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Abstract
Plasma diagnostics using the optical emission spectroscopy (OES) technique is often based on
the assumption of Maxwellian distribution functions. Whenever the equilibrium condition is
not fulfilled, the electron energy distribution function (EEDF) is no longer Maxwellian and
there appear discrepancies between the electron temperature obtained via the spectral line ratio
(e.g. Saha equation) and the effective temperature obtained from the EEDF, measured by a
Langmuir probe. In this work we derive a modified version of the Saha equation by assuming
a Druyvesteyn energy distribution function for the electrons. We apply the modified Saha
equation to a low pressure argon plasma produced in an inductive RF discharge to obtain the
electron temperature. We show that the modified version introduces substantial corrections in
the measured values of the electron temperature given by OES, which approach those given by
the second derivative method of Langmuir probe analysis.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Optical emission spectroscopy (OES) is a powerful in situ
tool, for non-intrusive plasma diagnostic, and is receiving
growing interest in a wide range of applications where plasma
sources are employed. There are two important configurations
often used for material processing: (a) Laser ablation, when
a high-energy laser pulse is strongly focused onto a target to
generate a plasma plume that expands freely in vacuum, or
into an inert or reactive gas atmosphere, and subsequently
reaches a substrate to form a thin film on it. (b) Plasma
sputtering, when a dc or ac discharge is used to generate a

plasma from a buffer gas (usually an inert gas) that erodes
a target. Hence, the species (atoms, molecules, electrons,
ions, clusters, etc.) removed in this interaction are eventually
deposited onto a substrate to form the film. In both cases
the plasma parameters, such as electron temperature, density,
electron and ion energy distribution functions (EEDF and
IEDF) and metastable population, can play an important role
in the control of the deposition conditions [1].

Interpretation of the optical spectrum from the plasma is
often based on equilibrium relations. Basically one needs to
infer from the emitted spectrum the densities in the various
quantum states of atoms and ions and the electron density. If
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some of the radiation is reabsorbed in the plasma or reflected
at its boundary, one must solve radiative transfer equations. In
the absence of the self-absorption term in the rate equations, the
analysis becomes considerably simplified. This is often the
case for the optical emission from laboratory plasmas with
low to moderate temperatures, except in the case of resonant
transitions. In the case of local thermodynamic equilibrium
(LTE) [2], the density of specific quantum states can be
determined for a system that has the same total mass density,
temperature and chemical composition as the actual system.
The relevant temperature corresponds to the distribution
function of the species dominating the reaction rates. In that
case electrons and ions will both have nearly Maxwellian
velocity distributions, even if the two kinetic temperatures
may be quite different. From the Saha equation, a relation
between the total densities of two subsequent ionization stages
can be derived. When the equilibrium condition is not
fulfilled, the ion and electron velocity distributions are no
longer Maxwellian and a modified version of the Saha equation
has to be implemented.

The Saha equations can be solved either by a kinetics
theory method [3] or from the thermodynamics for equilibrium
systems [4, 5]. When equilibrium thermodynamics is used,
two different results are obtained for a two temperature plasma.
Morro and Romero [4] proposed a modified Saha equation that
depends on the electron and the ion temperatures [6, 7]. Later,
Van de Sanden et al [5] and Chen and Han [8] showed that
the modified Saha equation obtained by Morro is not valid for
a two temperature plasma, because its derivation is based on
equilibrium assumptions (from the minimization of the Gibbs
free energy). On the other hand, the equation obtained by Chen
for a two temperature plasma has the same mathematical form
of the standard Saha equation, only changing T by Te.

In this work we derive a modified version of the Saha
equation from the kinetic solution by assuming a Druyvesteyn
velocity distribution function for the electron and the ion
species. We apply the modified Saha equation to a low pressure
argon plasma produced by an inductive RF discharge to obtain
electron temperatures, which are consistent with the result
obtained with an electrostatic Langmuir probe. The obtained
temperatures are almost an order of magnitude higher than
those predicted by the standard Saha equation.

2. Experimental apparatus

The experimental apparatus consists basically of an inductively
coupled plasma produced by a three loop antenna placed inside
a cylindrical stainless steel (316L) chamber. The RF power
supply is based on a push–pull oscillator designed with a
variable output power ranging from 10 to 500 W, operating
at 13.56 MHz. The chamber is pumped to a base pressure
of 10−7 mbar; during operation it is filled with argon and the
working pressure is kept constant (5 × 10−2). The chamber
has a quartz window for optical emission spectroscopy (OES)
and the target holder and the Langmuir probe are placed on
two separated retractile manipulators.

Figure 1. Calibrated optical emission spectrum measured for a
pressure of 5 × 10−2 mbar and 120 W of RF power.

2.1. Optical emission spectroscopy

For OES measurements, an optical system consisting of
a set of collimating lenses is used to focus the plasma
light onto the entrance of an optical fibre coupled to a
Czerny–Turner spectrometer (HR4000 model from Ocean
Optics). The spectrometer is equipped with a holographic
grating (Composite™) of 300 lines mm−1 with a linear CCD
array of 3468 pixels, yielding a resolution of 0.5 nm in the
spectral range from 200 to 1100 nm. Emission intensities
are corrected according to the wavelength dependence of the
spectral sensitivity of the CCD and of the grating transmission
efficiency. Our measured spectra were further corrected
with a NIST-traceable calibrated tungsten halogen light
source (300–1050 nm) from Ocean Optics (model LS-1-CAL).
A typical calibrated optical emission spectrum is shown in
figure 1 for a pressure of 5× 10−2 mbar and 120 W of RF
power.

2.2. Electrostatic probe measurement

A single Langmuir probe was constructed with a tungsten tip
of 0.5 mm diameter brazed to a glass tube head. A low band
pass filter is placed inside the tube and close to the probe tip
to reduce RF distortion. The glass head, glued to a stainless
steel tube, is inserted along the axis of the vacuum chamber
and can be rotated and displaced to allow a radial sweep. In
the measurements, the probe was biased from −70 to 70 V
and the voltage applied together with the current output were
simultaneously measured by an ADC (USB6008, National
Instruments). In figure 2 we have a typical I–V curve for
a pressure of 5× 10−2 mbar and 120 W of RF power.

The EEDF Fe(E) was obtained following the standard
second derivative analysis of the I–V curve [9],

Ie = 1

4

(
2e3

me

)1/2

A

∫ ∞

V

E1/2Fe(E)

(
1 − V

E

)
dE, (1)

where A is the area of the collecting probe surface, me and e are
the electron mass and charge, respectively, V = φp −Vb is the
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Figure 2. Measured I–V curve for a pressure of 5 × 10−2 mbar and
120 W of RF power.

difference between the plasma potential φp and the potential
applied to the probe Vb, E = 1

2mv2/e is the kinetic energy of
the particle, given in electronvolts, and Fe(E) is the EEDF.

Therefore differentiation of equation (1) twice with
respect to V yields

Fe(V ) = 2m

e2A

(
2eV

m

) 1
2 d2Ie

dV 2
. (2)

Once the EEDF is obtained, the number density ne can be
promptly calculated:

ne =
∫ ∞

0
Fe(V ) dV (3)

and also the effective temperature, given in electronvolts, by

Teff = 2

3ne

∫ ∞

0
V Fe(V ) dV. (4)

3. Theory

3.1. Druyvesteyn distribution

For plasmas that are not in local thermodynamic equilibrium
(non-LTE), a Maxwellian distribution function cannot be
assumed for the energy of electron. Instead, it is necessary
to calculate it from the Boltzmann equation,

∂

∂t
fe(�r, �v, t) + �v · �∇rfe(�r, �v, t) + �a · �∇vfe(�r, �v, t)

=
[

d

dt
fe(�r, �v, t)

]
col

, (5)

where �a is the acceleration vector of electrons due to external
forces, fe(�r, �v, t) is the electron velocity distribution function
and [ d

dt
fe(�r, �v, t)]col is the collision term.

The solution of equation (5) is not easy to obtain
because the collisional effect, in the collisional integral on
the right-hand side, has to be determined self-consistently

for all the particle species. This leads to a set of coupled
non-linear integro-differential equations in seven dimensions
(x, y, z, vx, vy, vz, t), whose solution is intractable. However,
in order to obtain results using this equation, several
approximations can be used involving linearization and
approximation of zero order. Druyvesteyn [9] solved the
Boltzmann equation for a plasma permeated by an electric
field, and got the following energy distribution function,
assuming isotropy, fe(�r, �v) ≡ fe(v):

FD(E) = 1.04nW
− 3

2
av E

1
2 exp

[
−0.55E2

W 2
av

]
, (6)

where n is the number density of particles, E is the energy,
Wav is the average energy and FD(E) dE = 4πv2fD(v) dv.

3.2. Modified Saha equation

In non-LTE plasmas, the number of particles in a state n, with
energy between En and En + dE, is given by

dNn = N
f (En) dE∫
f (E) dE

. (7)

Using a similar relation for particles in a state m, with energy
between Em and Em + dE, and integrating the ratio of these
two equations one gets

Nm

Nn

= f (Em)

f (En)
. (8)

From the Maxwell–Boltzmann distribution for a system in
thermodynamic equilibrium, one obtains

Nm

Nn

= gm

gn

exp

[
−Em − En

kBT

]
, (9)

where gm and gn are the statistical weights (degeneracy) of
states m and n, respectively. Nevertheless, there are cases
where the electron energy cannot be correctly described by a
Maxwellian distribution, and for conditions as such the plasma
is better characterized by a Druyvesteyn function [10]:

fD(E) = C exp

[
− E2

E2
av

]
. (10)

Therefore a generalized Boltzmann law allows to write

Nm

Nn

= gm

gn

exp

[
−

(
E2

m − E2
n

)
E2

av

]
. (11)

Using this equation for the particular case involving the ground
state (E0 = 0) and the first ionization potential χI ,

dN+
0

N0
= dg

g0
exp

[
−

(
χI + 1

2mev
2
)2

E2
av

]
, (12)

where dN+
0 is the differential number of ions in the ground

state with free electrons in the velocity interval between v and
v + dv, dg = g+

0 . dge being dge = 2 d3x d3p

h3 the degeneracy of
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free electrons with d3x = 1/ne and h is the Planck constant.
The degeneracy of ions is given by g+

0 .
Considering that for a collisional plasma the relation

between the characteristic times for electron temperature
isotropization and energy relaxation is given approximately
by 2

√
2/3(T⊥/T‖) [11] and provided that the plasma is

not magnetized, we can safely assume an isotropic velocity
distribution. In this case,

d3p = 4πm3
ev

2 dv, (13)

and after substitution in equation (12) we find an equation that
depends on the velocity of free electrons, given by

dN+
0

N0
= 8πm3

e

neh3

g+
0

g0
v2 exp

[
−

(
χI + 1

2mev
2
)2

E2
av

]
dv. (14)

Integrating this equation we obtain

N+
0

N0
= 8πm3

e

neh3

g+
0

g0
I, (15)

where

I =
∫ ∞

0
v2 exp

[
−

(
χI + 1

2mev
2
)2

E2
av

]
dv. (16)

This integral is solved defining t = v2, hence,

I = 1

2
exp

[
− χ2

I

E2
av

] ∫ ∞

0

√
t exp[−αt − βt2] dt (17)

with
α = meχI

E2
av

(18)

and

β = m2
e

4E2
av

. (19)

Following the discussion presented in [12], we have∫ ∞

0
xν−1 exp[−γ x − βx2] dx = (2β)−

ν
2 	(ν)

× exp

[
γ 2

8β

]
D−ν

(
γ√
2β

)
, (20)

where D−ν(
γ√
2β

) is the parabolic cylinder function D that can
be related to a parabolic cylinder function U using the relation

D−a− 1
2
(x) = Ua(x). (21)

Taking ν = 3
2 , β = m2

e
4E2

av
, a = 1 and γ = α = meχI

E2
av

, we can
rewrite the integral as

I =
√

π

4

[
2E2

av

m2
e

] 3
4

exp

[
− χ2

I

2E2
av

]
U1

(√
2

χI

Eav

)
. (22)

Therefore equation (15) becomes

N+
0

N0
= 2π

3
2 m3

e

neh3

g+
0

g0

[
2E2

av

m2
e

] 3
4

exp

[
− χ2

I

2E2
av

]
U1

(√
2

χI

Eav

)
.

(23)

Using equation (11), the relation for the ratio between neutral
species in the ground state (E0 = 0) and a given excited state
(Em) gives

N0

Nm

= g0

gm

exp

[
E2

m

E2
av

]
. (24)

Now using equation (11) for two excited states Ek and El of
the ionic specie, we have

N+
k

N+
l

= g+
k

g+
l

exp

[
− (Ek + χI )

2 − (El + χI )
2

E2
av

]
(25)

taking El as the ion ground state, the equation becomes

N+
k

N+
0

= g+
k

g+
0

exp

[
−

(
E2

k + 2EkχI

)
E2

av

]
. (26)

Multiplying these two equations, we have

N+
k

Nm

= N+
0

N0

g+
k

gm

g0

g+
0

exp

[
−

(
E2

k − E2
m + 2EkχI

)
E2

av

]
(27)

and finally, after substituting equation (23), the expression for
the modified Saha equation becomes

N+
k

Nm

= 2π
3
2 m3

e

neh3

g+
k

gm

[
2E2

av

m2
e

] 3
4

U1

(√
2

χI

Eav

)

× exp

[
−

(
E2

k − E2
m + 2EkχI + 1

2χ2
I

)
E2

av

]
(28)

which can be compared with the standard Saha equation given
below:

N+
k

Nm

= 2
g+

k

gm

1

ne

[
mekBT

2πh̄2

] 3
2

exp

[
− (Ek − Em + χI )

kBT

]
, (29)

where Ek and Em are the energy levels measured in relation to
the ground state of the ion and the neutral, respectively.

3.3. Temperature calculation for non-LTE plasma

In plasma spectroscopy theory [2], there is a relation between
the number density Ni and the intensity of the transition line Iij

Iij = h̄ω3
ij r0

2πc
fji

∫ b

a

Ni(x) dx, (30)

where r0 is the classical electron radius, c is the speed of light,
fji is the oscillator strength and ωij is the frequency for a
transition from the level i to j .

Assuming that the ionized species makes a transition from
the k to the l state and that the neutral species makes a transition
from the m to the n state, the relation between the emission

4
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Figure 3. Calculated EEDF from the second derivative of the I–V
curve of figure 2 (full squares). From a non-linear fitting procedure
(Levenberg–Marquardt method) the best Maxwellian (broken line)
and Druyvesteyn (full line) curves that fit to the second derivative
data.

lines is given by

Ikl

Imn

= λ3
mnflk

λ3
klfnm

N+
k

Nm

. (31)

From the Druyvesteyn distribution function

E2
av = W 2

av

0.55
(32)

and

Wav = 3

2
kBT . (33)

Substituting these three equations in equation (28), we
finally have the relation between the electron temperature and
the ratio of the transition lines emitted from the plasma:

Ikl

Imn

= λ3
mnflkg

+
k

λ3
klfnmgm

2π
3
2 m3

e

neh3

[
2.86kBT

me

] 3
2

U1

(
0.699

χI

kBT

)

× exp

[
E2

k − E2
m + 2EkχI + 1

2χ2
I

4.09(kBT )2

]
. (34)

4. Results

Following the second derivative analysis of the I–V curve
shown in figure 2, the EEDF can be calculated; the result
is shown in figure 3. Also shown in figure 3 are the best
fitted curve of a Maxwellian (broken line) and a Druyvesteyn
(full line) function to the EEDF data. It is clear that, for
the experimental conditions of this work (working pressure
of 5 × 10−2 mbar and RF power of 120 W), the EEDF is
better described by a Druyvesteyn function, indicating that the
plasma is outside the thermodynamical equilibrium.

Concerning the optical emission spectroscopy (OES)
analysis, it is important to point out that the optical emission

spectrum from a low pressure argon RF discharge is dominated
by Ar I optical transitions [13], in particular from 4p →
4s. Some of these transitions were avoided due to the
large number of atoms in the 3p54s metastable and resonant
levels [14]. On the other hand experiments point to a
sub-dominant role of metastable excitation of the np1, np5

(J = 0) levels, and often their emission can be assumed
to be completely free of a metastable atom excitation
contribution [15]. Therefore, we shall restrict the solution of
equation (34) to the set of levels (750.4, 425.9 and 451.1 nm),
in particular to the Ar I 3s23p5(2Po

1/2)4s → 3s23p5(2Po
1/2)4p

and Ar II 3s23p4(3P)3d → 3s23p4(3P)4p transitions, which
correspond to the wavelength of 750.38 nm and 686.12 nm,
respectively.

Provided that the line intensities from the selected optical
transitions of two subsequent ionization stages are given,
equation (34) can be solved graphically [2] by plotting
the right-side term as a function of Te. However, the
electron density has to be provided by either Langmuir probe
measurement (which is the case in this work) or by Stark
broadening of a particular optical transition [16]. Hence for
each (Ikl /Imn) ratio a corresponding Te will satisfy the solution
of equation (34) univocally.

The graphical solutions of the standard Saha equation and
the modified Saha equation are shown in figures 4(a) and (b),
respectively. The optical constants were obtained from the
NIST database [17]. One can readily see that, for the same
(Ikl /Imn) set of values, the solutions of the two Saha equations
lie in two quite different temperature ranges, differing roughly
by an order of magnitude.

5. Discussion

The results from Langmuir probe analysis (equation (4)),
modified (equation (34)), and the standard Saha equations
(equation (29)) are presented in table 1, for a RF power of
120 W and a working pressure of 5 × 10−2 mbar. For the line
intensities studied in this work, the ratio of Ikl/Imn = 0.02 was
obtained. From figure 4 the values obtained for the standard
and the modified Saha equation were, respectively, 0.72 eV
and 5.4 eV.

Although the modified Saha equation, based on a
Druyvesteyn EEDF, corrects the electron temperature to
approach that given by the second derivative probe method,
there still exists a discrepancy of approximately 18% between
the two methods. Discrepancies between probe analysis and
line ratio methods, such as the standard Saha equation or the
Boltzmann plot, are also observed for plasmas where the EEDF
is well represented by a Maxwellian distribution [14].

In fact, recently, Kang et al [14] developed a method
that corrects the temperature obtained from the ratio of two
spectral lines from the same ionization stage to the effective
electron temperature measured via a single Langmuir probe.
In their model a correction factor is assumed, which depends
on the gas pressure and is derived from the balance between
the measured light intensity and the degree of excitation by
collision via the EEDF and electron density obtained from the
probe measurement.
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Figure 4. Graphical solution of the standard Saha equation of [2]
(a) and the modified Saha equation presented in equation (34) (b).

Table 1. Electron density calculated from equation (3) and electron
temperature from equations (4), (34) and (29).

ne (m−3) Te (eV) Te (eV) Te (eV)
(equation (3)) (equation (4)) (equation (34)) (equation (29))

3.2 × 1015 6.6 5.4 0.72

Although the method of Kang et al [14] is applicable
only for lines from the same ionization state, while Saha’s
equation is valid for lines from subsequent ionization states,
it is interesting, for the sake of completeness, to compare the
results from the two models. Applying equation (11) of Kang
et al to the Ar I lines 750.4 and 425.9 nm, and taking the data on
the relevant cross sections from [15], we obtain Te = 3.5 eV
for a Maxwellian distribution function and Te = 6.1 eV for a
Druyvesteyn distribution function, for the conditions given in
table 1. Therefore the results are all in good agreement.

6. Conclusions

We have presented a model to modify the Saha equation for the
case where the EEDF is better described by a Druyvesteyn than
a Maxwellian function. The electron temperature obtained
from the modified Saha equation, using the spectral line ratio
method, approaches reasonably well the effective temperature
measured via Langmuir probe. Our result also is in qualitative
agreement with the model proposed by Kang et al [14].
However, the method described in this paper is considerably
simpler to apply in order to obtain the electron temperature
in RF produced plasmas at least in the pressure range around
10−2 mbar.
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