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Abstract

We study chaotic orbits in conservative low–dimensional maps and present numerical results

showing that the probability density functions (pdfs) of the sum of N iterates in the N → ∞

limit exhibit very interesting time-evolving statistics, in the sense of the Central Limit Theorem.

In some cases where the chaotic layers are thin and the (positive) maximal Lyapunov exponent

small, long–lasting quasi–stationary states (QSS) are found, whose pdfs appear to converge to

q–Gaussians associated with nonextensive statistical mechanics. More generally, however, as N

increases, the pdfs describe a sequence of QSS that pass from a q–Gaussian to a triangular shape

and ultimately tend to a true Gaussian, as orbits diffuse to larger chaotic domains, where Lyapunov

exponents attain larger values and the phase space dynamics approaches uniform ergodicity.
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I. INTRODUCTION

As is well–known, invariant closed curves of area–preserving maps present complete bar-

riers to orbits moving inside resonance islands in the two–dimensional phase space. Outside

these regions, there exist families of smaller islands and invariant Cantor sets (often called

cantori), to which chaotic orbits are observed to “stick” for very long times. Thus, at the

boundaries of these islands, an ‘edge of chaos’ develops with vanishing Lyapunov exponents,

where trajectories yield quasi-stationary states (QSS) that are often very long–lived. In this

paper we study numerically, in the sense of the Central Limit Theorem (CLT), probability

density functions (pdfs) of such QSS, aiming to understand the connection between their

intricate phase space dynamics and their time–evolving statistics.

One such connection is already known to exist: When the dynamics is bounded and

uniformly hyperbolic (as e.g. in the case of Sinai billiards) the associated pdf is a Gaussian.

However, even in nonhyperbolic conservative models, there are regions where trajectories are

essentially ergodic and mixing, so that Gaussians are ultimately observed in the classical CLT

sense, as the number of iterations grows. In such cases the maximal Lyapunov exponent

is positive and bounded away from zero. What happens, however, when the motion is

“weakly” chaotic and explores domains with intricate invariant sets, where the maximal

(positive) Lyapunov exponent is very small? It is the purpose of this work to explore the

statistics of such regions and determine the type of QSS generated by their dynamics.

Recently, there has been a number of interesting studies of pdfs of one–dimensional

maps [? ? ? ] and many examples of higher–dimensional conservative maps [? ? ?

? ? ] in precisely such ‘edge of chaos’ domains, where the maximal Lyapunov exponent

either vanishes or is very close to zero. This suggests the convenience for a more thorough

investigation of these systems within a nonextensive statistical mechanics approach, based

on the nonadditive entropy Sq [? ? ]. According to this approach, the pdfs optimizing

(under appropriate constraints) Sq are q–Gaussian distributions of sums of variables and

represent metastable states [? ? ], or QSS of the dynamics. Even for deterministic systems,

the validity of a CLT has been verified [? ? ] and, more recently, a q-generalization of

the CLT was proved demonstrating that, for certain classes of strongly correlated random

variables, their rescaled sum approaches a q-Gaussian limit distribution [? ? ].

In this paper, we follow this reasoning and compute first, in such weakly chaotic domains
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of conservative maps, the pdf of the rescaled sum of N iterates in the N → ∞ limit and

for many different initial conditions. We then connect our results with specific properties

of the phase space dynamics of the maps and distinguish cases where the pdfs represent

long–lived QSS described by q–Gaussians. We generally find that, as N grows, these pdfs

pass from a q–Gaussian to a triangular shape, ultimately tending to become true Gaussians,

as “stickiness” to cantori apparently subsides in favor of more uniformly chaotic (or ergodic)

motion.

In section II we begin our study by a detailed study of QSS and their pdfs and cor-

responding dynamics in two–dimensional Ikeda and MacMillan maps. In section III we

briefly discuss analogous phenomena in 4–dimensional conservative maps and end with our

conclusions in section IV.

II. TWO–DIMENSIONAL AREA–PRESERVING MAPS

Let us consider two–dimensional maps of the form:xn+1 = f(xn, yn)

yn+1 = g(xn, yn)
(1)

and treat their chaotic orbits as generators of random variables. Even though this is not true

for the iterates of a single orbit, we may still regard as random sequences those produced

by many independently chosen initial conditions. In [? ], the well known CLT assumption

about the independence of N identically distributed random variables was replaced by a

weaker property that essentially means asymptotic statistical independence. Thus, we may

proceed to compute the generalized rescaled sums of their iterates xi in the classical CLT

spirit:

ZN = N−γ

N∑
i=1

(xi − ⟨x⟩) (2)

For fully chaotic systems (γ = 1/2), the distribution of (??) in the limit (N → ∞) is

expected to be a Gaussian [? ? ? ]. Alternatively, however, we may define the non–rescaled

variable zN

zN =
N∑
i=1

[xi − ⟨x⟩] (3)
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and analyze the pdf of zN normalized by its variance (so as to absorb the rescaling factor

Nγ) as follows:

First, we construct the sums S
(j)
N obtained from the addition of N x-iterates xi (i =

0, . . . , N) of the map (??)

S
(j)
N =

N∑
i=0

x
(j)
i (4)

where (j) represents the dependence of S
(j)
N on the randomly chosen initial conditions x

(j)
0 ,

with j = 1, 2, ..., Nic. Next, we focus on the centered and rescaled sums

s
(j)
N ≡

(
S
(j)
N − ⟨S(j)

N ⟩
)
/σN =

(
N∑
i=0

x
(j)
i − 1

Nic

Nic∑
j=1

N∑
i=0

x
(j)
i

)
/σN (5)

where σN is the standard deviation of the S
(j)
N

σ2
N =

1

Nic

Nic∑
j=1

(
S
(j)
N − ⟨S(j)

N ⟩
)2

= ⟨S(j)
N

2
⟩ − ⟨S(j)

N ⟩2 (6)

Plotting the histograms of P (s
(j)
N ), we look for the limit distributions as N → ∞, and

check if they are well fitted by a q-Gaussian:

P (s
(j)
N ) = P (0)

(
1 + β(q − 1)(s

(j)
N )2

) 1
1−q

(7)

where q is the index of the nonadditive entropy Sq and β is a ‘inverse temperature’ parameter.

Note that as q → 1 this distribution tends to a Gaussian, i.e., limq→1 P (s
(j)
N ) = P (0)e−β(s

(j)
N )2 .

For now on, we write z/σ ≡ s
(j)
N .

A. The Ikeda map

Let us first examine by this approach the well–known Ikeda map [? ]xn+1 = R + u(xn cos τ − yn sin τ)

yn+1 = u(xn sin τ + yn cos τ)
(8)

where τ = C1 −C2/(1 + x2
n + y2n), where R, u, C1, C2 are free parameters, and the Jacobian

is J(R, u, τ) = u2, so that (??) is dissipative for u < 1 and area-preserving for u = 1. This

map was proposed as a model, under some simplifying assumptions, of the type of cell that

might be used in an optical computer. Fixing the values of C1 = 0.4, C2 = 6 and R = 1
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we observe in Figure ?? different structures of the phase space dynamics for representative

values of the parameter, u.

The values of the positive (largest) Lyapunov exponent Lmax in these cases are listed in

the Table ?? below.

u 0.7 0.8 0.9 1.0

Lmax 0.334 0.344 0.5076 0.118

TABLE I: Maximal Lyapunov exponents of the Ikeda map, with C1 = 0.4, C2 = 6, R = 1 and

u = 0.7, 0.8, 0.9, 1.0.

Figure ?? shows the corresponding pdf of the normalized variables (??) obtained for

some typical values of the parameter u, in the limit (N → ∞). We observe that for u < 1,

the system possesses strange chaotic attractors, whose pdfs can be properly fitted by Gaus-

sians. These numerical results are not in disagreement with those of [? ], who analyzed

the 2–dimensional Hénon map and showed that its strange attractor exhibits nonextensive

properties (i.e., q ̸= 1). In a fully chaotic domain, non-extensive properties need not be

present and consequently pdfs of the sum of iterates should be Gaussian distributions. Now,

for u = 0.7, 0.8, 0.9, the Ikeda map (??) generates strange attractors whose maximum Lya-

punov exponent is positive and bounded away from zero (see Table ??). This means that

the motion is not at the ‘edge of chaos’ but rather in a chaotic sea and consequently the

concepts involved in Boltzmann-Gibbs statistics are expected to hold. On the contrary, for

the area-preserving case u = 1, the pdf of the sums of (??) converges to a non-Gaussian

function (see Fig. ??: u = 1).

Now, in an ‘edge of chaos’ regime, one might expect to obtain a q-Gaussian limit dis-

tribution (q < 3), as they are a generalization of Gaussians and extremize the nonadditive

entropy Sq [? ] under appropriate constraints. Of course, the chaotic annulus shown in the

3d panel of Fig. ?? for u = 1 does not represent an ‘edge of chaos’ regime, as the maximal

Lyapunov exponent does not vanish (see Table ??) and the orbit appears to explore this

annulus more or less uniformly. Hence a q-Gaussian distribution in that case would not be

expected. But appearances can be deceiving. The result we obtain is remarkable, as the
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central part of our pdf is well–fitted by a q-Gaussian functional with q = 5.3 up to very

large N (see 4th panel of Fig. ??). Although this is not a normalizable q-Gaussian function

(since q > 3 [? ]), it is nevertheless striking enough to suggest that: (a) the motion within

the annular region is not as uniformly ergodic as one might have expected and (b) the Lmax

is not large enough to completely preclude ‘edge of chaos’ dynamics.

All this motivated us to investigate carefully similar phenomena in another family of

area-preserving maps.

B. The MacMillan map

Consider the so–called perturbed MacMillan map, which may be interpreted as describing

the effect of a simple linear focusing system supplemented by a periodic sequence of thin

nonlinear lenses [? ]: xn+1 = yn

yn+1 = −xn + 2µ yn
1+y2n

+ ϵ (yn + βxn)
(9)

where ϵ, β, µ are physically important parameters. The Jacobian is J(ϵ, β) = 1 − ϵβ, so

that (??) is area-preserving for ϵβ = 0, and dissipative for ϵβ > 0. Here, we only consider

the area-preserving case β = 0, so that the only relevant parameters are (ϵ, µ).

The unperturbed map yields a lemniscate invariant curve with a self-intersection at the

origin that is a fixed point of saddle type. For ϵ ̸= 0, separatrices split and the map presents

a thin chaotic layer around two islands. Increasing ϵ, chaotic region spreads.

Within these chaotic regions, we have analyzed the histogram of the normalized sums

of (??) for a wide range of parameters (ϵ, µ) and have identified some generic pdfs in the

form of q-Gaussians, and stretched exponentials ∼ e−k|z| having a triangular shape on semi-

logarithmic scale, which we call for convenience triangular distributions. Monitoring their

‘time evolution’ under increasingly large numbers of iterations N , we typically observe the

occurrence of different QSS described by these distributions. We have also computed their

Lmax and corresponding phase space plots and summarized our main results in Figures ??

and ??.

Below, we discuss the time-evolving statistical behavior of two examples of the Mac

Millan map, which represent respectively: (1) One set of cases with a ‘figure eight’ chaotic
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region which passes through a succession of pfds before converging to an ordinary Gaussian

(Figure 3), and (2) a set with more complicated chaotic domains extending around many

islands, where q-Gaussian pdfs dominate the statistics for very long times and convergence

to a Gaussian is not observed (Figure 4).

1. (ϵ = 0.9, µ = 1.6)–MacMillan map

The (0.9, 1.6)–MacMillan map is a typical example producing time–evolving pdfs. As

shown in Figure ??, the corresponding phase space plots yield a seemingly simple chaotic

region in the form of a ‘figure eight’ around two islands, yet the corresponding pdfs do

not converge to a single distribution; rather they pass from a q-Gaussian to a triangular

distribution.

Analyzing carefully this time evolution of pdfs, we observed that there exist at least

three long–lived QSS, whose iterates mix in the 2–dimensional phase space to generate

superimposed pdfs of the corresponding sums (??). Consequently, for i = 1 . . . N = 216,

a QSS is produced whose pdf is close to a pure (q = 1.6)–Gaussian whose β parameter

increases as the density of phase space plot grows, i.e., increasing N (see Figure ??). This

kind of distribution, in a fully chaotic region, is not only due to a Lyapunov exponent quite

close to zero, but also to a “stickiness” effect around islands of regular motion. In fact, the

boundaries of these islands is where the ‘edge of chaos’ regime is expected for conservative

maps [? ]. The maximal Lyapunov exponents for the cases shown in Figures ?? and ?? are

listed in Table ?? below.

ϵ 0.2 0.5 0.9 1.1 1.2 1.8

Lmax 0.0867 0.082 0.0875 0.03446 0.0513 0.05876

TABLE II: Maximal Lyapunov exponents of the MacMillan map, with µ = 0.6 and ϵ =

0.2, 0.5, 0.9, 1.1, 1.2, 1.8.

Figure ?? and Figure ?? show some phase space plots for a number of iterates N . Note

that for N = 1 . . . 216, these plots depict at first a ‘figure eight’ chaotic region that evolves

essentially around two islands. For N > 216, however, a more complex structure emerges:

Iterates stick around new islands, and an alternation of QSS is evident from q-Gaussian to

exponentially decaying shapes (see Figure ??).
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Clearly, therefore, in the case of ϵ = 0.9, more than one QSS coexist whose pdfs are the

superposition of their corresponding (q ̸= 1)–Gaussians. In fact, note in Figure ?? that this

superposition of QSS occurs for 1018 ≤ N ≤ 221 and produces a mixed distribution where

central part is still well–described by a (q = 1.6)–Gaussian. However, as we continue to

iterate the map to N = 223, this q–Gaussian is hidden by a superposition of intermediate

states, passing to a triangular distribution. From here on, as N > 223, the central part of

the pdfs is close to a Gaussian (see Fig. ?? and Fig. ??) and a true Gaussian is expected

in the limit (N → ∞). The evolution of this sequence of successive QSS as N increases is

shown in detail in Fig. ??.

2. (ϵ = 1.2, µ = 1.6)–MacMillan map

Let us now carefully analyze the behavior of the ϵ = 1.2 (µ = 1.6) case of the MacMillan

map, whose maximum Lyapunov exponent is Lmax ≈ 0.05, smaller than that of the ϵ = 0.9

case (Lmax ≈ 0.08, see Figure ??). As is clearly seen in Figure ??, a diffusive behavior sets

in here that extends outward in phase space, spreading finally around the islands of an order

8 resonance to which the orbits “stick” as the number of iterations grows to N = 219.

Again, chaotic motion starts by enveloping the same ‘figure eight’ as in the ϵ = 0.9 case

and the central part of the corresponding pdf attains a (q = 1.6)-Gaussian form for N ≤ 216

(see left panel of Fig. ??). No transition to a different QSS is detected, until the orbits

diffuse to a wider chaotic region in phase space, for N ≤ 218. Let us observe in Figure ??

the corresponding pdfs of the rescaled sums of iterates, where even the tail of the pdf appears

to converge to a (q = 1.6)-Gaussian (right panel of Fig. ??). For larger N , further diffusion

ceases as orbits “stick” to the outer islands, where the motion stays from there on. This only

affects the tail of the distribution, which now further converges to a true (q = 1.6)-Gaussian

representing this QSS up to N = 220).

The remaining cases of Figures ?? and ?? can be viewed from a similar perspective.

Indeed, the above analysis of the ϵ = 1.2 example can serve as a guide for the (ϵ = 0.5, µ =

1.6)– and (ϵ = 1.1, µ = 1.6)–MacMillan maps, as well. In every case, the smallness of the

Lmax but also the details of the diffusion process seem to play a key role in explaining the

convergence of pdfs to a q-Gaussian. What differs is the particular phase space picture that

emerges and the number of iterations required to achieve the corresponding QSS.
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Let us finally examine more carefully our results on the MacMillan map for µ = 1.6

and ϵ = 0.2, 0.9, 1.8, which share a rather simple dynamics around the two islands of the

‘figure eight’ chaotic region. Their associated pdfs seem to pass rather quickly from a

q-Gaussian shape to exponential to Gaussian. By contrast, the cases with ϵ = 0.5, 1.1, 1.2

possess a chaotic domain that is considerably more convoluted around many more islands and

hence apparently richer in “stickiness” phenomena. This higher complexity of the dynamics

may very well be the reason why these latter examples have QSS with q–Gaussian-like

distributions that persist for very long. Even though we are not at an ‘edge of chaos’ regime

where Lmax = 0, it appears that it is the detailed structure of chaotic regions, with their

network of islands and invariant sets of cantori, which is responsible for obtaining QSS with

long-lived q-Gaussian distributions in conservative systems.

III. FOUR–DIMENSIONAL CONSERVATIVE MAPS

We now briefly discuss some preliminary results on the occurrence of QSS and nonex-

tensive statistics in a 4–dimensional symplectic mapping model of accelerator dynamics [?

]. This model describes the effects of sextupole nonlinearities on a hadron beam passing

through a cell composed of a dipole and two quadrupole magnets, which focuses the parti-

cles’ motion in the horizontal (x)– and vertical (y)–directions [? ]. After some appropriate

scaling, the equations of the mapping are written as follows:xn+1 = 2cxxn − xn−1 − ρx2
n + y2n

yn+1 = 2cyyn − yn−1 + 2xnyn

(10)

where ρ = βxsx/βysy, cx,y ≡ cos (2πqx,y) and sx,y ≡ sin (2πqx,y), qx,y is the so-called be-

tatron frequencies and βx,y are the betatron functions of the accelerator. As in [? ], we

assume that βx,y are constant and equal to their mean values, i.e. proportional to q−1
x,y

(qx = 0.21, qy = 0.24) and place our initial conditions at a particular point in 4-dimensional

space associated with weak diffusion phenomena in the y–direction. In particular, our

(x0, x1) = (−0.0049,−0.5329) coordinates are located within a thin chaotic layer surround-

ing the islands around a 5-order resonance in the xn, xn−1 plane of a purely horizontal beam,

i.e. when yn = yn−1 = 0. We then place our initial y1, y0 coordinates very close to zero and

observe the evolution of the yns indicating the growth of the beam in the vertical direction
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as the number of iterations N increases.

Let us observe this evolution in Figure ?? separately in the xn+1, xn and yn+1, yn 2–

dimensional projections of our chaotic orbits. Clearly the behavior of these projections is

very different: In the x–plane the motion keeps evolving in a thin chaotic layer around

five islands, “feeding” as it were the (yn, yn+1) oscillations, which show an evidently slow,

diffusive growth of their amplitude outward.

In Table ?? we list, for different initial values of y0 (y1 = 0), the maximum amplitude

of the y–oscilaltions, ymax, while Figure ?? shows the corresponding pdfs of the normalized

sums of iterates of the yn-variable. Note that, just as in the case of 2–dimensional maps, these

distributions are initially q-Gaussian-like evolving slowly into triangular-like distributions,

which finally approach Gaussians. In Figure ?? we follow this evolution by performing four

computations of N = 219 iterates starting with y0 which increases every time by a factor of

10.

case y0 ymax

1 0.00001 0.00002

2 0.0001 0.0003

3 0.001 0.004

4 0.01 0.015

This similarity with the 2–dimensional case makes us suspect that the orbits of our 4–

dimensional map also follow a sequence of weakly chaotic QSS, whose time–evolving features

are depicted in plots of the y–motion in Fig ??, for increasing N . Note, for example, that

one such QSS is apparent up to N = 219, when its amplitude is suddenly tripled in the

y–direction. The pdf of this QSS is shown in the upper left panel of Fig ?? and has the

shape of a q–Gaussian up to this value of N . However, due to the sudden increase of the yn

amplitudes at N = 220, the “legs” of the pdf are lifted upward and the distribution assumes

a more triangular shape.

This rise of the pdf “legs” to a triangular shape is shown in more detail in Figure ??, for

initial conditions y0 = 10−5, 10−4, as the number of iterations grows to N = 220. Clearly,

the closer we start to y0 = y1 = 0 the more our pdf resembles a q–Gaussian, while as we

move further out in the y0–direction our pdfs tend more quickly towards a Gaussian–like

shape. This sequence of distributions is reminiscent of what we found for the 2–dimensional

MacMillan map at (ϵ = 0.9, µ = 1.6). Recall that, in that case also, a steady slow diffusion
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was observed radially outward, similar to what was observed for the 4–dimensional map

(??), which does not appear to be limited by a closed invariant curve in the xn, yn plane.

One might wonder if it is possible to obtain for the 4-dimensional map (??) also long–lived

q–Gaussian pdfs of the type we found in the 2–dimensional MacMillan map. The likelihood

of this occurrence is small, however, as all orbits we computed for the accelerator map (??)

eventually escaped to infinity ! This implies that stickiness phenomena on island boundaries

and sets of cantori are more dominant and tend to slow down diffusion in the plane of

the MacMllan map much more than in the 4–dimensional space of the accelerator map. It

would, therefore, be very interesting to study, in a future paper, higher–dimensional maps

whose chaotic orbits never escape to infinity (e.g. coupled standard maps) and compare

their statistics with what we have discovered for the examples treated in the present paper.

IV. CONCLUSIONS

Our work serves to connect different types of statistical distributions of chaotic orbits (in

the spirit of the Central Limit Theorem) with different aspects of the dynamics in the phase

space of conservative systems. What we have found, in several examples of the McMillan and

Ikeda 2–dimensional area preserving maps as well as one case of a 4–dimensional symplectic

accelerator map, is that q-Gaussians represent quasi-stationary states (QSS), which are

surprisingly long–lived, especially when the orbits evolve in a complicated chaotic region

surrounding many islands. This may be attributed to the fact that the maximal Lyapunov

exponent in these regions is small and the dynamics occurs close to the so–called “edge of

chaos” where stickiness effects are important near the boundaries of these islands.

On the other hand, in simpler–looking chaotic domains (surrounding e.g. only two major

islands) the observed QSS passes, as time evolves, from a q–Gaussian to a triangularly shaped

pdf and may in fact become Gaussian, as the number of iterations becomes arbitrarily large.

Even in these cases, however, the successive QSS are particularly long-lasting, so that the

Gaussians expected from uniformly ergodic motion are practically unobservable.

Interestingly enough, similar results have been obtained in N-dimensional Hamiltonian

systems [? ? ] describing FPU particle chains near nonlinear normal modes which have

just turned unstable as the total energy is increased. Since these models evolve in a multi–

dimensional phase space, the q–Gaussian pdfs last for times typically of the order 106, then
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pass quickly through the triangular stage and converge to Gaussians, as chaotic orbits move

away from thin layers to wider “seas”, where Lyapunov exponents are much larger. However,

as long as the motion evolves near an “edge of chaos” region the distributions are q-shaped

for long times, exactly as we found in the present paper.

These conclusions are closely related to results obtained by other authors [? ? ], who

also study QSS occurring in low-dimensional Hamiltonian systems like 2-D and 4-D maps,

but not from the viewpoint of sum distributions. They define a variance of momentum

distributions they call “temperature” T (t) and show numerically that it follows a “sigmoid”

curve starting from small values and converging to a final value, which they identify as

the Boltzmann Gibbs (BG) state. Although their initial conditions are spread over a wide

domain and do not start from a precise location in phase space as we do, they also discover

many examples of QSS which remain at the initial temperature for very long times, before

finally converging to the BG state.
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FIG. 1: Phase space plots of the Ikeda map for C1 = 0.4, C2 = 6, R = 1, and representative values

of u. When u = 0.8, 0.9, · · · < 1, areas of the phase plane contract and strange attractors appear.

When u = 1, the map is area–preserving and a chaotic annular region is observed surrounding

a domain about the origin, where the motion is predominantly quasiperiodic. We use randomly

chosen initial conditions from a square [0, 10−4]× [0, 10−4].
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FIG. 2: Pdfs of the normalized sums of iterates of the Ikeda map, for C1 = 0.4, C2 = 6, R = 1

and u = 0.7, 0.8, 0.9, 1.0. N represents the number of (summed) iterates, Nic is the number of

randomly chosen initial conditions from the basin of attraction of the dissipative cases and a

square [0, 1]× [0, 1] located inside the chaotic annular region of the area-preserving map.
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FIG. 3: Dynamical and statistical behavior of chaotic orbits of the MacMillan map for parameter

values µ = 1.6, and ϵ = 0.2, 0.9, 1.8 (from top to bottom). The first column represents the pdfs

of the normalized sums of iterates and the second depicts the corresponding phase space plot. N

represents the number of (summed) iterates and Nic is the number of initial conditions that have

been randomly chosen from a square (0, 10−6)× (0, 10−6).
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FIG. 4: Dynamical and statistical behavior of chaotic orbits of the MacMillan map for parameter

values µ = 1.6, and ϵ = 0.5, 1.1, 1.2 (from top to bottom). The first column represents the pdfs

of the normalized sums of iterates and the second depicts the corresponding phase space plot. N

represents the number of (summed) iterates and Nic is the number of initial conditions that have

been randomly chosen from a square (0, 10−6)× (0, 10−6).
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FIG. 5: (ϵ = 0.9, µ = 1.6)–MacMillan map phase space plots (first and second panel) and the

corresponding PDFs (third panel) of the renormalized sums of iterates for i = 1 . . . N,N ≤ 1016,

starting from a randomly chosen initial condition in a square (0, 10−6)× (0, 10−6).
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FIG. 6: (ϵ = 0.9, µ = 1.6)–MacMillan map partial phase space evolution. N iterates are calculated

starting form a randomly chosen initial condition in a square (0, 10−6) × (0, 10−6). N is the

number of order of plotted iterates. Note the long-standing quasi-stationary states that sequentially

superimpose on phase space plot.
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FIG. 7: (ϵ = 0.9, µ = 1.6)–MacMillan map phase space for i = 1 . . . N,N ≥ 223 plot iterates,

starting form a randomly chosen initial condition in a square (0, 10−6)× (0, 10−6). Corresponding

PDFs.
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FIG. 8: Plots of the q–logarithm (inverse function of the q-exponential (??) vs. (z/σ)2 applied to

our data of the normalized pdf of the (ϵ = 0.9, µ = 1.6)–MacMillan map, for N = 225 and N = 226.

For q–Gaussians this graph is a straight line, whose slope is −β) for the right value of q. Note also

from these results that the pdfs approach a true Gaussian (with β = 1) since q tends to 1 as N

increases.
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FIG. 9: Detailed evolution of the pdfs of the MacMillan map for ϵ = 0.9, µ = 1.6, as N increases

from 212 to 226.
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FIG. 10: Structure of phase space plot of the MacMillan map for parameter values ϵ = 1.2 and

µ = 1.6, starting from a randomly chosen initial condition in a square (0, 10−6)× (0, 10−6), and for

i = 1 . . . N (N = 210, 213, N16, N18) iterates.
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FIG. 11: Pdfs of the rescaled sums of iterates of the MacMillan map for ϵ = 1.2 and µ = 1.6 are

seen here to converge to a (q = 1.6)-Gaussian. This is shown on the left panel for the central part

of the pdf (for N < 218) and on the right panel for the tail part (N > 218).
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FIG. 12: The xn, xn+1 (first row of panels) and yn, yn+1 (second row of panels) projections of a

chaotic orbit of (??), with qx = 0.21, qy = 0.24, x0 = −0.0049 and initial conditions x1 = −0.5329,

y0 = 0.0001 and y1 = 0. N represents the number of plotted iterates.
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4D map case IV: (y0=0.01, y1=0)

FIG. 13: Pdfs of the normalized sums of iterates of the y–chaotic orbit of the 4–dimensional map

(??), for different y0. In all cases, qx = 0.21, qy = 0.24, x0 = −0.0049, x1 = −0.5329, and

y1 = 0. N represents the number of (summed) iterates, Nic is the number of randomly chosen

initial conditions within an interval [0.9y0, y0].

24



FIG. 14: Motion in the yn+1, yn plane for qx = 0.21, qy = 0.24 and initial conditions x0 = −0.0049,

x1 = −0.5329, y0 = 0.0001, y1 = 0. N represents the number of iterates. Note the long–lived

dynamical state with a maximum amplitude of about .0001 up to N19, before the chaotic orbit

expands to 3 times this amplitude at N > 220.
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FIG. 15: Pdfs of the normalized sums of iterates of the y–chaotic orbit of the 4–dimensional map,

for different initial conditions y0 and numbers of (summed) iterates N . Nic is the number of

randomly chosen initial conditions from an interval [0.9y0, y0]. In all cases, qx = 0.21, qy = 0.24,

x0 = −0.0049, x1 = −0.5329, and y1 = 0.
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