
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Z xb

0

dx

Ez2
�

Z xc

0

dx

Ez2
: (38)

In the GR domain, we can use Eqs. (4) and (5) to obtain

x

Ez2
¼ 2c2sx

3

3Eð1þ p=�Þ : (39)

As x increases, the quantities above become dominated by
the fluid with largest value of pq=�q ¼ wq, and in this

phase the integrand is dominated by the term x3ð1�wqÞ=2
since in one fluid domination c2s and p=� become constant

and E / x3ð1þwqÞ=2. For simplicity, where we are assuming
that the fluid which dominates in this epoch has constant
equation of state. As x varies several orders of magnitude
in the integration interval, the value of the integral is
dominated by the integrand near instant xc; we are assum-
ing that the fluid with equation of state wq dominates.

Using this feature, we show in the Appendix that this
integral is approximated by Eq. (A4), i.e.,

Z xc

0

dx

Ez2
� 2

3ð1� wqÞ
xc

EðxcÞzðxcÞ2
: (40)

As xc � xb, we obtain

B � 2

3ð1� wqÞ
2xb

EðxbÞz2ðxbÞ
; (41)

where it must be understood that, although evaluated at xb,

the functions EðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
�ðxÞp

and z2ðxÞ in Eq. (41) are the
usual GR expressions for them, which are valid just before
the bounce.

Note that if the integral
R
xb
xc
dx=ðEz2Þmakes sense during

the bounce, it is a positive quantity that is being neglected
in the evaluation of B and, hence, Eq. (40) continues to be
valid. Note also that although E ¼ 0 at the bounce, this
integral converges for regular bounces (see the quantum
bounce above).

For the second integral one has

I ¼
Z �

0
d �� �c2s �z

2 ¼
Z a

ab

d �a
a0 �c

2
s �z

2

�a2 �E
;

�
Z a

ac

d �a
a0 �c

2
s �z

2

�a2 �E
¼

Z a

ac

d �a
3ð1þ �p= ��Þ

2a0 �E
; (42)

where, as justified before, we are taking ac � ab, and we
have used Eq. (39) for the last equality. The integrand in
the last integral is an increasing function of �a, hence, using
the mean value theorem, we get

I �
Z a

ac

d �a
a0 �c

2
s �z

2

�a2 �E
¼ a0c

2
sz

2

a2E

��������a?

ða� acÞ & c2sz
2x

E
; (43)

where in the last approximation we used a 	 ac and
ac 
 a? 
 a.

Now, inserting Eqs. (41) and (43) into Eq. (17), assum-
ing for simplicity that near the bounce there is domination
of one fluid, we get

�0
� &

ffiffiffiffi
2

�

s
4lpwqk

3=2jA2ðkÞj
3ð1� wqÞRH

ffiffiffiffiffiffiffiffiffi
�w0

p x
3ð1�wqÞ=2
b ; (44)

which, apart from numerical factors of order unity, coin-
cides with Eq. (31).
For the general �b

� one has

�b
� ¼

ffiffiffiffi
2

�

s
lp

ffiffiffiffiffiffiffiffiffi
�w0

p
ffiffiffi
k

p
RH

jA2ðkÞjxð5þ3wqÞ=2
b ; (45)

and the ratio is

�b
�

�0
�

¼ j�b
k j

j�0
kj
*

�0w3ð1� wqÞ
4ð ffiffiffiffiffiffi

wq
p

kÞ2 x
1þ3wq

b : (46)

Again, this ratio is proportional to x
ð1þ3wqÞ
b , and for any

fluid with wq >�1=3 (assuming COBE normalization)

one gets a very large amplitude during the bounce. As we
have shown, this large ratio �b

�=�
0
� is a general feature of

a long contracting phase and, therefore, it will be present in
any reasonable bouncing model where the matter content
satisfies �1=3< p=�< 1.

IV. THE SOLUTION

As we have seen, the gauge invariant Bardeen potential
� may grow in the bounce because what would be the
decaying mode in the expanding phase is the growing
mode in the contracting phase. This mode can be very
large around the bounce if the contraction is huge. Then
one could put into question the validity of linear perturba-
tion theory at the bounce, which compromises all calcu-
lations of cosmological perturbations in bouncing models.
However, the definition of a gauge invariant quantity is not
unique. One simple reason for this is that one can multiply
any gauge invariant quantity by a background function and
it continues to be a gauge invariant quantity. For instance,
if one defines the gauge invariant function ða=a0Þ
� with

 positive, which coincides with the Bardeen potential
today, it is trivial to find a power 
, where this gauge
invariant function is small at the bounce. Hence, what
one has to do is to look at Einstein’s equations for the
perturbations themselves and see if the linear theory makes
sense, at least in some gauge, during the whole history of
the model before the usual epoch where nonlinearities
become important. Note that it is not necessary that the
theory makes sense in all gauges; a valid gauge trans-
formation which relate different gauge choices at some
phase in the cosmological evolution may not exist.

A. Conditions for linearity

Let us concentrate on the scalar perturbations. The
geometry of spacetime is given by

g�� ¼ gð0Þ�� þ h��; (47)
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where gð0Þ�� represents the homogeneous and isotropic cos-
mological background

d s2 ¼ gð0Þ��dx�dx� ¼ �c2dt2 þ a2
ijdx
idxj; (48)

where 
ij is the metric of the maximally symmetric spatial

hyper-surfaces with normalized scalar curvature
K ¼ 0;�1, and h�� represents linear scalar perturbations

around it, which we decompose into

h00¼2�; h0i¼�aDiB; hij¼2a2ðc
ij�DiDjEÞ;
(49)

where Di is the covariant derivative with respect to 
ij.

Hence, the first conditions are

� � 1; B � 1; E � 1; c � 1: (50)

Computing the perturbed Einstein equations in the back-
ground Gaussian coordinate system, one gets

�G0
0 ¼ � 2���

3
� �R

2
¼ ���� ¼ ��T0

0; (51)

�Gi
0 ¼ 2

3
Di

�
��� 3K

a2
���D2

a2
��

�
;

¼ Di½�ð�þ pÞV � ¼ ��Ti
0 (52)

�Gi
i ¼ �2

�
��0

a
þ���þ�

�0

a
�Diâ

i þ �R
4

�
;

¼ 3��p ¼ ��Ti
i; (53)

�Gj
i ¼ �DiDj

a2

�
c ��� ��0

a
��

3
��

�
;

¼ ��
DiDj

a2
�� ¼ ��Tj

i; (54)

where in the fourth equation i � j, D2 � DiD
i, ��, and

�p are the perturbed energy density and pressure, respec-
tively; �� is the anisotropic pressure, which we will
consider to be null, and V is the perturbed velocity field
potential.

In these equations, the quantities ��, ��, �R and ai are
the perturbed expansion rate, shear, curvature scalar, and
worldline acceleration with respect to the constant cosmic
time hyper-surfaces. The background expansion rate is
simply � ¼ n

�
;� ¼ 3H=c ¼ 3H =a, where n� is the nor-

mal of the maximally symmetric spacelike hyper-surfaces
and ; represent the covariant derivative compatible with the
background metric.

These quantities are related to the metric perturbations
by

�� ¼ �aðE0 �BÞ; (55)

a�� ¼ �D2ðE0 �BÞ þ 3ðH�þ c 0Þ; (56)

�R ¼ � 4

a2
ðD2 þ 3KÞc ; (57)

ai ¼ �Di�

a2
: (58)

The gauge invariant variables are defined by the following
combinations of the perturbation variables:

� ¼ �þ ��0

a
; � ¼ c �H��

a
: (59)

We have to verify whether the perturbed Einstein equa-
tions remain small when compared with the background
Einstein equations, where the non-null background
Einstein tensor components are

G0
0 ¼ �

�
�2

3
þ 3K

a2

�
¼ � 3

a2
ðH 2 þ KÞ; (60)

Gi
j ¼ �
i

j

�
K

a2
þ 2�0

3a
þ�2

3

�
;

¼ �
i
j

a2
ðK þ 2H 0 þH 2Þ: (61)

For Eq. (51), the term��� is related to�2 inG0
0 and �R

is related to K=a2 in G0
0. Hence, one must have

j��j � j�j !
��������
a��

H

��������� 1 (62)

and
��������
ðD2 þ 3KÞc

K

��������� 1: (63)

In the case whereK ¼ 0, we have to compare �RwithG0
0

and Gi
i, yielding
��������
D2c

H 2

��������� 1;

��������
D2c

2H 0 þH 2

��������� 1: (64)

Now we have to establish the conditions on �� and ai,
which are null in the background.Wewill use Eqs. (53) and
(54), which come from perturbing Gj

i. These components

of the Einstein tensor contain, in the background,�0=a and
�2. The first one originates ��0=a and Diâ

i in these
equations, while the second originates the term ��� in
Eq. (53). Thus, we obtain the following conditions:

��������
D2��

aH

��������� 1;

��������
D2�

H 0 �H 2

��������� 1: (65)

There are no further independent conditions on the geo-
metric perturbations. Note also that each condition was
obtained comparing the background and perturbed values
of each term of the perturbed Einstein equations. This
means that these conditions are stronger than just compar-
ing the perturbed equations with the complete Einstein
tensor.
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The conditions
��������
��

�

��������� 1;

��������
�p

p

��������� 1;

when in terms of geometric perturbations using Eqs. (51)
and (53), reduce to the conditions already obtained for
those quantities. The velocity field potential V appears
only in the �Gi

0 projections, which are null in the back-
ground. To deal with this variable we can calculate the
second-order correction on the trace of the energy-
momentum tensor, which contains a term proportional to
a�2DiVDiV . Such a term also appears when one calcu-
lates the normalization of v�v

� ¼ �1þ a�2DiVDiV
up to second-order terms, where v� represents the eigen-

vector of the energy-momentum tensor; we have already
considered the other quadratic corrections in this expres-
sion much smaller than 1. Therefore, applying the condi-
tion a�1jDiV j � 1 on Eq. (52), we obtain

��������
aDi��

H 2 þ K �H 0

��������� 1;

��������
DiðD2 þ 3KÞ��

aðH 2 þ K �H 0Þ
��������� 1:

(66)

These conditions are weaker than Eqs. (62) and (65)
around the bounce phase, first due to the additional factor
H�1 / �, which goes to zero near the bounce, and also
because the spatial derivative brings down higher-order
correction terms when acting in the superhorizon solutions
Eq. (13).

The Weyl tensor C��

� in a Friedmann metric is null.

Therefore, its perturbation will be gauge invariant (see
[27]). One could expect to get a gauge invariant condition
for the perturbative series by comparing the perturbation of
the Weyl tensor with the background Riemann tensor. The
non-null components of the perturbed Weyl tensor are
given by its electric part

�Ci0
j0 ¼ a�2

�
DiD

j � 
i
j

3
D2

�
ð�þ�Þ;

while the background Ricci tensor components are

Ri
j ¼ 
i

j

�
2K

a2
þ�0

3a
þ�2

3

�
¼ 
i

j 2K þH 0 þ 2H 2

a2
:

Comparing these components yields the constraint

��������
D2ð�þ�Þ

2K þH 0 þ 2H 2

��������� 1;

which is satisfied whenever conditions given in
Eqs. (63)–(65) hold. Hence, the Weyl tensor provides a
gauge invariant constraint, which is necessary but not
sufficient since it alone does not imply Eqs. (63)–(65).
Additionally, this condition, when applied to the perturba-
tions near the bounce phase is much weaker than that of

Eq. (50), which is necessary to define the perturbations of
the inverse metric.

B. The gauge choice solution

The evolution of the gauge invariant Bardeen potential
in the classical GR phase around the bounce is described in
Sec. III B, where it was shown that� grows larger than 1 at
this phase. In the Newtonian gauge (B ¼ 0 ¼ E and con-
sequently �� ¼ 0),� ¼ �, therefore condition (50) is not
satisfied and linear perturbation theory breaks down in this
gauge.
However, choosing a gauge with constant curvature

(�R ¼ 0), we avoid the problem described above. In this
gauge one sets c ¼ B ¼ 0 and, in order to completely fix
the gauge, we impose Eð�1Þ ¼ 0, where �1 is some par-
ticular convenient choice of conformal time. One has

�� ¼ �a�

H
; � ¼ x2c2sz

2�; E ¼
Z �

�1

d �� ��
�H

;

(67)

where we used� ¼ �ð�� ¼ 0Þ and Eq. (10) to obtain the
expression above.
In this gauge the perturbation� has a different behavior.

At any instant in which a single fluid dominates one has

� ¼ 3ð1þ wÞ
2

�;

where we used Eq. (7). Therefore, in this gauge � follows
the evolution of � instead of �. As we discussed in
Sec. III, � grows in the contracting phase until it attains,
near the bounce, an amplitude approximately equal to the
constant mode of �. In the expanding phase, � also has a
decaying mode, but in this case this mode is always
smaller than the constant one. Hence, � � 1 is satisfied
in this gauge.
Starting the calculations in the constant curvature gauge,

one can see that near the bounce scale the gauge-
fixing condition for the Newtonian gauge is not well-
defined. In the new gauge the value of � would change
as 3ð1þ wÞ=2� ! �. However, as we showed near the
bounce � 	 � . This would imply a nonvalid
transformation

�N ¼ �CCG þ
�
�� 3ð1þ wÞ

2
�

�
;

where �N represents the metric perturbation in the
Newtonian gauge and �CCG in the constant curvature
gauge.
The relation between the perturbation E and � is

jEj ¼
��������
Z x1

x
d�x

�x ��
�E2

��������¼
��������
x�

E2

��������x?

ðx1 � xÞ
��������



��������
x2b�ðxbÞ
E2ðxbÞ

��������;
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where we used the mean value theorem. Note from Eq. (45)

that near the bounce �ðxbÞ / xð5þ3wqÞ=2 and thus x2=E2 /
x�ð1þ3wqÞ; in this gauge E / x3ð1�wqÞ=2 has the same growth
factor as �. With the results above and noting that
in this gauge c ¼ B ¼ 0, the conditions given in
Eq. (50) are verified. The other conditions given in
Eqs. (62)–(65) can be trivially verified.

C. Gauge choice and the bounce phase

The discussion above shows that for a variety of models
the evolution of the perturbations near a bounce phase is
well-behaved in what concerns the perturbative series.
However, at the exact moment when the bounce occurs,
other problems can arise. The gauge invariant variable � is
related to the metric perturbations through (Eq. (67)),

� ¼ a2�ð�þ pÞ
2H 2

�:

Hence, at the bounce the Hubble function goes to zero
and, therefore, the perturbation � diverges since � stays
constant at the bounce [see Eq. (13)]. However, in the
synchronous gauge one has

c ¼ H
a

Z
d�

a3�ð�þ pÞ
2H 2

�; (68)

and one can show that, using the variable � defined as

x ¼ xbe
��2=2, one has H / � near the bounce (this is

the case when the bounce is caused by a negative factor
in E2). Thus, the integral above is proportional to
�
R
d���2, and the perturbations are well-behaved at

the bounce. Hence, the perturbations are always finite
and small, as the constant mode of �.

V. CONCLUSIONS

We have shown in this paper that, for adiabatic pertur-
bations, the Bardeen potential in the contracting phase of
bouncing models can generally become very large, but this
fact does not invalidate linear perturbation theory around
the bounce. We established necessary conditions for the
validity of linear perturbation theory on Friedmann back-
grounds, and we have shown that there is a gauge choice,
for a large class of bouncing models, where these condi-
tions are satisfied. In fact, there are some gauges that are
ill-defined close to the bounce because the gauge trans-
formations relating them to some well-behaved gauge are
not valid.

In conclusion, the program of describing the evolution of
linear primordial perturbation in bouncing models is well-
defined. However, one must take care with the gauge which
will be chosen while performing calculations, since some
gauge fixing conditions are not well-behaved in these
scenarios. In general, the gauge invariant approach is
more appropriated. It does not depend on any gauge fixing
condition. However this approach alone is not enough to

evaluate the validity of the linear approximation.
Therefore, one must always check if there is a gauge in
which the perturbation series is valid.
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APPENDIX: ASYMPTOTIC
SERIES APPROXIMATION

The integral (38) can be rewritten as

Z xc

0

dx

Ez2
¼

Z �c

�1
d�gð�Þes�; (A1)

where we have defined � ¼ lnðxÞ, s � 3ð1� wqÞ=2, �c ¼
lnðxcÞ, and gð�Þ � 1=ðxð1�3wqÞ=2Ez2Þ. This divides the in-

tegrand in the dominant term es� ¼ x3ð1�wqÞ=2 and the
controlled function gð�Þ. Using Eq. (39), it can be written
as

gð�Þ ¼ 1

xð1�3wqÞ=2Ez2
¼ 2c2sx

3ð1þwqÞ=2

3Eð1þ p=�Þ : (A2)

Hence,

lim
�!�c

gð�Þ ¼ Oð1Þ; lim
�!�1gð�Þ ¼ 0:

The first limit comes from the fact that E / x3ð1þwqÞ=2 for
x ! xc. This could also be seen in the situation where the
matter content, besides the fluid with pq=�q ¼ wq, is given

by a collection of n other constant wi fluids, yielding

gð�Þ ¼
2c2s�

�1=2
wq0

3ð1þ p=�Þ
�Xn
i¼1

�wi0

�wq0

x�3ðwq�wiÞ þ 1

��1=2
:

As wq > wi, when in the domain in which x 	 1, gð�Þ is
dominated by a constant value of order one.
The second limit corresponds to x ! 0 or a ! 1, and

one expects that the universe was dominated by the fluid
with w1 since we ordered the fluids imposing wi < wiþ1,

giving gð�Þ / x3ðwq�w1Þ=2 ! 0.
With these results, we can integrate Eq. (A1) by parts

to obtain

Z xc

0

dx

Ez2
¼ es�c

s
gð�cÞ �

Z �c

�1
d�

es�

s

@gð�Þ
@�

: (A3)

Note that

lim
�!�c

xr
@g

@�
¼ Oð1Þ; lim

�!�1x
r @g

@�
¼ 0;

where r ¼ 3ðwq � wnÞ. Thus, we can again split the

integrand in a controlled function g1 � xr@g=@� times

eðs�rÞ�, and integrate by parts obtaining
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Z xc

0

dx

Ez2
¼ es�c

s
gð�cÞ � es�c

sðs� rÞ
@g

@�

���������c

þ
Z �c

�1
d�eðs�rÞ� @g1

@�
:

The magnitude of the second term has an additional
factor of x�r

c when compared with the first. Repeating
the process of factoring the largest growing term and
integrating by parts, we obtain an asymptotic series ap-
proximation for this integral. For a complete discussion
about this method of approximating integrals, see [28].

As we have shown for the first term, each subsequent
term will by multiplied by an additional factor of xc to a
negative power. Therefore, to estimate the order of magni-
tude of the integral, it is sufficient to keep only the first
term,

Z xc

0

dx

Ez2
� 2

3ð1� wqÞ
xc

EðxcÞzðxcÞ2
: (A4)

It is worth noting that the result above is exact if the matter
content consists in just a single fluid with constant equation
of state.
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