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Abstract

In this article, I introduce a short review of the statistical and dynamical properties of the high-frequency trading volume
and its relation to other financial quantities such as the price fluctuations and trading value. In addition, I compare these
results – which were obtained within the framework of applications of Physics to quantitative financial analysis – with
the mainstream financial hypotheses of mixture of distributions (MDH) and sequential arrival of information (SIAH).
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1. Introduction

Although most of the work carried out for the char-
acterisation of financial markets within the context of ap-
plications of Physics to quantitative financial analysis has
been devoted to understanding fundamental features of5

price fluctuations (aka returns) or the volatility [1, 2],
there is another pivotal quantity in the definition of the dy-
namics of a given asset: the amount thereof that changes
hands in a certain period of time – the trading volume, v.
The reason for its relevance is simply understandable: If10

a price might not change when there is a transaction, in
order to have a price change — stock splits apart — there
must be a seller and a buyer agreeing to make a transac-
tion at some price, S, that differs from the previous quote.1

In the case of a liquid market — for which there is tradi-15

tionally a large number of both bidders and askers mainly
concentrated and the first levels of the order book2 — large
price fluctuations were associated with strong buying and
selling pressures that would make the price to significantly
hike up or slump, respectively. Mainly for this reason it20

loomed the perception in the meanwhile turned into an
adage that goes as “it takes volume to make prices move”.
In other words, the emergence of an significant imbalance
between bidders and askers is bound to be caused by some
information flow that makes the agent make up her mind25

and ultimately the establishment of herding phenomena
in the market, i.e., trading volume could be a reasonable
proxy for information. This reasoning is intimately related
to one of the two currents about relation between price

Email address: sdqueiro@gmail.com (Śılvio M.
Duarte Queirós)

1Besides stock splits there is also an automatic discount after the
payment of a dividend.

2Herein, I define a market as liquid following Black’s criteria [3]
that it must be extremely tight, with a little deep order book and
sufficiently resilient so that prices are prone to converge to the un-
derlying value.

fluctuations, volume and information in financial theory,30

known as Mixture of Distributions Hypothesis (MDH).
The MDH, was introduced by Clark [33] on qualitative
grounds, whom conjectured the dynamics of both quanti-
ties were dependent on latent events leading to a joint dis-
tribution where the volatility and the trading volume are35

both described by log-Normal distributions. In his formu-
lation, Clark also introduces a distinction which is appeal-
ing to physicists interested in complex systems: the dif-
ference between physical (clock) time and proper (event)
time. That distinction is fundamental in the discovery40

of several properties and laws in complex phenomena like
earthquakes and avalanches only emerge [34]. According
to Clark the proper time in a financial market would be
the arrival of information.

This scenario was later set in a quantitative framework45

in Refs. [35] using a stochastic volatility approach. Other
modelling proposals assumed heteroskedastic (G)ARCH
regression [36], which add trading volume in the regres-
sion formula of return calculations finding evidence over
the fact that volatility and trading volume would have the50

same underlying [61].
In opposition to the MDH, there is the scenario of Se-

quential Arrival of Information Hypothesis (SAIH) intro-
duced by Copeland [37] and extended in Refs. [38]. The
SAIH conjectures that information arrives to agents at dif-55

ferent times so that the final steady state in the market
is led by a sequence of local steady states. Thence, they
would lead different empirical features, namely for MDH
there is contemporaneous correlation between volatility
and volume whereas for SIAH correlation is lagged.60

While recent studies on order book dynamics suggest
that the adage is closer to an urban legend than an actual
empirical fact because large price fluctuations are caused
by fluctuations in liquidity [6], the reality is that when we
look at a scatter plot of the daily log-price fluctuations,65

r1d ≡ lnSd − lnSd−1 (d stands for day), versus the re-
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Figure 1: Daily price fluctuations vs (detrended) trading volume in
NASDAQ between 1951 and 2010. The horizontal lines define the
limits of four standard deviations and the vertical line locates 3/2 of
average trading volume.

spective trading volume, vd, we understand that 76% of
the daily price fluctuations with magnitude larger than 4
standard deviations are related to trading volumes which
are in excess of 1.5 the daily average value (see Fig. 1); this70

props up the likelihood of brokers’ saying. Nevertheless, in
the advent big data and the access to high-frequency and
ultra-high-frequency datasets many properties have been
disputed, namely the relevance of intra-day properties [40].

In this paper, I review some of the results obtained75

in recent years regarding statistical and dynamical fea-
tures of high-frequency trading volume and its relation to
other financial quantities like the price fluctuations and
the volatility. Some remarks on perspectives over studies
on trading volume are presented in the end of the paper.80

2. Stylised facts about trading volume

Like the prices, which are assumed to grow geometri-
cally because of the inflation and effective economic growth,
trading volume has followed in the long term the same sort
of evolution, but with a significantly larger rate (see upper85

panel in Fig. 2). For instance, the trading volume of the
companies composing the SP500 index increased between
1951 and 2010 at an yearly average rate of 14% whereas
the value of that index soared at 3%. Leaving aside that
non-stationarity, the trading volume exhibits seasonalities90

as well, with the most evident of them related to the dy-
namics of trading along the business day [7], i.e., by the
actions of chartists — whom are not inclined to be exposed
to overnight variations — there is a significantly higher
level of trading in the beginning and in the end of the ses-95

sions, a feature that is known as the ∪-shape of trading in
stock market dynamics first reported in for absolute price
fluctuations [8] and trading volume [9] for hourly data. In
Fig. 2, we show the typical intra-day profile of the volume
of a US blue chip equity, namely Alcoa (AA), that I will100

use to illustrate several of the matters in this article. 3 In
the same figure note the emergence of two outliers at the
time of European markets closing. This gives a clear indi-
cation about the existence of correlations between indices
and hence among equities; many companies are listed in105

different markets — namely London and New York — and
so latter takes into consideration the final part the session
in the former in order to subdue arbitrage strategies and at
the same time investors adjust their positions (and porto-
folio composition) taking into consideration the sentiment110

of the world markets. It should be noted that the shape
of the ∪-shape is nonstationary in itself and depends on
the level of trading (or information in the market) though.
In the inset in the right panel of Fig. 2, I show how the
average concavity of the intraday trading profile has been115

changing in time. One can observe that the curves getting
less concave and ever flatter; in other words, they are no
longer ∪-shape to become t-shape [10].

Most of the theoretical physics arsenal becomes easier
to employ when one assumes stationarity in the system;120

thus, when treating inter/intraday trading volume data it
is convenient to remove such nonstationarities, which can
be added back after understanding the underlying stochas-
tic mechanisms a posteriori. Two simple ways of separat-
ing them off are as follows: the inflationary trend can be125

removed by computing the trading volume growth rate,
rv, for the dataset starting at t0 and then: 4

v(t)→ v (t) exp [−rv (t− t0)] . (1)

In respect of the intraday profile, it can be removed by
performing an average of the volume with the same time130

stamp, s, over all days, d,5

v(d, s)→ v (d, s)

〈v (s)〉d
. (2)

2.1. Distribution

To the best of our knowledge the first analysis of the
distribution of high-frequency (less than 1 hour sampling135

rate) trading volume was presented in Ref. [15] for which

3The reason for using this company are the following: it is a large
market capitalisation corporation (around US$ 28bi), close to the
average market capitalisation of the companies listed in the larger
SP500 index and more importantly its quantitative behaviour is
aligned with mean results. Furthermore, being a mining business
Alcoa is able to act as a proxy for the dynamics of commodities as
well, providing a inkling of the so-called behavioural universality of
financial markets.

4More sophisticated approaches can be the application of moving
average techniques, e.g., AR(I)MA models for cases where the sim-
ple linear regression does not present good enough linear correlation
coefficients.

5Another possibilities are to power the trading volume [11] within
the spirit of the analysis carried out in Refs. [12, 13] that aimed at
weighing large and small values of v differently, to compute averages
using escort distributions [14] or other alternative statistical mea-
sures.
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Figure 2: Left panel: Geometric walk of the trading volume vs time (days since 3rd January 1951) The red line depicts a growth rate of
14% per year with a linear regression coefficient R = 0.99. Right panel: Average 1-minute trading volume for AA in the 2nd semester 2004
vs time within a trading session. The inset is represents the evolution of the concavity of the ∪-shape by semester with the 1st semester of
2004 taken as default ( courtesy of M.B. Graczyk ) [10]. The last ten years present a fade out of that concavity.

they have found a consistent power-law decay of the prob-
ability density distribution (PDF), p (v) ∼ v−ζ , with ζ =
2.7 ± 0.1, that is consistent with a Lévy regime, i.e., it
does not yield a finite standard deviation.6 Similar expo-140

nents were found for other liquid markets such as the Lon-
don Stock Exchange and Paris Bourse by the same group
in [16]. The fat tail of the distribution was long known in
finance, but it was assumed as a fingerprint of a log-Normal
distribution. The reason for this assertion was based on145

the cascade mechanisms leading to the log-Normal: the
logarithm of the trades was a random variable with fi-
nite variance so that the aggregated trading volume for
a given period of time would converge to the log-Normal
distribution in accordance with the central limit theorem.150

However, the log-Normal form was not ideal for describing
the entire curve, especially typical (within the same order
of magnitude of the average) and small values. A different
PDF was then proposed in [17],

p (v) =
1

Z

(v
θ

)α [
1 + (q − 1)

v

θ

] 1
1−q

(3)

=
1

Z

(v
θ

)α
expq

[
−v
θ

]
.

This corresponds to a generalised form of the Gamma dis-155

tribution — which is reobtained in the limit q → 1 — de-
fined within Tsallis nonadditive entropy and matches the
F -distribution when α and q are related to integer num-
bers. Considering the top ten liquid stocks traded in NAS-
DAQ they have found for 1-minute {q = 1.19, α = 0.93, θ = 0.23}160

and for 2-minute {q = 1.16, α = 1.36, θ = 0.2}, which lead
to an asymptotic decay of p (v) with an exponent larger
than three, beyond Lévy limit. This same distribution

6In order to cope with this fact it was assumed the existence of
truncated Lévy flights [1].

was tested to describe the trading volume of the blue
chip equities of the Dow Jones Industrial Average [19], in165

(quite) less liquid stocks like those composing the Brazil-
ian IBOVESPA index [20, 21] as well as maturing markets
such as the Korean [22] and the Chinese [23] including the
size of the orders in the book [24]. In all these cases —
and systematically using several different algorithms and170

tests — it was found an exponent larger than three, that
is consistent with a finite variance without the need for
imposing a cut-off. In the case of Ref. [23], it was also
found out that around the q-Gamma distribution there is
a preference for certain numbers quantities namely trad-175

ing volumes starting in 1 and 5, a phenomenon known as
order size clustering.

2.2. Correlation and dependence

Systems with short memory, or no memory at all, are
certainly simpler than other for which (some) information180

prevails over significant periods of time. Memory, i.e.,
propagation of information in time, basically takes place
due to linear and non-linear correlations. The former is
presented in systems with simple mechanisms of memory
like Markovian processes and it can be computed resorting185

to the Pearson’s correlation coefficient (or function),

Cx y (t, τ) =
〈x (t+ τ) y (t)〉 − 〈x (t+ τ)〉 〈y (t)〉

σx(t+τ)σy(t)
, (4)

where σx(t) ≡
√〈

x (t)
2
〉
− 〈x (t)〉2.

Usually a series is assumed (or made) stationary and
therefore the dependence on t does not exist. Apart from190

the direct application of Eq. (4), there are other forms
to compute the linear correlation such as the power spec-
trum, variograms, or analysing the “diffusive” character
of the time series using Detrended Fluctuation Analysis
(DFA) [18], when y = x, or its cross version otherwise.195
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For DFA, the detrended fluctuation function is expected
to behave as, F (τ) ∼ τ α̂, and in that case C (τ) ∼ τ2(α̂−1).
In Ref. [15], it was presented a DFA analysis of the trading
volume of the 1000 largest stocks of NYSE for which it was
found an average value α̂ = 0.83 ± 0.02. In another pa-200

per [19], it was used a correlation function approach to the
trading volume of the stocks of the DJIA and it was ob-
served that a power-law decay description was constrained
to short regime. Therein, it was shown that C (τ) is best
described by the superposition of two exponentials,205

Cv (τ) = a exp

[
− τ

τ1

]
+ b exp

[
− τ

τ2

]
, (5)

with b = 1 − a. From that analysis, it was verified the
existence of two clear different scales with a ratio τ2/τ1 =
28 ± 11. In Ref. [20], it was verified for the IBOVESPA
that the trading volume also presents fast (exponential)210

decay. Similar results were verified for Chinese markets as
well [25].

Equation (4) treats the quantities under analysis equally.
Nevertheless, it is well known that complex systems tend
to be hierarchical; hence, it is likely that in the case of215

financial quantities, namely the trading volume, large vol-
umes will correlate differently with large and small trad-
ing volumes. With that suspicion in mind, the corre-
lation function of trading volume was slightly modified
in Ref. [13] so that it was considered x (t) = v (t)

α
and220

y (t) = v (t)
β

(α and β reals). Those correlation functions
were still found to be well described by Eq. (5). Recalling
that the values of the trading volume are detrended and
normalised, this means that for α (β) < 1 — especially
when they are negative — one gives extra weight to small225

values whereas when α (β) > 1 one emphasises large val-
ues. The analysis carried out in [13] pointed out that small
values of trading volume are consistently anti-correlated
with frequent and large values and that frequent and large
values are positively correlated between them, although230

the scales of correlation are smaller in the case of large
volumes. Moreover, the values for a and b (in absolute
value) are smaller when at least one of the exponents is
equal to 1.

As mentioned in this subsection, correlation splits into235

linear effects7 and non-linear effects, where the latter can-
not be measured by means of the correlation function. In
that case the right way to carry it out is by using entropic
forms, namely the application of the relative entropy8,

K (p, p′) = −
∑
j

pj ln

(
p′j
pj

)
, (6)240

that provides the mean change of information related to
any two probability distributions, p and p′. In the case of
multidimensionality of j, particularly j → (x, y), the most

7Or effects that can be represented in a linear case.
8Also known as Kullback-Leibler divergence, information diver-

gence, information gain.

interesting case is the analysis of the distance between
distribution p (x, y) and the product of marginal distribu-245

tions representing independence p′ (x, y) = p1 (x) p2 (y),
which has been applied in quantitative finance and econo-
physics [26]. In spite of the several results and applica-
tions, relative entropy K (p, p′) has some problems, namely
in the classification of the degree of dependence between250

variables among some other issues. Putting it differently, it
does present a means linking the quantitative result given
by Eq. (6) with a qualitative assessment of strong/weak
non-linearities. These issues are largely sorted out by con-
sidering a generalised version of the relative entropy that255

was introduced within the context of Tsallis entropy. In
this generalisation [27], the usual logarithm must be re-
placed by the q-logarithm, lnq (x) ≡

(
x1−q − 1

)
/ (1− q)

and Eq. (6) is recovered in the limit q → 1. For q > 0,
there exist well defined minimum and maximum values of260

Kq (p, p′) corresponding to minimum and maximum de-
pendence degrees between random variables (x and y).
This allows us to define a criterion for statistical test-
ing [26] through the normalised quantityRq ≡ Kq (p, p′) /Kmax

q (p, p′),
which is limited between 0 and 1 corresponding to inex-265

isting and full dependence between x and y, respectively.
Given the two quantities x and y, Rq can be simply calcu-
lated as a function of q yielding a continuous and mono-
tonically increasing function the inflexion point of which
defines the value of q for which Rq is most sensible in de-270

tecting changes in the dependence between the two vari-
ables. For this reason, the value is called optimal value,
qop.

In quantitative finance, this form was first applied to
explain the slower than expected convergence to the Gaus-275

sian shown by uncorrelated price fluctuations [28]. Re-
garding the trading volume, the generalised mutual infor-
mation R was first employed in [19] with x being the time
series and y the same time series with a lag in time, T . In
that work, it was found that the non-linearities in trading280

volume decay in a very slow way, i.e., the index qop goes
logarithmically with the lag. In a subsequent paper [13]
the nonlinearities were tested in accordance with the study
of the generalised correlation function, i.e., xα = v (t)

α

and yβ = v (t+ T )
β
. Again a logarithmic behaviour of qop

285

as a function of T was obtained for different values of α
and β, but with different parameters. The results repro-
duced in Fig. (4) show that, in this case, qop diminishes
as a function of the lag, but the rate of change is not as
high as in the α > 0, β > 0 case (see the respective cap-290

tion). Note that this result occurs for the same exponents
where anti-correlated behaviour is found indicating that
the anti-dependence is associated with a negative slope in
the logarithmic behaviour of qop with the lag. In both
cases, positive and negative dependent converge to inde-295

pendence that is indicated by the computation of qop for
shuffled series for which causality is totally destroyed.
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Figure 3: Cα,β(v) vs. T . On each panel black symbols are the values obtained from time series and the grey line represents the numerical
fit of Cα,β(v) for a double exponential. In panel for C−1,1(v) the curves for T > 0 and T < 0 concur, which goes along the lines of time
symmetry. The inset on C1,1(v) panel is a log-log representation of the main panel. As it is visible the correlation function does not present
power-law behaviour, nay a power law decay holds for less than a decade in the ordinate. The same happens for all the other values of (α, β)
studied. Reproduced from [13].

Figure 4: Optimal index qop versus lag T . Panel a: Lines cor-
respond to fitting function qop = A + B log T , where (A,B) is
(1.667±0.003, 0.035±0.001) (solid line), (1.563±0.004, 0.035±0.001)
(dashed line) and (1.583 ± 0.001, 0.0223 ± 0.0003) (dotted line) for
(α, β)= (2,1), (1, 2) and (1, 1) respectively. Panels b: Same as
in a on the shuffled version of the time series. Constant values
are: 1.954 ± 0.002 (solid line), 1.858 ± 0.001 (dashed line) and
1.7713 ± 0.0008 (dotted line). Panel c: Logarithmic fitting as in
a: (A,B) is (1.977 ± 0.004,−0.007 ± 0.001) (solid line), (1.974 ±
0.008,−0.009 ± 0.002) (dashed line), (2.07 ± 0.01,−0.004 ± 0.002)
(dotted line) for (α, β)= (2,-1), (1, -1) and (-1, 1) respectively. Panel
d: Same as in c on the shuffled version of the time series. Constant
values are: 1.881± 0.002 (solid line), 1.869± 0.002 (dashed line) and
1.953± 0.005 (dotted line). Reproduced from Ref. [13].

2.3. Multiscaling

We now introduce the last of our three (quantitative)
cornerstones of a complexity assessment. As early as the300

introduction of the concept of fractal by B. Mandelbrot,
it was verified the existence of scaling properties, particu-
larly multiscaling, in the form of self-affinity, for financial
quantities such as the price fluctuations and the volatil-
ity [1, 2, 29]. This multiscaling represents a composition305

of several sub-sets, each one with a certain local exponent,
h, and all supported onto a main structure, which is self-
affine as well. Although other methods can be used to
assess multiscaling (or multifractality), the most applied
of them is the multi-fractal detrended fluctuation analy-310

sis [30] and its variants. In MF-DFA, the fluctuation func-

tion is generalised to take into account different q moments
scale with differently. That leads to a functional depen-
dence Fq (τ) ∼ τh(q) which can be related to the so-called
singularity spectrum, f (α) by means of the relations,315

f (α) = q [α− h (q)] + 1, α = h (q) + q
dh (q)

dq
. (7)

Along these lines, existence of multiscaling is characterised
by the determination of a set of values f (α) 6= 0 between
αmin and αmax, or equivalently by the difference ∆h ≡
h (qmin) − h (qmax). The multifractality that is measured320

in a time series is then assumed as the superposition of
different independent features: linear (lin) and non-linear
(nlin) correlations, (asymptotic) scale-invariant behaviour
of the PDF 9, ∆h = ∆hlin + ∆hnlin + ∆hPDF. The results
for all the cases are qualitatively similar independently of325

the market analysed.
For trading volume the first studies on high-frequency

data were reported in [22, 31, 32]. Considering the results
in Ref. [31], it was verified the existence of a relevant level
of multifractality with αmin = 0.32 ± 0.04 and αmax =330

1.09±0.04. Regarding its components, it was verified that
the largest stake of trading volume multifractality stems
from the power-law behaviour of its PDF (66%), indicating
a strong bifractality of trading volume [30] and a residual
contribution of linear dependencies (4%). In addition, as335

visible in Fig. 5, there is a strong asymmetry of the curve
f (α) indicating that large and small fluctuations appear
due to different dynamical mechanisms.

3. Dynamical approaches

3.1. Stochastic differential approach340

The description of the properties we have presented,
namely the correlations, based on dynamical approaches
has been done since the 1970s [4, 33, 35, 39, 15]. After
the introduction of the all-inclusive distribution Eq. (3)

9There can be also spurious multifractality due to the finiteness
of the series.
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Figure 5: Multi-fractal spectra f (α) vs.α. The “original” and shuf-
fled time series (linear correlations destroyed) present a strong multi-
fractal character whereas the shuffled plus phase randomised (mul-
tifractality from the distribution and nonlinearities destroyed) time
series presents a narrow width in α. Reproduced from Ref. [31].

a dynamical scenario was naturally welcome. Although345

the story actually runs backwards we verify that the cor-
relation function, which is described by Eq. (5), suggests
the existence of different dynamical regimes composing the
rules governing the evolution of trading volume. Further-
more, the multiscaling analysis showed that the trading350

volume is mainly a bi-fractal due to is asymptotic power-
law behaviour. Last but not least, trading volume is for-
mally non-stationary, particularly due to variations in the
number of active agents in the market [41]. That being so,
let us follow the reasoning introduced in Ref. [42] which355

is inspired by the concept of superstatistics that emer-
gence within the framework of non-equilibrium statistical
mechanics [43]. Locally, it was assumed that the trading
volume follows a dynamics given by the Feller process,

dv = −γ (v − ω) dt+ φ
√
vdWt, (8)360

where Wt is a standard Wiener process, and φ =
√

2
ϕω γ

which is associated to a Gamma distribution,

p (v;ω) =
ϕϕ

ω Γ [ϕ]

( v
ω

)ϕ−1

exp
[
−ϕ
ω
v
]
, (9)

with average value 〈v〉 = ω. Let now us take into account
the changes in the number of active agents with time which365

implies a change in ω that happens in a long scale (in com-
parison with the local scale of relaxation). In other words,
ω stops being a parameter and turns into a variable, but
since it evolves in a slowly way it can be considered locally
constant. This concurs with empirical observations and370

can be connected to the two significantly different scales
of the correlation function (see page 4): the first, local, of
the order of γ−1 ' τ1, which corresponds to the accommo-
dation of v to a new local mean value ω, and the second
scale, equal to T ' τ2, representing the evolution in the375

number of active agents. Moreover, if one assumes that in

the long term the local average trading volume follows an
inverse gamma distribution,

f ′ (ω) =
(ϕ
λ

)δ ω−δ−1

Γ [δ]
exp

[
− ϕ

ω λ

]
, (10)

then the long term distribution of v is given by p (v) =380 ∫
p (v;ω) f (ω) dω that is equal to Eq. (3) with,

λ =
q − 1

θ
, ϕ = (q − 1)

−1 − δ, α = ϕ− 1.

The probability distribution f (ω) using average daily
values was verified for the IBOVESPA index [20]. In addi-
tion, if one considers a linear relation between ω and the385

number of active agents within a certain time window, N ,
then we find that its PDF goes as, p(N) ∼ N−δ−1, with
δ = 3.33±0.15 that is consistent with empirical values [44].
Despite the fact that the present account showed effective
for IBOVESPA trading volume in closer scrutiny and in390

line with the exponent of the distribution of active traders,
an analysis of the Kramers-Moyal moments of DJIA trad-
ing volume evinced a parabolic profile for the second order
moment that is different from the linear form implicit in
Eq. (8). To accommodate this property the scenario was395

changed in a subsequent work [19]. Explicitly, it was as-
sumed a local dynamics given by,

dv = −γ
(
v − ω

δ

)
dt+

√
2
γ

δ
vdWt, (11)

and,

f (ω) =
ϕϕ

λΓ [ϕ]

(ω
λ

)ϕ−1

exp
[
−ω
λ

]
, (12)400

which leads to an inverse q−Gamma distribution,

P (v) =
1

Z

(v
θ

)−δ−2
[
1 + (q − 1)

θ

v

] 1
1−q

, (13)

where λ = θ (q − 1), δ = 1
q−1 − ϕ− 1. It should be noted

that redefining the parameters there is a correspondence
between Eqs. (3) and (13), so that an inverse q-Gamma405

distribution can be recast into a q-Gamma distribution
and vice-versa. A first analysis on the local average value
of traded volume [45] (slide 23) suggested a Gamma dis-
tribution.

The suprestatistical scenario can be further appraised410

taking into consideration time dependent quantities, such
as the return intervals a quantity that was also analysed
for the volatility and volume fluctuations [46]. In that
case, it was found that the time taken by such quantities
to get back to some value v∗ follows a stretched exponen-415

tial. Despite a fit to the return intervals distribution of
trading volume was not made we show in Fig. 7 a com-
parison between empirical results and the results obtained
from the stochastic differential equation approach where is
visible a long term agreement. This is noteworthy taking420

into account a simplicity of the model.
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Figure 6: Left panel: The points represent the empirical distribution function of the trading volume of Alcoa in the 2nd semester of 2004 and
the line the differential stochastic dynamics given by the approach introduced in Ref. [42]. Right panel: Numerical adjustment of the local
trading volume for a fixed time patch T = 180min described by a Gamma distribution with ϕ = 5.02 and λ = 1.18. The inset shows that by
using these parameters in the proposal Ref. [19] a good description of the long term distribution of trading volume is obtained as well. First
presented in [45].

3.1.1. Statistical approach

As we have mentioned in the previous subsection, the
hypothesis of a two-scale dynamics is able to reproduce a
series of empirical properties high-frequency trading vol-425

ume. However, there was still a point urging further spec-
ification: the dynamics of changes of the local regime as it
is unlikely that the variations of the local average volume
occur at a fixed scale; one expects that the larger scale
presents fluctuations.430

That assumption was probed in Ref. [47] using the
Kolmogorov-Smirnov algorithm of segmentation of non-
stationary time series into local steady states intervals in-
troduced by the same authors in [48]. It was then ver-
ified that the dynamics of trading volume can actually435

be considered as a composition of contiguous segments of
unequal duration, `, with different average values. The
distribution of the duration of the stationary patches is
well described by an exponential distribution with a typ-
ical scale of λ = 116 ± 12min, i.e., around two hours.440

With that segmentation in hand, the ansatz related to
the local distribution of trading volume and the distribu-
tion of local mean were also surveyed. Applying statisti-
cal significance testing to several standard distributions,
it was verified that in 81% of the segments the Gamma445

distribution was proven statistical significant whereas for
the inverse Gamma distribution that figure was only 41%.
That result underpins the validity of the proposal con-
veyed in [42] and suggests that the Kramers-Moyal analy-
sis requires supplemental investigation in agreement with450

sample rating results [49]. Moreover, looking at the distri-
bution of the parameter δ = ω/ϕ in Eq. (10), we verify that
using a Kolmogorov-Smrinov (times square degree of free-
dom) test — although not the best result — is very close
to the best result, which is given by the Gamma distribu-455

tion. Specifically, it was obtained 1.39±0.47 for the former
and 1.05± 0.58 for the latter. This closeness between the

results of the goodness of fitting partially support the q-
inverse Gamma approach [19], especially the distribution
p (ω) in Fig. 6 (lower panel).460

The analysis in [48] shed further light on the nonsta-
tionary properties of trading volume:

• the longer the patch, the smaller the local average
value, µ`. This can be understood as a proxy for the
agitation in the market. When the market is in a465

higher state of nervousness, it is clear that it is more
nonstationary and therefore the segments of local
stationary should be shorter. Alternatively, periods
considered quiet in the market show small average
values and little fluctuation in the number of active470

traders (and hence in the activity). Coherently, the
stationarity will be longer and have smaller average
values. These segmentation result and the respec-
tive analysis agrees with the empirical finding that
the correlation of returns is higher on low-volume475

days than on high-volume days [54];

• shorter periods of local stationarity are concentrated
in the last part of the trading session. That can be
related to the natural agitation set by chartists that
close their positions around the session in order to480

finish the day with a 100% cash portfolio;

• the correlation function of the local average volume
as a function of the number of lags exhibits slow
decay as it takes 18 segments (5.3 business days);

• there is a two power-law relation between the local485

average trading volume and the local variance. The
threshold in terms of local trading volume is 1.23±
0.88.

The quality of the segmentation approach in the de-
scription of the long-term distribution of trading volume490

is presented in Fig. 7 of Ref. [48].

7



4. Relation with other quantities

4.1. Price fluctuations
As I mentioned in the Introduction, the interest in

studying trading volume lies in the fact that they are con-495

sidered as a quantity that contains some form of informa-
tion about price movements that sustains the previously
mentioned stock brokers’ rule of thumb over relation be-
tween the two quantities.

How can we assess that empirical knowledge and put500

it in quantitative context for high-frequency data? In the
last 15 years a lot of work has been dedicated to trying
to understand the microstructure of order books, includ-
ing the properties of transaction size which corresponds
to the trading volume at the most elemental natural tick505

scale. Herein, we report results for the 1-minute coarse
grained scale — high-frequency still — and address the
reader to Ref. [50] for a review about microstructure fea-
tures in financial markets.
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Figure 7: The points represent the (inverse) cumulative distribution
function of the return interval of the trading volume of Alcoa in
the 2nd semester of 2004 for the values presented in the legend and
the red lines are the results obtained using the differential stochastic
model using the parameters of the previous plots. First presented
in [45].

Assuming that a direct relation between trading vol-510

ume and the returns is true to life, one should be able
to express it quantitatively, i.e., defining a trading volume
impact as shown in Fig. 8. It is verifiable that there are dif-
ferent relations between the trading volume for (average)
negative and positive returns, I(±)(v) ≡ 〈r|v〉, and that515

both are well described to good extent either by power
laws (full lines) or logarithmic laws (dashed lines) of v.
These two forms were proposed to describe the market
impact of trades for Paris and London stock markets, re-
spectively, and follow a prior first analysis using data from520

NYSE where positive and negative returns were considered
together [52].10 The exponents obtained for the DJIA data

10The logarithmic formula can be related to the initial formulation
by Kyle [51] that the price differences are linear with the trading
volume. In spite of this fact the power law description is favoured
because it is more easier to handle in analytical models.
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Figure 8: Smoothed price fluctuation vs trading volume for Alcoa
transactions in NYSE 2nd semester 2004 in log-log scale. The full
lines are power-law fits and the dashed lines are logarithmic fits.
First presented in [45].

are significantly small than 1/2 incompatible with the the-
ory introduced in Ref. [44] (I will be back to this point in
the end of this article). In addition, the impact is higher525

for negative returns which reflects natural risk aversion
factors. However, these laws clear break for values greater
than trading volumes larger than ten times the average. A
possible explanation for this effect can lie in the set of re-
lations between all types of orders that actually represent530

all the factors that influence the market dynamics [53].
For instance, a large trading volume can be associated
with a small price fluctuation as the result of a strong
and balanced clash between agents (e.g., fundamentalists
and chartists) over the asset.535

Following the claim that prices are moved by the vol-
ume one could sketch a relation between the probabil-
ity density function of price fluctuations, pret (r), and the
probability of the trading volume, pvol (v). Using simple
Bayesian statistics we have,540

pret (r) =

∫
p (r|v) pvol (v) dv. (14)

So, what can we say about p (r|v)? We have already made
reference to the fact that although price changes are asso-
ciated with trading, the reciprocal is not necessarily true:
it is possible to have a series of trades whose net result in545

a price variation equal to zero; that is to say, for a given
volume v there is a probability, h′ (v) = 1−h (v), that such
volume yields r = 0. At the tick size, h (v) is a power-law
with an exponent equal to 0.25 whereas for high-frequency
returns h (v) evolves more slowly than that, as depicted550

in Fig. 9. Subsequently, in Ref. [47], h (v) was split into
trading volume yielding positive (+) and negative (-) price
fluctuations which are well described by,

h(±) (v) = H(±) tanh
(
$(±) v

ζ(±)
)
, (15)

where the exponents are ζ(+) = 0.25 ± 0.05 and ζ(−) =555

0.3± 0.1 for positive and negative returns, respectively.
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For non-zero returns, the conditioned probability p (r|v)
is equal to the conditioned probability distribution f (r|v)
time the probability of having a volume yielding a non-
zero result. For single trades, it was found that f (r|v)560

was a function of r alone [6]-a). Since f (r|v) = f (r) is
power-law decaying, the stylised fact of asymptotic scale-
free distributions of p (r) is assured.

For 1 minute data (see Fig. 10) there is a clear de-
pendence on the trading volume. In addition, f (r|v) is565

closer to an exponential than to an asymptotic power-law.
That being so, the two properties are actually related; it
is possible to obtain a power-law distribution from a set of
exponentials with different characteristic scales. Looking
at Fig. 10 we understand that f (r|v) ∼ exp [−Ω (v) r],570

where Ω (v) is a decreasing function of v .
We can carry on and try to understand how the re-

lation between average price fluctuations evolve as we in-
crease the time scale of aggregation. On the one hand, the
distribution of trading volume approaches an exponential575

decay [17]. On the other hand, the relation between re-
turns and trading volume, the exponent tends to become
smaller, around 0.15 (see Fig. 11). It is worth recalling that
exponents close to zero are often a suggestion of logarith-
mic relation and ultimately agree with Kyle’s approach.580

In order to test the relation between volume and re-
turns we can go back to the nonstationarty behaviour of
trading volume and using the results of this subsection de-
termine the distribution p(r). Explicitly, assuming that585

the returns are given by,

r = I(v) + ξ(±) (16)

where ξ(±) is a Gaussian error, G
(
0, σξ(±)

)
, for positive (p)

and negative returns (n). Testing I(v) in the segments of
local stationary it was not found significant dependence590

between the mean values of the parameters of the I(v)
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and the length of the stationary patch; however, it was
observed that the residuals were higher for small interval
though. Plugging all the relations into a single equation it
yields for r 6= 0,595

p(±)(r) =

∫
G
(
I(±)(v), σξ(±)

)
p (v) dv. (17)

The results of the Eq. (17) showed that this approach
is able to reproduce the central part of the distribution
but it fails by a factor of ten in trying to explain large
price fluctuations. In the approach introduced in [48] the600

fluctuations in the impact parameters were ignored; these
can be understood as a representation of volatility. Along
these lines, the results point that prices are to large extent
moved by the trading volume but in order to have large
price fluctuations one needs volatility.605

Up to here I have discussed the relation between re-
turns and trading volume at the same time stamp. Bear-
ing in mind that trading volume is associated with infor-
mation flow it is natural to try to understand how price
fluctuations and trading volumes at different times relate610

one another. As a matter of fact price fluctuations enhance
speculation/risk and therefore influence future trading vol-
ume. For instance, from an analysis of a trading platform
it was found that past returns — both market and port-
folio — stoke the trading volume of individual agents [55].615

Recently [56], it was verified that this correlation is non-
stationary; it shown that for the SP500, the correlation has
been decreasing and turned into an anti-correlation from
2000 onwards (2010) with a similar profile to the so-called
leverage effect [57]; the correlation between trading vol-620

ume and future returns is still at noise level though. It is
important to note that the last decade of the data therein
analysed (2000-2010), that index has shrunk 0.44% per
year [58]. Therefore, it is very likely that such switching
can be influenced by two factors [54], the economic cycles625

and undetrending of the data.

4.2. Volatility

In the set of the stylised facts of financial quantities,
the long lasting autocorrelation of the volatility are among
the most relevant because it allows the definition of prof-630

itable financial instruments and risk management. From
our previous assertion Eq. (17) and subsequent analysis in
page 9 we have noted that the emergence of tails in the
distribution of the returns could be linked to the distribu-
tion of the volume, which in turn is related to evolution in635

the number of traders (certainly affected by the informa-
tion flow in the market). If we recall that superstatistical
scenario that a a local scale-dependent distribution can
yield a long-term fat tailed distribution for convenient dis-
tributions of the local variance and that the latter can be640

assumed as the (realised) volatility of the asset, the corre-
lation between trading volume and volatility is an expected
result (see Fig. 12). Assuming a simplistic approach we
can think of the volatility and a measure of the state of
anxiety in the market that is naturally ruled by the flow645

of information; i.e., the same as the trading volume. This
reasoning is the basis of Clark’s Mixture of Distribution
Hypothesis [33], that is intimately related to the rate of
arrival of information in the market. For effects of mod-
elling the hypothesis was later generalised to consider the650

direct influence of trading volume on the volatility and
vice-versa [39]. Other modelling proposals where intro-
duced in a (G)ARCH context with integer or fractional
exponents[60]. In spite of the case that in these models
the kernels of of integration of volatility and volume [63]655

are close there is some controversy on the conclusions. On
the one hand some authors suggest that the volume can be
widely used as tool to improve volatility estimates [64], on
the other hand some other authors [65] claim that the sim-
ilarities only run in the short-term because trading volume660

presents little multiscaling features (it is less clustered).
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Figure 12: Correlation function between the trading volume, v, and
the volatility (absolute price fluctuations), σ, for 1-minute sampling
rate of Alcoa stocks traded at NYSE in the 2nd semester 2004. First
presented in [45].

For high-frequency data (5-minute sampling rate) it is
pointed that there is no same time correlation between
trading volume and volatility [59], a property that would
go against MDH. Moreover the existence of lead-lag re-665

lations and the tails in the volume-volatility correlation
favour SIAH where the arrival new information to traders
at different times creates some inertia in the market and a
transient towards new steady states which would explain
both. However, as I show in Fig. 12 are correlation at670

the same time are actually significant, although a maxi-
mum for 4-minutes (less than the sampling rate of [59]).
The Mixture of Distributions Hypothesis was afterwards
changed to take into consideration microstructural details
of the market and centering its focus on the basic idea of675

a joint dependence of the trading volume and volatility on
a latent event or information flow, first in Ref. [66] and
subsequently in [67] result bolsters the Mixture of Distri-
bution Hypothesis. That framework was more recently
refined assuming jumps and leverage [68] with significant680

results. Complementary other line of action [69] consists
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of heeding that agents have heterogeneous degrees of sen-
sitivity to information and each affecting in volatility and
volume in different ways, a result that matches empirical
findings [65].685

4.3. Trading value

Alternatively to looking at financial markets observ-
ables a bivariate quantity, some authors have studied the
cash flow generated by the trading of a given asset in a
given period which was named trading value [74] or price-690

volume [75],

C∆(t) ≡ S(t)V∆(t), (18)

where ∆ represents the sample rating. The work by Eisler
& Kértesz [74] provided systematic evidence about the
finiteness of the second order moment and nonuniversal-695

ity of the values describing the scaling of fluctuating mo-
ments, namely that these quantities dependent strongly on
the size of the company that they defined by means of the
average cash flow per minute, which they related to the
market capitalisation as well. Explicitly, they found that700

a shorter scales the companies have got similar memory
scaling described by a scaling exponent α̂ between 1 and
6/5.11 However, one larger time scales are analysed it was
verified a significant change in the qualitative behaviour;
for very little market cash flow it can be found slightly705

antipersistent behaviour, α̂ . 1/2 and for companies with
high market cash flow the exponent denotes strong per-
sistency near ballistic behaviour with α̂ around 0.9. This
time and market cash flow dependence was also verified in
multiscaling. Allowing for the fact that price fluctuations710

are uncorrelated this behaviour is in alignment with the
two-scale dynamical approach. The increasing of the scal-
ing exponents with the market cash flow is not that sur-
prising, liquid companies have by definition large market
depths are therefore they tend to have smoother dynamics.715

Other results have analysed the cash flow with a 10-
minute sampling rate where the have assumed a log-Normal
distribution of trading value 12 and introduce stochastic
differential equations for describing the dynamics of the
log-Normal parameters.720

5. Remarks and Perspectives

In this paper I have reviewed results on trading vol-
ume obtained within the context of applications of physics
to financial analysis and modelling. Empirical analysis of
high-frequency trading volume from different markets have725

shown features that are typically associated with complex-
ity, namely fat tailed (asymptotic power-law) stationary

11I consider it similar because in order to have a change from
the minimal Hurst exponent to the maximal one must increase the
average cash flow by a factor one million.

12The authors do not test the q-Gamma distribution.

distribution functions, long lasting autocorrelations & de-
pendence and multiscaling. In addition, I have reviewed
dynamical scenarii that associate the emergence of tails in730

the trading volume distribution with fluctuations in the
number of active agents in the market that induce an evo-
lution of the (local) average trading volume. This hypoth-
esis of local steady state (or equilibrium in financial par-
lance) has statistical significance and it was found to have735

relation to state of agitation/nervousness in the market.
At this point we can start assembling the elements I have
given an account of as pieces of a jigsaw puzzle in order
to have to insight into the big picture that we can repre-
sent with theses to questions: Does it really takes volume740

to make prices move? Which is the right description for
the input of information in a market, the MDH or the
SIAH? In respect of the first question, Sec. 4.1 indicates
that there is an obvious relation between trading volume
and price fluctuations, especially in what regards price745

fluctuations around its mode. However, this approach fails
by a factor 10 for large price fluctuations. Therefore, the
fluctuations of the parameters the impact function, I(v)
that are dismissed might be relevant in proving a better
relation between trading volume and price fluctuations.750

In [48] it was shown that mean values are independent of
the size of the segments, but no further analysis, namely
its relation to volatility, imbalance or bid-ask gap; these
issues are worth studying are can be matched with the
analysis of mechanical and informational contributions to755

market impact analysed for order books [70] 13 I recall
that after a systematic analysis of order books, it was as-
signed to volume imbalance collaborators [6] and other mi-
crostructure factors of order placement/cancellation [71]
the origin of fat tails in price fluctuations. For the second760

question the blending scenario of the two main hypothe-
sis can also be asserted since both pictures contain valid
elements. Although physicist tend to be fond of simple ar-
guments, the simple option for one or another approach re-
veals quite restrictive. Being a complex system, a financial765

market is characterised by relations between microscopi-
cal behaviour and macroscopical relations; this relations
are not static they evolve in time. We are living an era
where information spreads at the speed of light in opti-
cal fibre cables from news agencies to trading robots and770

brokers on the trading floor. These changes can be com-
prehended from the analysis of the autocorrelation of price
fluctuation. For instance: a) data of US markets from the
1990s showed significant autocorrelations of the price fluc-
tuations up to 20 minutes [72], but recent data from the775

2000s shows that price fluctuations autocorrelations are
already at noise level for lags of 1 minute; b) the intraday
∪-shape profile is getting flatter; these suggest that steady
states are achieved very swiftly, a trait that is closer to
MDH than SIAH. On the other hand, the positive corre-780

13In his seminal work [37], Copeland proposes that the trading
volume is a logarithmic function of the severity of the information
described by shift in the demand curve.
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lation between — which is a key element of the former —
can be also included in the latter taking into considera-
tions on the nature of agents (informed, uninformed and
market makers) and the degree of sensitivity to price that
changes it is influenced by the performance of each in-785

vestor’s portfolio. Notwithstanding, one can retrieve [56]
the results and set the hypothesis that the from positive to
negative return-volatility correlations is not only due but
to a superdiffusion of information among agents because
SIAH asserts that the simultaneous receiving of informa-790

tion by all the agents implies negative correlations whereas
sequential arrival leads to positive correlations. Neverthe-
less, one can intuitively reckon that the sequential arrival
of information can be adequate for cases of private in-
formation [73] or cases of markets (or assets) marked by795

short liquidity. On the other hand, we can compare the
major points established by MDH with empirical results
obtained from high-frequency data. Consequently, one can
observe that in opposition to Clark [33] the distribution is
not log-Normal but it is assumed to follow a q-Gamma dis-800

tribution with statistical significance. Yet this is a minor
point since there are MDH proposals assuming other dis-
tributions for trading volume, e.g., in Ref. [67] a Poisson
distribution. Yet, the power-law relation between the size
of the price fluctuations and the trading volume is consis-805

tent with Epps & Epps formulation [35]-a); the result that
f(r|v) is independent of v at the tick (order size) [35]-c),
but for a given clock time there is a positive correlation be-
tween volatility and trading volume that can be appraised
by the dependence of f(r|v) on v as shown in Fig. 10;810

Eq. 14 agrees with the emergence of excess kurtosis (non-
Gaussianity) of the price fluctuations PDF.

Although this storyline over the relevance of trading
volume has got information as one of its main characters,
so far I have said little about information. News are often815

assumed as a synonymous of information. Within a finan-
cial context, the first attempt to describe the impact of
news in high-frequency stock prices is attributed to Berry
& Howe in 1994 [76], whose work was followed by stud-
ies relating news to volatility and intra-day dynamics [77].820

More recent indicated that news tend to play a minor role
in large price fluctuations [78]. Although this is apparently
at odds with previous analysis [5] where it was found evi-
dence of the role of scheduled and unscheduled information
in the dynamics of a market, the explanation of the appar-825

ent “contradiction” lies in the fact that the authors in use
order book and high-frequency data on which stationary
state treatment in applied these data can hardly capture
the impact of news because, as the authors mention, the
most relevant news even some decisions with political con-830

tent tend to be publicised after the markets are closed,
especially before weekends. Under these assumptions, the
most probable span to find dependence on news would be
the pre-market or the very first minutes of the session with
their major impact going to the filtered component of the835

price fluctuation/volatility/trading volume. Nonetheless,
the results [78] are challenged by the results in Ref. [79]

where the authors found that news correlate with returns,
volatility, trading volume and the bid-ask spread. The
mismatch between both conclusions might be assigned to840

at least one of three different factors: the data (market
and spell) and the definition of information. Reference [78]
uses NYSE and NASDAQ data from 2004 to 2006 whereas
in Ref. [79] uses LSE data from 2006 to 2008. Although
both markets present strong liquidity, LSE is slightly less845

inefficient than NYSE.14 Moreover, the spell of the former
is a bullish period in opposition to the spell of the lat-
ter work the last six months of which are strongly bearish.
Regarding the third ingredient it is important to note that
information is defined differently because in Ref. [79] the850

sentiment as set forth by the Reuters NewsScope Senti-
ment Engine is taken into consideration. In a recent work
on commodities (crude oil and gold) futures [80] traded
at NYMEX and COMEX, respectively, it was found that
the sentiment enclosed in news have an impact on trad-855

ing dynamics. In a different perspective to information,
activity in social media and its relation to market dynam-
ics has been studied as early as the early 2000s. First
focussing on the investor’s fora (e.g. seekingalpha, rang-
ingbull, etc.) [87], it was already found some relation be-860

tween message activity and price fluctuations and trading
volume. However, this relation, at least for technologi-
cal/internet companies, was found in a reverse direction,
i.e., (positive) opinions and abnormal activity are preceded
by significant returns. More recent results using social865

networks [84], where sentiment was taken into consider-
ation, and generic internet tools [85] pointed to a possi-
bility of forecasting price movements. With those results
in mind it is worth recalling that financial markets are a
for-profit industry, and therefore it is important to under-870

stand whether such information contained in social media
provides a means of beating the market. The response to
this question has been partially given in [86] where it was
found that apparently such trends contain basically the
same information that is conveyed by the market price,875

which ultimately could be seen as point in favour of one
of the sacred cows of econometrics, the martingale nature
of stock prices.

A interesting challenge it is therefore to combine all
these ingredients considering that in order to have ever880

better representations of the market dynamics and specif-
ically of the relations between volatility, volume, price
fluctuations and information — which can be read en-
tropy — either using coarse grained techniques like differ-
ential/discrete stochastic equations for those macroscopic885

quantities or using agent-based models.

14Using forecasting methods based on generalised entropic forms,
it is possible to forecast the residuals of NYSE stocks with a perfor-
mance of 52% whereas for LSE stocks that performance increases to
56%. As a means of comparison, a little liquid market like São Paulo
has a forecasting rate of 64% [81].
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