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We study chaotic orbits of conservative low–dimensional maps and present numerical results showing
that the probability density functions (pdfs) of the sum ofN iterates in the largeN limit exhibit very
interesting time-evolving statistics. In some cases wherethe chaotic layers are thin and the (positive)
maximal Lyapunov exponent is small, long–lasting quasi–stationary states (QSS) are found, whose pdfs
appear to converge toq–Gaussians associated with nonextensive statistical mechanics. More generally,
however, asN increases, the pdfs describe a sequence of QSS that pass froma q–Gaussian to an expo-
nential shape and ultimately tend to a true Gaussian, as orbits diffuse to larger chaotic domains and the
phase space dynamics becomes more uniformly ergodic.
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1. Introduction

As is well–known, invariant closed curves of area–preserving maps present complete barriers to orbits evolving
inside resonance islands in the two–dimensional phase space. Outside these regions, there exist families of smaller
islands and invariant Cantor sets (often called cantori), to which chaotic orbits are observed to “stick” for very
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long times. Thus, at the boundaries of these islands, an ‘edge of chaos’ develops with vanishing (or very small)
Lyapunov exponents, where trajectories yield quasi-stationary states (QSS) that are often very long–lived. Such
phenomena have been thoroughly studied to date in terms of a number ofdynamicalmechanisms responsible for
chaotic transport in area–preserving maps and low–dimensional Hamiltonian systems [Mackayet al., 1984; Wiggins,
1992].

In this paper we study numerically the probability density functions (pdfs) of sums of iterates of QSS character-
ized by non–vanishing Lyapunov exponents, aiming to understand the connection between their intricate phase space
dynamics and their time–evolving statistics. Our approach, therefore, is in thecontextof the Central Limit Theorem
(CLT), although in many cases our pdfs do not converge to a single shape but pass through several ones. One case
where convergence is known to exist is when the dynamics is bounded and uniformly hyperbolic (as e.g. in the case
of Sinai billiards) and the associated pdf is a Gaussian. However, even in nonhyperbolic conservative models, there
are regions where trajectories are essentially ergodic andmixing, so that Gaussians are ultimately observed, as the
number of iterations grows. In such cases the maximal Lyapunov exponent is positive and bounded away from zero.
What happens, however, when the motion is “weakly” chaotic and explores domains with intricate invariant sets,
where the maximal (positive) Lyapunov exponent is very small? It is the purpose of this work to explore the statistics
of such regions and determine the type of QSS generated by their dynamics.

Recently, there has been a number of interesting studies of such pdfs of one–dimensional maps [Tirnakliet al.,
2007a,b; Ruiz & Tsallis, 2009; Afsar & Tirnakli, 2010] and higher–dimensional conservative maps [Queiros, 2009]
in precisely ‘edge of chaos’ domains, where the maximal Lyapunov exponent either vanishes or is very close to
zero. These studies provide evidence for the existence ofq-Gaussian distributions, in the context of the Central Limit
Theorem. This generated some controversy [Grassberger, 2009] but, for one–dimensional maps, the argument has
been resolved. In fact, Tirnakliet al.[2007b] and Tsallis & Tirnakli [2010] undoubtedly show that, when approaching
the critical point while taking into account a proper scaling relation that involves the vicinity of the critical point
and the Feigenbaum constantδ, the pdfs of sums of iterates of the logistic map are approximated by aq-Gaussian
far better that the Lévy distribution suggested in [Grassberger, 2009]. This suggests the need for a more thorough
investigation of these systems within a nonextensive statistical mechanics framework, based on the nonadditive
entropySq [Tsallis, 1988, 2010]. According to this approach, the pdfsoptimizing (under appropriate constraints)
Sq areq–Gaussian distributions that represent metastable states[Miritello, 2009; Rodriguez, 2008; Baldovinet al.,
2004a,b], or QSS of the dynamics.

The validity of a Central Limit Theorem (CLT) has been verified for deterministic systems [Billingsley, 1968;
Beck, 1990; Mackey & Tyran-Kaminska, 2006] and, more recently, a q-generalization of the CLT was published
demonstrating that, for certain classes of strongly correlated random variables, their rescaled sums approach not
a Gaussian, but aq-Gaussian distribution [Umarovet al., 2008, 2010; Hahnet al., 2010]. Systems statistically
described by power-law probability distributions (a special case of which areq-Gaussians) are in fact so ubiquitous
[Schroeder, 1992], that some authors claimed that the normalization technique of a type of data that characterizes
the measurement device is one of the reasons of their occurrence [Vignat & Plastino, 2009]: This is the case of
normalized and centered sums of data that exhibit elliptical symmetry, but not necessarily the case of the iterates
of deterministic maps, as can be inferred by the verificationof a classical CLT for the paradigmatic example of the
fully chaotic logistic map.

In this paper, we follow this reasoning and compute first, in weakly chaotic domains of conservative maps, the
pdf of the rescaled sum ofN iterates, in the largeN limit, and for many different initial conditions. We then connect
our results with specific properties of the phase space dynamics of the maps and distinguish cases where the pdfs
represent long–lived QSS described byq–Gaussians. We generally find that, asN grows, these pdfs pass from a
q–Gaussian to an exponential (having a triangular shape in our semi-log plots), ultimately tending to become true
Gaussians, as “stickiness” to cantori apparently subsidesin favor of more uniformly chaotic (or ergodic) motion.

In section II we begin our study by a detailed study of QSS, their pdfs and corresponding dynamics in two–
dimensional Ikeda and MacMillan maps. In section III we briefly discuss analogous phenomena in 4–dimensional
conservative maps and end with our conclusions in section IV.

2. Two–dimensional area–preserving maps

Let us consider two–dimensional maps of the form:
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{

xn+1 = f (xn,yn)

yn+1 = g(xn,yn)
(1)

and treat their chaotic orbits as generators of random variables. Even though this is not true for the iterates of a sin-
gle orbit, we may still regard as random sequences those produced by many independently chosen initial conditions.
In [Mackey & Tyran-Kaminska, 2006], the well known CLT assumption about the independence ofN identically
distributed random variables was replaced by a weaker property that essentially means asymptotic statistical inde-
pendence. Thus, we may proceed to compute the generalized rescaled sums of their iteratesxi in the context of the
classical CLT [Billingsley, 1968; Beck, 1990; Mackey & Tyran-Kaminska, 2006]:

ZN = N−γ
N

∑
i=1

(xi −〈x 〉) (2)

where〈 · · · 〉 implies averaging over a large number of iterationsN anda large number of randomly chosen initial
conditionsNic. Due to the possible nonergodic and nonmixing behavior, averaging over initial conditions is an
important ingredient of our approach.

For fully chaotic systems (γ = 1/2), the distribution of (2) in the limit (N → ∞) is expected to be a Gaussian
[Mackey & Tyran-Kaminska, 2006]. Alternatively, however,we may define the non–rescaled variablezN

zN =
N

∑
i=1

[xi −〈x 〉] (3)

and analyze the probability density function (pdf) ofzN normalized by its variance (so as to absorb the rescaling
factorNγ ) as follows:

First, we construct the sumsS( j )
N obtained from the addition ofN x-iteratesxi (i = 0, . . . ,N) of the map (1)

S( j )
N =

N

∑
i=0

x( j )
i (4)

where( j ) represents the dependence ofS( j )
N on the randomly chosen initial conditionsx( j )

0 , with j = 1,2, ...,Nic.
Next, we focus on the centered and rescaled sums

s( j )
N ≡

(

S( j )
N −〈S( j )

N 〉
)

/σN =

(

N

∑
i=0

x( j )
i −

1
Nic

Nic

∑
j=1

N

∑
i=0

x( j )
i

)

/σN (5)

whereσN is the standard deviation of theS( j )
N

σ2
N =

1
Nic

Nic

∑
j=1

(

S( j )
N −〈S( j )

N 〉
)2

= 〈 S( j )
N

2
〉− 〈S( j )

N 〉2 (6)

Next, we estimate the pdf ofs( j )
N , plotting the histograms ofP(s( j )

N ) for sufficiently small increments∆s( j )
N (=

0.05 is used in all cases), so as to smoothen out fine details and check if they are well fitted by aq-Gaussian:

P(s( j )
N ) = P(0)

(

1+β(q−1)(s( j )
N )2

)
1

1−q
(7)

whereq is the index of the nonadditive entropySq andβ is a ‘inverse temperature’ parameter. Note that asq→ 1

this distribution tends to a Gaussian, i.e., lim
q→1

P(s( j )
N ) = P(0)e−β(s( j )

N )2
. From now on, we writez/σ ≡ s( j )

N . We also

remark that, due to the projection of the higher dimensionalmotion onto a single axis, the support of our distributions
appears to consist of a dense set of values inz/σ, although we cannot analytically establish its continuum nature.
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2.1. The Ikeda map

Let us first examine by this approach the well–known Ikeda map[Alligood, 1996]:
{

xn+1 = R+u(xncosτ−ynsinτ)
yn+1 = u(xn sinτ+yncosτ)

(8)

whereτ = C1−C2/(1+ x2
n + y2

n), R, u, C1, C2 are free parameters, and the Jacobian isJ(R,u,τ) = u2, so that (8)
is dissipative foru < 1 and area-preserving foru = 1. This map was proposed as a model of the type of cell that
might be used in an optical computer, under some simplifyingassumptions [Alligood, 1996]. Fixing the values of
C1 = 0.4, C2 = 6 andR= 1 we observe that whenu = 0.7,0.8,0.9, areas of the phase plane contract and strange
attractors appear. In Fig. 1 we plot two different structures of the phase space dynamics for representative values of
the parameter,u.

Fig. 1. Phase space plots of the Ikeda map forC1 = 0.4, C2 = 6, R= 1, and representative values ofu. Whenu= 0.9, areas of the phase
plane contract and a strange attractors appears. Whenu= 1, the map is area–preserving and a chaotic annular region isobserved surrounding
a domain about the origin where the motion is predominantly quasiperiodic. We use randomly chosen initial conditions from a square
[0,10−4]× [0,10−4] about the origin (0,0).

The values of the positive (largest) Lyapunov exponentLmax in these cases are listed in the Table 1.

Table 1. Maximal Lyapunov exponents of
the Ikeda map, withC1 = 0.4, C2 = 6, R= 1
andu= 0.7,0.8,0.9,1.0

u 0.7 0.8 0.9 1.0

Lmax 0.334 0.344 0.5076 0.118

Fig. 2 shows the corresponding pdf of the normalized variables (5) obtained for the two values of the parameter,
u = 0.9,1, in the largeN limit. In fact, we observe that foru = 0.7,0.8,0.9, the system possesses strange chaotic
attractors whose pdfs are well fitted by Gaussians. These numerical results are not in disagreement with those of
[Tirnakli, 2002], on the 2–dimensional H ´enon map, where it was shown that its strange attractor exhibits nonexten-
sive properties (i.e.,q 6= 1). In a fully chaotic domain, non-extensive properties need not be present and consequently
pdfs of the sum of iterates should be Gaussian distributions. Now, for u= 0.7,0.8,0.9, the Ikeda map (8) generates
strange attractors whose maximum Lyapunov exponent is positive and bounded away from zero (see Table 1). This
means that the motion isnot at the ‘edge of chaos’ but rather in a chaotic sea and consequently the concepts involved
in Boltzmann-Gibbs statistics are expected to hold. On the contrary, in the area-preserving caseu= 1, the pdf of the
sums of (5) converges to a non-Gaussian function (see the lower panel of Fig. 2).
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Fig. 2. Pdfs of the normalized sums of iterates of the Ikeda map, forC1 = 0.4,C2 = 6, R= 1. N represents the number of (summed) iterates.
Panel (a):Nic is the number of randomly chosen initial conditions from thebasin of attraction (dissipative case); black line corresponds to
Gaussian functione−β(z/σ)2

, β = 0.5. Panel(b):Nic is the number of randomly chosen initial conditions from a square[0,1]× [0,1] located
inside the chaotic annular region of the area-preserving map; black line corresponds to(q= 5.3)-Gaussian functional.

Now, in an ‘edge of chaos’ regime, one might expect to obtain aq-Gaussian limit distribution (q < 3), which
generalizes Gaussians and extremizes the nonadditive entropy Sq [Beck, 2001] under appropriate constraints. Of
course, the chaotic annulus shown in Fig. 1 foru= 1 does not represent an ‘edge of chaos’ regime, as the maximal
Lyapunov exponent does not vanish (see Table 1) and the orbitappears to explore this annulus more or less uniformly.
Hence aq-Gaussian distribution in that case would not be expected. But appearances can be deceiving. The result
we obtain is remarkable, as the central part of our pdf is well–fitted by aq-Gaussian functional withq= 5.3 up to
very largeN (see right panel of Fig .2). Although this is not a normalizable q-Gaussian function (sinceq> 3 [Tsallis,
2010]), it is nevertheless striking enough to suggest that:(a) the motion within the annular region is not as uniformly
ergodic as one might have expected and (b) theLmax is not large enough to completely preclude ‘edge of chaos’
dynamics.

All this motivated us to investigate more carefully similarphenomena in another class of area-preserving maps
described in the section that follows.

2.2. The MacMillan map

Consider the so–called perturbed MacMillan map, which may be interpreted as describing the effect of a simple
linear focusing system supplemented by a periodic sequenceof thin nonlinear lenses [Papageorgiouet al., 1989]:







xn+1 = yn

yn+1 =−xn+2µ
yn

1+y2
n
+ ε(yn+βxn)

(9)

whereε, β, µ are physically important parameters. The Jacobian isJ(ε,β) = 1−εβ, so that (9) is area-preserving for
εβ = 0, and dissipative forεβ > 0. Here, we only consider the area-preserving caseβ = 0, so that the only relevant
parameters are(ε, µ).

The unperturbed map yields a lemniscate invariant curve with a self-intersection at the origin that is a fixed point
of saddle type. Forε 6= 0, separatrices split and the map presents a thin chaotic layer around two islands. Increasing
ε, chaotic regions spread in thexn,yn plane.

Within these chaotic regions, we have analyzed the histogram of the normalized sums of (5) for a wide range of
parameters (ε, µ) and have identified some generic pdfs in the form ofq-Gaussians, andexponentials∼ e−k|z|, which
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have a triangular shape on semi-logarithmic scale and we call for conveniencetriangular distributions. Monitoring
their ‘time evolution’ under increasingly large numbers ofiterationsN, we typically observe the occurrence of
different QSS described by these distributions. We have also computedtheir Lmax and corresponding phase space
plots and summarized our main results in Figures 3 and 4. The maximal Lyapunov exponents for the cases shown in
Figures 3 and 4 are listed in Table 2.

Fig. 3. Dynamical and statistical behavior of chaotic orbits of the MacMillan map for parameter valuesµ= 1.6, andε = 0.2,0.9,1.8 (from
left to right). Figs.(a)-(c) represent the pdfs of the normalized sums ofN iterates;Nic is the number of randomly chosen initial conditions,
from a square(0,10−6)× (0,10−6). Figs.(d)-(f) depict the corresponding phase space plots.

Table 2. Maximal Lyapunov exponents of the MacMillan map, with
µ= 0.6 andε = 0.2,0.5,0.9,1.1,1.2,1.8.

ε 0.2 0.5 0.9 1.1 1.2 1.8

Lmax 0.0867 0.082 0.0875 0.03446 0.0513 0.05876

Below, we discuss the time-evolving statistics of two examples of the MacMillan map, which represent respec-
tively: (1) One set of cases with a ‘figure eight’ chaotic domain whose distributions pass through a succession of
pfds before converging to an ordinary Gaussian (Fig. 3), and(2) a set with more complicated chaotic domains ex-
tending around many islands, whereq-Gaussian pdfs dominate the statistics for very long times and convergence to
a Gaussian is not observed (Fig. 4).

2.2.1. (ε = 0.9, µ= 1.6)–MacMillan map

The (0.9, 1.6)–MacMillan map is a typical example producing time–evolving pdfs. As shown in Fig. 3, the corre-
sponding phase space plots yield a seemingly simple chaoticregion in the form of a ‘figure eight’ around two islands,
yet the corresponding pdfs donot convergeto a single distribution, but pass from aq-Gaussian-looking function to
a triangular distribution.
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Fig. 4. Dynamical and statistical behavior of chaotic orbits of the MacMillan map for parameter valuesµ= 1.6, andε = 0.5,1.1,1.2 (from
left to right), where the orbits evolve around a central ‘figure eight’ chaotic region. Figs. (a)-(c) represent the pdfs of the normalized sums of
N iterates;Nic is the number of randomly chosen initial conditions, from a square(0,10−6)× (0,10−6). Figs. (d)-(f) depict the corresponding
phase space plots.

Fig. 5. Panel (a): PDFs of the renormalized sums ofN iterates of the (ε = 0.9, µ= 1.6)–MacMillan map, forN ≤ 1016, andNic randomly
chosen initial condition in a square(0,10−6)× (0,10−6). Panel (b1)-(b2): Corresponding phase space plots forN = 212 andN = 216.

Analyzing carefully the time evolution of these pdfs, we observed that there exist at least three long–lived QSS,
whose iterates mix in the 2–dimensional phase space to generate superimposed pdfs of the corresponding sums (5).
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Fig. 6. (ε = 0.9, µ= 1.6)–MacMillan map partial phase space evolution. The iterates are calculated starting form a randomly chosen initial
condition in a square(0,10−6)×(0,10−6). N is the number of plotted iterates. Note the long-standing quasi-stationary states that sequentially
superimpose on phase space plots.

Fig. 7. Panel (a): (ε = 0.9, µ= 1.6)–MacMillan phase space plots fori = 1. . .N (N ≥ 223) iterates, starting form a randomly chosen initial
condition in a square(0,10−6)× (0,10−6). Panel (b)-(c): Corresponding PDFs.Nic is the number of randomly chosen initial condition in a
square(0,10−6)× (0,10−6).

Consequently, fori = 1. . .N = 216, a QSS is produced whose pdf is close to a pure(q = 1.6)–Gaussian whoseβ
parameter increases asN increases and the density of phase space plot grows (see Fig.5). This kind of distribution,
in a fully chaotic region, is affected not only by a Lyapunov exponent being close to zero, but also by a “stickiness”
effect around islands of regular motion. In fact, the boundaries of these islands is where the ‘edge of chaos’ regime
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is expected to occur in conservative maps [Zaslavskiiet al., 1991].
Fig. 5 and Fig. 6 show some phase space plots for different numbers of iteratesN. Note that forN = 1. . .216,

our plots depict first a ‘figure eight’ chaotic region that evolves essentially around two islands (Fig. 5). However, for
N > 216, a more complex structure emerges: Iterates stick around new islands, and a change of QSS is evident from
q-Gaussian to exponentially decaying shapes (see Fig. 6).

Clearly, therefore, forε = 0.9 (and other similar cases withε = 0.2,1.8) more than one QSS coexist whose pdfs
are the superposition of their corresponding(q 6= 1)–Gaussians. Note in Fig. 7 that this superposition of QSS occurs
for 1018 ≤ N ≤ 221 and produces a mixed distribution where the central part is still well–described by a(q= 1.6)–
Gaussian. However, as we continue to iterate the map toN = 223, this q–Gaussian is hidden by a superposition of
intermediate states, which pass through a triangular distribution. From here on, asN > 223, the central part of the
pdfs is close to a Gaussian (see Fig. 8 and Fig. 9) and a true Gaussian is expected in the limit (N → ∞). The evolution
of this sequence of successive QSS asN increases is shown in detail in Fig. 9.

Fig. 8. Plots of theq–logarithm (inverse function of theq-exponential (7)) vs.(z/σ)2 applied to our data of the normalized pdf of the (ε=0.9,
µ= 1.6)–MacMillan map.N is the number of iterates, starting fromNic randomly chosen initial condition in a square(0,10−6)× (0,10−6).
For q–Gaussians this graph is a straight line, whose slope is−β) for the right value ofq. Note that the pdfs approach a true Gaussian (with
β = 1) sinceq tends to 1 asN increases.

2.2.2. (ε = 1.2, µ= 1.6)–MacMillan map

Let us now analyze the behavior of the(1.2,1.6)–MacMillan map, whose maximum Lyapunov exponent isLmax≈
0.05, smaller than that of theε = 0.9 case (Lmax≈ 0.08). As is clearly seen in Fig. 10, a diffusive behavior sets in
here that extends outward in phase space, envelopping a chain of islands of an order 8 resonance, where the orbits
“stick” as the number of iterations grows toN = 219.

Again, chaotic motion starts by encircling the same ‘figure eight’ as in theε = 0.9 case and the central part of the
corresponding pdf attains a(q= 1.6)-Gaussianform for N ≤ 216 (see the upper panel of Fig. 11). No transition to a
different type of QSS is detected, until the orbits diffuse to a wider chaotic region in phase space, for 216 ≤ N ≤ 218.
Let us observe in Fig. 11, the corresponding pdfs of the rescaled sums of iterates, where even the tail of the pdf
appears to converge to a(q= 1.6)-Gaussian (lower panel of Fig. 11). For largerN, further diffusion ceases as orbits
“stick” to the outer islands, where the motion stays from there on. This only affects the tail of the distribution, which
now further converges to a true(q= 1.6)-Gaussianrepresenting this QSS up toN = 220).

The remaining cases of Figures 3 and 4 can be viewed from a similar perspective. Indeed, the above analysis
of theε = 1.2 example can serve as a guide for the(ε = 0.5,µ= 1.6)– and(ε = 1.1,µ= 1.6)–MacMillan maps, as
well. In every case, the smallness of theLmax but also the details of the diffusion process seem to play a key role in
explaining the convergence of pdfs to aq-Gaussian. What differs is the particular phase space picture that emerges
and the number of iterations required to achieve the corresponding QSS.

We conclude, therefore, that the dynamics of the MacMillan map forµ= 1.6 andε = 0.2,0.9,1.8, where chaotic
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Fig. 9. Detailed evolution of the pdfs of the MacMillan map for ε = 0.9, µ= 1.6, asN increases from 212 to 226, respectively.

Fig. 10. Structure of phase space plots of the MacMillan map for parameter valuesε = 1.2 andµ= 1.6, starting from a randomly chosen
initial condition in a square(0,10−6)× (0,10−6), and forN iterates.

orbits evolve around the two islands of a single ‘figure eight’ chaotic region possess pdfs which pass rather quickly
from aq-Gaussian shape to exponential to Gaussian. By contrast, the cases withε = 0.5,1.1,1.2 possess a chaotic
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Fig. 11. Pdfs of the rescaled sums of iterates of the MacMillan map forε = 1.2 andµ= 1.6 are seen to converge to a(q= 1.6)-Gaussian.
This is shown in the panel (a) for the central part of the pdf (for N < 218) and in the panel (b) for the tail part (N > 218). Nic is the number of
initial conditions that have been randomly chosen from a square(0,10−6)× (0,10−6).

domain that is considerably more convoluted around many more large islands and hence apparently richer in “stick-
iness” phenomena. This higher complexity of the dynamics may very well be the reason why these latter examples
have QSS withq–Gaussian-like distributions that persist for very long. Even though we are not at an ‘edge of chaos’
regime whereLmax= 0, we suggest that it is the detailed structure of chaotic regions, with their network of islands
and invariant sets of cantori, that is responsible for obtaining QSS with long-livedq-Gaussian distributions in these
systems.

3. Four–dimensional conservative maps

We now briefly discuss some preliminary results on the occurrence of QSS and nonextensive statistics in a 4–
dimensional symplectic mapping model of accelerator dynamics [Bountis & Kollmann, 1994]. This model describes
the effects of sextupole nonlinearities on a hadron beam passing through a cell composed of a dipole and two
quadrupole magnets that focuses the particles’ motion in the horizontal (x)– and vertical (y)–directions [Bountis &
Tompaidis, 1991]. After some appropriate scaling, the equations of the mapping are written as follows:

{

xn+1 = 2cxxn−xn−1−ρx2
n+y2

n

yn+1 = 2cyyn−yn−1+2xnyn
(10)

whereρ = βxsx/βysy, cx,y ≡ cos(2πqx,y) andsx,y ≡ sin(2πqx,y), qx,y is the so-called betatron frequencies andβx,y

are the betatron functions of the accelerator. As in [Bountis & Kollmann, 1994], we assume thatβx,y are constant
and equal to their mean values, i.e. proportional toq−1

x,y (qx = 0.21, qy = 0.24) and place our initial conditions at a
particular point in 4-dimensional space associated with weak diffusion phenomena in they–direction. In particular,
our(x0,x1) = (−0.0049,−0.5329) coordinates are located within a thin chaotic layer surrounding the islands around
a 5-order resonance in thexn,xn−1 plane of a purely horizontal beam, withyn = yn−1 = 0. We then place our initial
y1,y0 coordinates very close to zero and observe the evolution of the yns indicating the growth of the beam in the
vertical direction as the number of iterationsN grows.

Let us observe this evolution in Fig. 12 separately in thexn+1,xn (first column) andyn+1,yn (second column)
2–dimensional projections of our chaotic orbits. Clearly the behavior of these projections is very different: In the
x–plane the motion keeps evolving in a thin chaotic layer around five islands, “feeding” as it were the(yn,yn+1)
oscillations, which show an evidently slow diffusive growth of their amplitude.

In Table 3 we list, for different initial values ofy0 (y1 = 0), the maximum amplitude of they–oscilaltions,ymax,
while Fig. 13 shows the corresponding pdfs of the normalizedsums of iterates of theyn-variable. Note that, just
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Fig. 12. Thexn,xn+1 (first column of panels) andyn,yn+1 (second column of panels) projections of a chaotic orbit of (10), withqx = 0.21,
qy = 0.24, x0 = −0.0049 and initial conditionsx1 = −0.5329,y0 = 0.0001 andy1 = 0 (case II of Table III).N represents the number of
plotted iterates.

as in the case of 2–dimensional maps, these distributions are initially of theq-Gaussiantype, evolving slowly into
triangular-like distributions, which finally approach Gaussians. In Fig. 13 we follow this evolution by performing
four computations ofN = 219 iterates using ay0 which increases every time by a factor of 10.

Table 3. Es-
timation of (ymax)–coordinate
after the diffusion process oc-
curred alongN = 106 itera-
tions, for different y–motion
initial conditions y0. In all
cases,qx = 0.21, qy = 0.24,
x0 = −0.0049,x1 = −0.5329,
andy1 = 0.

case y0 ymax

I 0.00001 0.00002
II 0.0001 0.0003

III 0 .001 0.004

IV 0.01 0.015

The similarity with the 2–dimensional case makes us suspectthat the orbits of our 4–dimensional map also
follow a sequence of weakly chaotic QSS, whose time–evolving features are evident in plots of they–motion in
Fig 12 (second column), for increasingN. Note, for example, that one such QSS with a maximum amplitude of
about 0.00001 is observed up toN > N = 219, diffusing slowly in they–direction. The pdf of this QSS is shown in
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Fig. 13. Pdfs of the normalized sums of iterates of they–chaotic orbit of the 4–dimensional map (10), for differenty0. In all cases,qx = 0.21,
qy = 0.24,x0 =−0.0049,x1 =−0.5329 andy1 = 0. The number of (summed) iterates isN = 219, and the number of randomly chosen initial
conditions within an interval[0.9y0,y0] is Nic = 105.

the upper left panel of Fig 13 and has the shape of aq–Gaussian up to this value ofN. However, for higher values
of y0, due to the sudden increase of theyn amplitudes atN = 220, the “legs” of the pdf are lifted upward and the
distribution assumes a more triangular shape.

This rise of the pdf “legs” to a triangular shape is shown in more detail in Fig. 14, for initial conditionsy0 =
10−5,10−4, as the number of iterations grows toN = 220. Clearly, thecloser we startto y0 = y1 = 0 the more
our pdf resembles aq–Gaussian, while as we move further out in they0–direction our pdfs tend more quickly
towards a Gaussian–like shape. This sequence of distributions is reminiscent of what we found for the 2–dimensional
MacMillan map at(ε = 0.9,µ= 1.6). Recall that, in that case also, a steady slow diffusion was observed radially
outward, similar to what was observed for the 4–dimensionalmap (10), which does not appear to be limited by a
closed invariant curve in thexn,yn plane.

One might wonder if it is possible to obtain for the 4-dimensional map (10) also long–livedq–Gaussian pdfs
of the type we found in the 2–dimensional MacMillan map. The likelihood of this occurrence is small, however,
as all orbits we computed for the accelerator map (10) eventually escaped to infinity! This implies that stickiness
phenomena on island boundaries and sets of cantori are more dominant and tend to slow down diffusion more in 2–
dimensional maps like the MacMllan map than the 4–dimensional space of the accelerator map. It would, therefore,
be very interesting to study, in a future paper, higher–dimensional maps whose chaotic orbitsnever escapeto infinity
(e.g. coupled standard maps) and compare their statistics with what we have discovered for the examples treated in
the present paper.

4. Conclusions

Our work serves to connect different types of statistical distributions of chaotic orbits (in the context of the Central
Limit Theorem) with different aspects of dynamics in the phase space of conservative systems. What we have found,
in several examples of the MacMillan and Ikeda 2–dimensional area preserving maps as well as one case of a 4–
dimensional symplectic accelerator map, is thatq-Gaussians approximate well quasi-stationary states (QSS), which
are surprisingly long–lived, especially when the orbits evolve in complicated chaotic domains surrounding many
islands. This may be attributed to the fact that the maximal Lyapunov exponent in these regions is small and the
dynamics occurs close to the so–called “edge of chaos” wherestickiness effects are important near the boundaries
of these islands.
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Fig. 14. Pdfs of the normalized sums of iterates of they–chaotic orbit of the 4–dimensional map, for different initial conditionsy0 and
numbers of (summed) iteratesN. Nic is the number of randomly chosen initial conditions from an interval[0.9y0,y0]. In all cases,qx = 0.21,
qy = 0.24,x0 =−0.0049,x1 =−0.5329, andy1 = 0.

On the other hand, in simpler–looking chaotic domains (surrounding e.g. only two major islands) the observed
QSS passes, as time evolves, from aq–Gaussian to an exponential pdf and may in fact become Gaussian, as the
number of iterations becomes arbitrarily large. Even in these cases, however, the successive QSS are particularly
long-lasting, so that the Gaussians associated with uniformly ergodic motion are practically unobservable.

Interestingly enough, similar results have been obtained in N-dimensional Hamiltonian systems [Antonopoulos
et al., 2010; Leoet al., 2010] describing FPU particle chains near nonlinear normal modes which have just turned
unstable as the total energy is increased. Since these models evolve in a multi–dimensional phase space, theq–
Gaussian pdfs last for times typically of the order 106, then pass quickly through the triangular stage and converge
to Gaussians, as chaotic orbits move away from thin layers towider “seas”, where Lyapunov exponents are much
larger. However, as long as the motion evolves near an “edge of chaos” region the distributions areq-shaped for long
times, exactly as we found in the present paper.

These conclusions are closely related to results obtained by other authors [Baldovinet al., 2004a,b], who also
study QSS occurring in low-dimensional Hamiltonian systems like 2-D and 4-D maps, but not from the viewpoint of
sum distributions. They define a variance of momentum distributions representing a temperature-like quantityT(t)
and show numerically thatT(t) follows a “sigmoid” curve starting from small values and converging to a final value,
which they identify as the Boltzmann Gibbs (BG) state. Although their initial conditions are spread over a wide
domain and do not start from a precise location in phase spaceas in our studies, they also discover many examples
of QSS which remain at the initial temperature for very long times, before finally converging to the BG state.
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