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Globally synchronized oscillations in complex cyclic games
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The rock-paper-scissors game and its generalizations with S > 3 species are well-studied models for cyclically
interacting populations. Four is, however, the minimum number of species that, by allowing other interactions
beyond the single, cyclic loop, breaks both the full intransitivity of the food graph and the one-predator, one-prey
symmetry. Lütz et al. [J. Theor. Biol. 317, 286 (2013)] have shown the existence, on a square lattice, of two
distinct phases, with either four or three coexisting species. In both phases, each agent is eventually replaced
by one of its predators, but these strategy oscillations remain localized as long as the interactions are short
ranged. Distant regions may be either out of phase or cycling through different food-web subloops (if any). Here
we show that upon replacing a minimum fraction Q of the short-range interactions by long-range ones, there
is a Hopf bifurcation, and global oscillations become stable. Surprisingly, to build such long-distance, global
synchronization, the four-species coexistence phase requires fewer long-range interactions than the three-species
phase, while one would naively expect the opposite to be true. Moreover, deviations from highly homogeneous
conditions (χ = 0 or 1) increase Qc, and the more heterogeneous is the food web, the harder the synchronization
is. By further increasing Q, while the three-species phase remains stable, the four-species one has a transition
to an absorbing, single-species state. The existence of a phase with global oscillations for S > 3, when the
interaction graph has multiple subloops and several possible local cycles, leads to the conjecture that global
oscillations are a general characteristic, even for large, realistic food webs.
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I. INTRODUCTION

Actual food webs are usually large and complex graphs
and although their structure alone is not always enough to
predict whether extinctions will occur or which species will
eventually dominate, understanding the role of the specific
local modules (hierarchical, tree-like, loop, dangling ends,
etc.) is important when modeling competing populations. The
existence of closed, oriented loops, in which the S species
are not ranked, is believed to be an important mechanism
fostering persistent coexistence in the presence of competition
among species. In this case, each species is eventually replaced
by a predator in a cyclic manner [1,2]. For S > 3, several
partially overlapping cycles are possible, and the larger S is,
the harder it is to identify the whole ensemble of interactions.
Indeed, observing these trophic networks in real systems and
resolving the effects of their topology and internal dynamics
from noisy external causes are not simple tasks. It is thus not
surprising that most of the observed examples are for small S
[3,4]: mating lizards [5], competing bacteria [6–9], coral reef
environments [10], competing grasses [11–13], etc. It remains
necessary, though, to systematically study which properties
are robust when S is large and which are specific of systems
with a small number of species.

For S = 3, the simplest and well-studied rock-scissors-
paper (RSP) game, the interaction graph is a three-vertex,
single-loop-oriented graph in which all three species interact
with each other. A direct generalization [14–21] considers
an oriented ring with S > 3, 0 → 1 → · · · → S − 1 → 0
and, while nearest neighbor species along the ring interact,
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the others are mutually neutral. In particular, S = 4 is the
simplest case in which neutral pairs may form noninteracting,
passive alliances that prevent or delay invasions [16–26]. On
the other hand, active defensive alliances [27] may appear
among non-mutually-neutral species (cyclic alliances) when
the interaction graph has more than a single loop [22,28–42].
This is obtained for S = 4 by introducing crossed interactions
with rate χ (see Fig. 1), that turn the ring into a fully connected
graph and break not only its full intransitivity [42,43] but also
the equal number of predators and preys symmetry. In spite of
that, this model still presents a four-species coexistence phase
for not too large values of χ : beyond a threshold χc � 0.35,
the weakest species becomes extinct and the food web changes
to an inhomogeneous RSP game.

While the system has not yet attained an absorbing state,
local oscillations are observed as each agent is eventually
replaced by one of its predators. That is, each site is a simple
oscillator as strategies cycle in a sequence obeying the food
web. In the square lattice, two of these oscillators, located
at sites far apart, are not able to have these oscillations in
phase. Indeed, the short-range interactions are not able to
build correlations involving large portions of the system,
and when the global densities are evaluated, these phase
differences average out and the system attains a fixed point
(up to finite-size fluctuations); that is, no oscillations in global
densities are observed. In analogy to epidemiological models
[44], upon the introduction of long-range interactions for
S = 3, since the average path length between sites becomes
much smaller, global synchronization becomes possible and
there is a Hopf bifurcation from the fixed point to a limit
cycle [32,45,46]. For more complex food webs, S > 3, with
the simultaneous presence of several possible loops, and the
possibility that distinct regions of a spatially distributed system
follow different subcycles, it is not a priori obvious whether
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FIG. 1. (Color online) Species interactions represented by an
oriented graph, arrows indicating the invasion direction and 1 and
0 � χ � 1 are the corresponding rates [42].

well-separated regions would be able to synchronize. This
poses the question of the very existence of the Hopf bifurcation
and whether global oscillations may be stable or not under
the presence of several possible local cycles. Would they
require a stronger correlation between distant regions and,
as a consequence, a larger amount of long-range connections?
Moreover, whether there is a larger or smaller species diversity
when long-range interactions are introduced seems to strongly
depend on the details of the updating rule chosen to model the
individual interactions [36,47]. Thus, further important points
are to understand to what extent the coexistence state is robust
against both the change in the range of the interactions and the
presence of global oscillations and how these results may be
extended to other S > 3 systems.

To address the above questions, we study the S = 4 system
introduced in Ref. [42] and consider a simple network that
interpolates between the local square lattice, and the nonlocal
random graph. In Sec. II we introduce the model and describe
the topology of the food web and the spatial network. Then, in
Sec. III we present our results and, finally, discuss and present
our conclusions in Sec. IV.

II. MODEL, DYNAMICS, AND NETWORK TOPOLOGY

The starting model consists of a fully intransitive system
of four species (or strategies), identified from 0 to 3, such that
the species i outcompetes the species (i + 1) mod 4, that is,
0 → 1 → 2 → 3 → 0 (0123, for short) with uniform, unitary
rate. We break the mutual neutrality of species (0,2) and (1,3)
by adding crossed interactions with a tunable rate 0 � χ � 1
(Fig. 1). Whenever χ �= 0, some hierarchy is present since the
subloops 123 and 012 are transitive while 013 and 023 remain
intransitive. Also, the symmetry of the graph is broken: while
all species are equivalent if χ = 0 (one prey, one predator
each), for χ �= 0 they separate into two groups: species 0 and
1 have two preys and one predator, while species 2 and 3
have two predators and one prey. This strong hierarchy is
attenuated by the fact that even if species 2 and 3 have only
one prey each, they always subjugate them, while species 0 and
1 can sometimes fail if χ < 1. Indeed, several recent works
(e.g., Refs. [23,42,43,48]) have shown that the structure of the
interaction graph alone is not enough to predict the asymptotic
temporal evolution of the system, stressing the importance of
the invasion rates.

Since we are mainly concerned with the effects of spatial
correlations, the model will be studied, through Monte Carlo
simulations, on a regular graph with both short- and long-range
interactions and a constant number N of individuals. We start
with a square lattice and periodic boundary conditions and,
without changing the coordination number, replace a fraction
Q of randomly chosen short-range connections with long-
range ones following the rewiring process detailed in Ref. [45].
While intermediate Q produces a small world network, Q = 0
recovers the square lattice and Q = 1 a random regular graph
or Bethe lattice (since typical loops, involving log N sites,
become irrelevant in the thermodynamical limit). Starting from
the square lattice, we choose a site and one of its nearest
neighbors. The link between them is opened and reconnected
to another randomly chosen, non-nearest-neighbor site (self-
interactions are excluded). This last site now has an extra
connection and, in order to keep the coordination constant, we
remove one of its local connections. We now take the site with
one neighbor missing and reconnect it with another randomly
chosen site. The process is repeated until the fraction Q is
reached and the graph is closed by connecting the last link
freed to the missing link site of the first step. Once the rewiring
finishes, no further modification in the network occurs; that is,
it is quenched. There are, of course, other ways of introducing
long-range interactions in the system. We chose, however,
this rewiring algorithm, which replaces short- by long-range
interactions, in order to (a) reproduce previous results,
(b) keep the graph regular (assuming that in a time step,
each agent performs a constant number of interactions), and
(c) interpolate between the square lattice and the random
regular graph.

The system is equally populated with all four strategies at
time t = 0. During the time evolution, one site and one of its
four neighbors are randomly chosen and their strategies are
updated following the graph of Fig. 1: the predator replaces
the prey with the corresponding rate, either 1 or χ . The time
unit, one Monte Carlo step (MCS), corresponds to N such
updating attempts. We measure the density of each strategy
along the trajectory and the results below are obtained from
these temporal series. This purely competitive, serial dynamics
does not take into account other relevant ingredients like
decoupling the reproduction and predation steps, swapping
or displacement of agents, mutation, etc, although it could be
extended to include them [2].

III. RESULTS

Finite systems following the dynamics described in the
previous section present a sequence of extinction events,
eventually attaining an absorbing, homogeneous state with a
single species. These extinctions, by removing nodes and links,
also change the food web, making it simpler. Nonetheless, the
dependence of a conveniently defined average extinction time
τ on the system size N is useful to characterize the different
dynamical phases of the model [49–52]. These phases have
diverse levels of diversity with either one, three, or four species
coexisting [42]. For the transition from four to three coexisting
species phases, the time scale of the first extinction is the
relevant one [42], while for the transition to a homogeneous
state is the last extinction that matters. The coexistence is said
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to be stable when the related deterministic dynamics presents a
stable attractor in the coexistence phase, and this is associated
with an exponentially increasing time for the first extinction
away from the coexistence state to occur as N increases.
Analogously, the unstable state presents only a logarithmic
increase of the extinction time and the deterministic system
approaches an absorbing state. In between, a power-law
dependence of the extinction time on the system size is related
with the presence of closed, neutrally stable orbits in the
deterministic case.

Let us first compare the two extreme cases, Q = 0 (square
lattice) and Q = 1 (random graph). The former was studied in
Ref. [42] and presents two coexisting phases without global
oscillations, with either four (χ < χc � 0.35) or three species
(χ > χc). In these phases, the time scale of the first extinction
grows, respectively, exponentially or logarithmically with
N . An example of the time evolution, starting from the
homogeneous state ρi = 1/4 ∀ i (black dot), is shown in
Fig. 2(a). The orbit is confined to a small region around the
attracting fixed point (the small volume is due to finite-size
fluctuations). For the random graph (Q = 1), on the other
hand, species 2 always becomes extinct in the early stages
of the dynamics (both species 2 and 3 have two predators,
but those of species 2 have two preys and are strong) and the
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FIG. 2. (Color online) Simplex representation of the time evolu-
tion of the four densities for several values of Q and χ , showing
either local or global oscillations (0123). The initial condition (black
dot), is the homogeneous state ρi = 1/4,∀ i, and the system size
N is large enough to prevent strong finite-size effects. (a) Q = 0
and χ = 0.3 � χc for N = 104: finite size, stochastic fluctuations
around the asymptotic fixed point. The amplitude of these fluctuations
decreases with N [42] and all oscillations are localized. (b) Q = 0.1
and χ = 0.3 � χc for N = 4 × 106: oscillations are now global and
the asymptotic state is a limit cycle whose perimeter may be used
as an order parameter for the transition. (c) Q = 0.1 and χ = 0 for
N = 4 × 106: similar to (b) but for a fully intransitive system: the
orbit approaches the heteroclinic one and the average perimeter φ is
close to the maximum value.
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FIG. 3. (Color online) Log-log plot of the rescaled average last
extinction time, τ/N vs N for Q = 1 (random graph). For this case,
the system has two phases, with three or one surviving species and
τ is the characteristic time to attain an absorbing state. Notice the
presence, for large χ , of a minimum of τ/N . Before this minimum, τ
depends sublinearly on N but crosses over to an exponential growth
at sufficiently large sizes. For smaller values of χ , at least within the
sizes and times considered here, no evidence of such a minimum is
observed. At late times, there are two different regimes: if χ � 0.4,
τ ∝ exp N , while for χ � 0.3, τ ∝ log N . Thus, the critical value
seems to lie in the interval 0.3 < χc < 0.4.

possible asymptotic phases have one or three species for small
or large χ , respectively. The relevant time scale is the time to
attain the absorbing state, and it is shown in Fig. 3. Above the
threshold, after an initial sublinear dependence on N (up to
a crossover size, the minima in Fig. 3, for χ � 0.4), τ enters
an exponential regime. The location of the minimum grows
very fast as χ approaches the threshold and seems to diverge
for some value in the interval 0.3 < χ < 0.4. For smaller
values of χ , there is no longer a minimum. This three-species
phase for large χ also occurs for Q = 0. Thus, for large χ , it
extends over the whole interval, from Q = 0 to 1. The level
of transitivity in this case is too high to sustain four species,
and the food web turns into a heterogeneous RSP game (013
with rates 1, χ , and 1, respectively). For small χ , on the other
hand, the behavior is reminiscent of χ = 0, in which only
one- or four-species coexistence is observed since there are no
cross interactions (although, in principle, two mutually neutral
species are also possible). In this phase, the growth of τ is
rather slow (logarithmic) and because extinctions are probable,
the asymptotic state is the homogeneous, single-species phase.
Interestingly, while for Q = 0 the system loses diversity when
increasing χ , passing from four to three species, for Q = 1
it is the opposite, from the homogeneous single species to
three coexisting ones. Diversity decreases in the former and
increases in the latter.

Even more interesting is the behavior for a fixed χ as Q

increases. There is a Hopf transition at Qc from the fixed
point existing at small Q to an asymptotically stable limit
cycle. Two examples are shown in Figs. 2(b) and 2(c). In
both cases, with both χ = 0 and 0.3, the orbit approaches the
four vertices in the order 0123, following the outer loop of
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the food web. In the intransitive case, χ = 0, Fig. 2(c), the
actual path approaches the heteroclinic orbit and the system
is close to the transition to the absorbing state. These global
oscillations, for not so high Q, are observed in both the four-
and three-species phases: while in the former the orbit is in the
interior of the simplex, in the latter it is confined to one of its
faces. Once in the asymptotic state, the perimeter φ(Q) of each
cycle can be measured (between two consecutive crossings
of the point representing the state of the system through a
conveniently defined Poincaré section inside the simplex, we
add up its displacement at each MC step). This is averaged
over the whole evolution of the system and normalized by
the perimeter of the heteroclinic orbit such that 0 � φ < 1.
Figure 4 shows that the amplitude of the oscillations increases
continuously with Q for different values of χ , analogous to
the S = 3 case [45]. Above the threshold χc, that is, inside
the three-species phase, φ remains smaller than its maximum
value for all values of Q up to the random graph limit. In
other words, the global oscillation phase extends up to Q = 1,
consistent with Ref. [53]. On the other hand, the behavior of
φ inside the four-species global oscillations phase, at small χ ,
is different as φ gets very close to unity, corresponding to an
almost heteroclinic orbit [see Fig. 2(c)], very close to the faces
of the tetrahedron. Although it is not easy to precisely locate
the transition to the absorbing state as very large systems are
needed in this case, our results indicate that it indeed occurs for
Q not much larger than 0.3. Thus, in this case the global phase
exists only for intermediate values of Q for which 0 < φ < 1.

A final remark concerns the exponent with which φ goes
to 0 at the transition from local to global oscillations. In the
inset of Fig. 4, for several values of χ , the declivity seems to
be the same close to the transition, and the exponent is 1/2,
that is, φ ∼ (Q − Qc)1/2, consistent with a Hopf bifurcation.
The universality of the exponent is important: it does not seem
to depend neither on the original lattice structure upon which
long-range connections were added nor on the complexity of
the global cycle after the transition. Whether this universal
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FIG. 4. (Color online) Perimeter φ of the limit cycle as a function
of Q for several values of χ . The point at which φ → 0, Qc(χ ), locates
the Hopf bifurcation from local to global oscillations. Inset: log-log
plot close to the transition showing that the exponent 1/2 does not
depend on χ .
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FIG. 5. (Color online) Phase diagram. The behavior at small val-
ues of Q follows the Q = 0 case (square lattice) studied in Ref. [42]
and has a transition from a four- to three-species coexistence state.
Since there is only short-range interactions, only local oscillations
are present in both phases. There is a minimum amount of long-range
connections, Qc(χ ), necessary to synchronize these local oscillations
throughout the system. Interestingly, while the system presents
coexistence of all four species (and subloops in the food web are
relevant), Qc is smaller than in the three-species phase. For even larger
values of Q, the four-species phase is replaced by a less interesting
single-species, homogeneous phase.

behavior is valid for even larger cycles, when S > 4, is an
open question.

The phase diagram in Fig. 5 summarizes the above results.
When the amount of long-range connections is small (low Q)
only local oscillations are possible, whatever the number of
species in the coexistence state. Upon increasing Q there is a
transition from local to global oscillations for all values of χ .
For large χ , the three-species global oscillation phase extends
up to Q = 1. The amount of long-range interactions necessary
to synchronize the oscillations, in this phase, decrease with χ :
the more homogeneous the RSP food web is, the easier it is to
synchronize distant regions. On the contrary, for small χ and
above the local-global transition, the four-species phase has
another transition, to a homogeneous single-species state (and,
obviously, no oscillations). For χ = 0 the amount of long-
range connections necessary to present global oscillations is
minimum because the food web, in this case, is a single loop.
As χ increases inside this phase, one has dQc/dχ > 0 until
a maximum at the four- to three-species transition: the larger
the level of transitivity of the food web is, the harder it is to
synchronize. In other words, at the edge of the 4–3 transition,
local oscillations are quite robust and a greater amount of
long-range connections are necessary in order to correlate
different regions of the system. Away from this point, either
as χ → 0 or χ → 1, which corresponds to the most homo-
geneous conditions, the amount of long-range connections is
minimum. Another interesting feature of the phase diagram
is that for the three-species phase it is harder to get the
global synchronization state because the necessary fraction
of long-range interactions is more than three times higher than
in the four-species phase. Also, for 0.067 < Q < 0.093, the
local-global transition line is reentrant as a function of χ .
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IV. CONCLUSIONS

Transitivity and predation asymmetry are topological prop-
erties of oriented food webs that may prevent long-term, stable
coexistence within a population. Both imply that the species
are not all equivalent, but while the former is characterized
by closed loops not being cyclic, the latter has species with
a different number of preys and predators. Full intransitivity
and symmetry (χ = 0) are, however, not always required as
is exemplified by the four-species coexistence in the model
introduced in Ref. [42], and studied both in mean field and,
through simulations, on a regular lattice. Locally, each site
follows a periodic sequence of strategies allowed in the
food web but these oscillations do not synchronize over
long distances. Here we have shown that upon introducing
a finite fraction Q of long-range interactions, well-separated
regions may synchronize their local cycles and generate global
density oscillations through a Hopf bifurcation even if the
food web presents, in addition to multiple loops, some amount
of transitivity and asymmetry. For all values of χ there is a
transition from local to global oscillations occurring inside
the coexistence phase. The behavior is different for small and
large χ . For large χ , species 2 always becomes extinct and
the remaining three-species phase, reminiscent of the χ = 1
case, is stable irrespective of the value of Q. Interestingly, the
amount of long-range connections necessary to synchronize
the whole system decreases the larger χ is, that is, the more
homogeneous the RSP cycle is. For χ = 0, on the other hand,
the only possible phases have either four or one species: in
the absence of crossed interactions, once one species becomes
extinct, the food web is no longer cyclic and only the prey of the
extinct species remains. This transition, from the four-species
coexistence to the absorbing state extends also for small χ and
occurs when the amplitude of the limit cycle approaches the
heteroclinic orbit. Interestingly enough, the number of long-
range interactions necessary to obtain global synchronization,
Qc(χ ), increases with χ inside the four-species phase: the
more transitive are some of the subloops, the harder it is to
synchronize distant regions. Again, one has the condition that

the less homogeneous is the food web, the larger is the number
of long-range interactions necessary to obtain synchronization.
Thus, Qc(χ ) presents a maximum close to the transition from
three to four species, and it is harder to globally synchronize
the density oscillations. Moreover, when all four species are
present and the food web is more complex, the synchronization
transition requires a smaller number of long-range interactions
than for three species (and a simpler food web); that is, Qc(χ )
is smaller in the four-species phase.

At the two extremes of the phase diagram, χ = 0 and 1,
the system reduces to a single-loop food web with four and
three species, respectively. The local to global transition occurs
at Qc(χ = 0) � 0.018 and Qc(χ = 1) � 0.068; that is, the
threshold for S = 4 is smaller than for S = 3. Whether Qc

further decreases with increasingS, approaching an effectively
short-range system with global oscillations as Qc → 0, and
the interplay with the fixation that may happen for large S are
interesting questions that deserve further investigation.

A first step towards understanding the complex behavior of
large, cyclic trophic rings is done through simplified models
going beyond the standard RSP game, as the one considered
here. The very existence of the local to global oscillations
transition, under broad conditions, in three- and four-species
models, hints of the possibility that this is a general feature
even in more complex, realistic food webs. Thus, it would
be important to study systems with more species (S > 4) in
order to confirm the universality claim of the local to global
oscillations phase.
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