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We study chaotic orbits of conservative low—dimensionapsnand present numerical results showing
that the probability density functions (pdfs) of the sumNbfterates in the larg®\ limit exhibit very
interesting time-evolving statistics. In some cases witieeechaotic layers are thin and the (positive)
maximal Lyapunov exponent is small, long—lasting quaskishary states (QSS) are found, whose pdfs
appear to converge p-Gaussians associated with nonextensive statistical amézh More generally,
however, adN increases, the pdfs describe a sequence of QSS that pasa éreGaussian to an expo-
nential shape and ultimately tend to a true Gaussian, atsatiffuse to larger chaotic domains and the
phase space dynamics becomes more uniformly ergodic.
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1. Introduction

As is well-known, invariant closed curves of area—presgrunaps present complete barriers to orbits evolving
inside resonance islands in the two—dimensional phase spatdside these regions, there exist families of smaller
islands and invariant Cantor sets (often called cantawiyvhich chaotic orbits are observed to “stick” for very
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long times. Thus, at the boundaries of these islands, are‘eflghaos’ develops with vanishing (or very small)
Lyapunov exponents, where trajectories yield quasiestaty states (QSS) that are often very long—lived. Such
phenomena have been thoroughly studied to date in terms oinder ofdynamicalmechanisms responsible for
chaotic transport in area—preserving maps and low—dimeakHamiltonian systems [Mackay al., 1984; Wiggins,
1992].

In this paper we study numerically the probability densitgdtions (pdfs) of sums of iterates of QSS character-
ized by non—vanishing Lyapunov exponents, aiming to utidedsthe connection between their intricate phase space
dynamics and their time—evolving statistics. Our appro#uérefore, is in theontextof the Central Limit Theorem
(CLT), although in many cases our pdfs do not converge toglesshape but pass through several ones. One case
where convergence is known to exist is when the dynamicsuaded and uniformly hyperbolic (as e.g. in the case
of Sinai billiards) and the associated pdf is a Gaussian. é¥ew even in nonhyperbolic conservative models, there
are regions where trajectories are essentially ergodiararithg, so that Gaussians are ultimately observed, as the
number of iterations grows. In such cases the maximal Lyapexrponent is positive and bounded away from zero.
What happens, however, when the motion is “weakly” chaatid explores domains with intricate invariant sets,
where the maximal (positive) Lyapunov exponent is very $Prals the purpose of this work to explore the statistics
of such regions and determine the type of QSS generated ydffmamics.

Recently, there has been a number of interesting studiascbffEfs of one—dimensional maps [Tirnadtial,,
2007a,b; Ruiz & Tsallis, 2009; Afsar & Tirnakli, 2010] andghier—dimensional conservative maps [Queiros, 2009]
in precisely ‘edge of chaos’ domains, where the maximal Lyay exponent either vanishes or is very close to
zero. These studies provide evidence for the existenge3Hussian distributions, in the context of the Central Limi
Theorem. This generated some controversy [Grassberge®] bQt, for one—dimensional maps, the argument has
been resolved. In fact, Tirnaldt al.[2007b] and Tsallis & Tirnakli [2010] undoubtedly show thahen approaching
the critical point while taking into account a proper scglielation that involves the vicinity of the critical point
and the Feigenbaum constaitthe pdfs of sums of iterates of the logistic map are apprateéch by ag-Gaussian
far better that the Lévy distribution suggested in [Grasgér, 2009]. This suggests the need for a more thorough
investigation of these systems within a nonextensivestiedl mechanics framework, based on the nonadditive
entropy §; [Tsallis, 1988, 2010]. According to this approach, the pojiéimizing (under appropriate constraints)
S areq-Gaussian distributions that represent metastable gidtetello, 2009; Rodriguez, 2008; Baldoviet al,,
2004a,b], or QSS of the dynamics.

The validity of a Central Limit Theorem (CLT) has been vedffer deterministic systems [Billingsley, 1968;
Beck, 1990; Mackey & Tyran-Kaminska, 2006] and, more rdgeatg-generalization of the CLT was published
demonstrating that, for certain classes of strongly cateel random variables, their rescaled sums approach not
a Gaussian, but g-Gaussian distribution [Umarogt al, 2008, 2010; Hahret al, 2010]. Systems statistically
described by power-law probability distributions (a spécase of which arg-Gaussians) are in fact so ubiquitous
[Schroeder, 1992], that some authors claimed that the rimatian technique of a type of data that characterizes
the measurement device is one of the reasons of their oocerf®/ignat & Plastino, 2009]: This is the case of
normalized and centered sums of data that exhibit ellipigenmetry, but not necessarily the case of the iterates
of deterministic maps, as can be inferred by the verificatiba classical CLT for the paradigmatic example of the
fully chaotic logistic map.

In this paper, we follow this reasoning and compute first, @aldy chaotic domains of conservative maps, the
pdf of the rescaled sum o iterates, in the larg8l limit, and for many different initial conditions. We thenramect
our results with specific properties of the phase space disanf the maps and distinguish cases where the pdfs
represent long—lived QSS described dpyGaussians. We generally find that, Mgrows, these pdfs pass from a
—Gaussian to an exponential (having a triangular shaperisani-log plots), ultimately tending to become true
Gaussians, as “stickiness” to cantori apparently subsidfesor of more uniformly chaotic (or ergodic) motion.

In section Il we begin our study by a detailed study of QSSy theéfs and corresponding dynamics in two—
dimensional Ikeda and MacMillan maps. In section Ill we fyieliscuss analogous phenomena in 4—-dimensional
conservative maps and end with our conclusions in section 1V

2. Two—dimensional area—preserving maps

Let us consider two—dimensional maps of the form:
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(1)

Xny1 = T (%n,¥n)
Ynt+1 = 9(Xn, Yn)

and treat their chaotic orbits as generators of randomhlasaEven though this is not true for the iterates of a sin-
gle orbit, we may still regard as random sequences thoseipeddoy many independently chosen initial conditions.
In [Mackey & Tyran-Kaminska, 2006], the well known CLT assuiion about the independence Nfidentically
distributed random variables was replaced by a weaker protieat essentially means asymptotic statistical inde-
pendence. Thus, we may proceed to compute the generalizealed sums of their iterategsin the context of the
classical CLT [Billingsley, 1968; Beck, 1990; Mackey & Tyrd&aminska, 2006]:

N

ZN :N*V.Zl(xi—<x>) )

where(---) implies averaging over a large number of iteratidh&nda large number of randomly chosen initial
conditionsNi.. Due to the possible nonergodic and nonmixing behaviorragieg over initial conditions is an
important ingredient of our approach.

For fully chaotic systemsy(= 1/2), the distribution of (2) in the limitNl — ) is expected to be a Gaussian
[Mackey & Tyran-Kaminska, 2006]. Alternatively, howevere may define the non-rescaled variah|e

N
MZZM—WH 3)

and analyze the probability density function (pdf)zf normalized by its variance (so as to absorb the rescaling
factorNY) as follows:

First, we construct the sunﬁﬁj) obtained from the addition df x-iteratesx; (i =0,...,N) of the map (1)
N
i) (1)
N =3% (4)
2,

where( ] ) represents the dependencesﬁf) on the randomly chosen initial conditionx%”, with j =1,2,...,Ni.
Next, we focus on the centered and rescaled sums

N

() — () i) ey L EI
W= (- 8) on={ 34713 3 K ) o (5)

j=1i
whereay is the standard deviation of t@l")
Nic
03 = Z
=1
Next, we estimate the pdf csﬁ,j), plotting the histograms d?(a(\,j)) for sufficiently small incrementAa(\,j)(:
0.05 is used in all cases), so as to smoothen out fine detailshesutt @ they are well fitted by g-Gaussian:

(S (s =805 - w0y ©)

S
Nic

P(s))) = P(0) (1+Bla—1)(5)?)"" (7)

whereq is the index of the nonadditive entrofg4 andp is a ‘inv_erse temperature’ parameter. Note thatjas 1
this distribution tends to a Gaussian, i.e.,ll?t(nﬁ(\,‘)) — P(0)e P&, From now on, we write/o = <. We also
q—

remark that, due to the projection of the higher dimensiaomation onto a single axis, the support of our distributions
appears to consist of a dense set of valueg @ although we cannot analytically establish its continuwature.
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2.1. Thelkeda map
Let us first examine by this approach the well-known lkeda pAdgood, 1996]:

Xn+1 = R+ U(X, COST — Y, SINT) ®)
Yn+1 = U(Xn SINT -+ Yn COST)

wheret = C; — Cy/(1+x2 +V2), R u, Cy, C; are free parameters, and the Jacobiad(R u,T) = u?, so that (8)

is dissipative foru < 1 and area-preserving far= 1. This map was proposed as a model of the type of cell that
might be used in an optical computer, under some simplifgagumptions [Alligood, 1996]. Fixing the values of
C, =04,C, =6 andR =1 we observe that whem= 0.7,0.8,0.9, areas of the phase plane contract and strange
attractors appeatr. In Fig. 1 we plot two different structunéthe phase space dynamics for representative values of
the parameten.

Fig. 1. Phase space plots of the Ikeda mapdpe 0.4, C, = 6, R= 1, and representative valueswfWhenu = 0.9, areas of the phase
plane contract and a strange attractors appears. \Wheh the map is area—preserving and a chaotic annular regaisérved surrounding
a domain about the origin where the motion is predominantigiséperiodic. We use randomly chosen initial conditiormrfra square

[0,10~%] x [0,20~*] about the origin (0,0).

The values of the positive (largest) Lyapunov exporigriin these cases are listed in the Table 1.

Table 1. Maximal Lyapunov exponents of
the lkeda map, witl; =0.4,C, =6,R=1
andu=0.7,0.8,0.9,1.0

u 0.7 0.8 0.9 1.0

Lmax 0.334 0344 05076 0118

Fig. 2 shows the corresponding pdf of the normalized vaemh) obtained for the two values of the parameter,
u=0.9,1, in the largeN limit. In fact, we observe that fon = 0.7,0.8,0.9, the system possesses strange chaotic
attractors whose pdfs are well fitted by Gaussians. Thesesricah results are not in disagreement with those of
[Tirnakli, 2002], on the 2—dimensionaldd6n map, where it was shown that its strange attractor dshiloinexten-
sive properties (i.eq # 1). In a fully chaotic domain, non-extensive propertiescheat be present and consequently
pdfs of the sum of iterates should be Gaussian distributidogy, foru = 0.7,0.8,0.9, the lkeda map (8) generates
strange attractors whose maximum Lyapunov exponent isiyaind bounded away from zero (see Table 1). This
means that the motion iwt at the ‘edge of chaos’ but rather in a chaotic sea and constytiee concepts involved
in Boltzmann-Gibbs statistics are expected to hold. On tidrary, in the area-preserving case 1, the pdf of the
sums of (5) converges to a non-Gaussian function (see ther loanel of Fig. 2).
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Fig. 2. Pdfs of the normalized sums of iterates of the lkedp,faC; = 0.4,C, = 6, R= 1. N represents the number of (summed) iterates.
Panel (a)Ni is the number of randomly chosen initial conditions from baesin of attraction (dissipative case); black line coroesjs to
Gaussian functioeP(#/9)° B = 0.5. Panel(b)Nj is the number of randomly chosen initial conditions from aasg|0, 1] x [0,1] located
inside the chaotic annular region of the area-preserving; tlack line corresponds {@ = 5.3)-Gaussian functional.

Now, in an ‘edge of chaos’ regime, one might expect to obtaijpGaussian limit distributionq < 3), which
generalizes Gaussians and extremizes the nonadditivepgrly [Beck, 2001] under appropriate constraints. Of
course, the chaotic annulus shown in Fig. 1det 1 does not represent an ‘edge of chaos’ regime, as the maximal
Lyapunov exponent does not vanish (see Table 1) and theamisitars to explore this annulus more or less uniformly.
Hence ag-Gaussian distribution in that case would not be expectet aBpearances can be deceiving. The result
we obtain is remarkable, as the central part of our pdf is-igltd by ag-Gaussian functional withp = 5.3 up to
very largeN (see right panel of Fig .2). Although this is not a normalleapGaussian function (sinag> 3 [Tsallis,
2010)), itis nevertheless striking enough to suggest thathe motion within the annular region is not as uniformly
ergodic as one might have expected and (b)lthg. is not large enough to completely preclude ‘edge of chaos’
dynamics.

All this motivated us to investigate more carefully simifgrenomena in another class of area-preserving maps
described in the section that follows.

2.2. TheMacMillan map

Consider the so—called perturbed MacMillan map, which mayrierpreted as describing the effect of a simple
linear focusing system supplemented by a periodic sequafritbén nonlinear lenses [Papageorgietal., 1989]:

Xn+1 = Yn

9
Yni1 = —X%n+2 ©)

1ry2 +&(Yn+ Bxn)
whereg, B, L are physically important parameters. The Jacobiaiiag3) = 1—€pB, so that (9) is area-preserving for
eB = 0, and dissipative fogf3 > 0. Here, we only consider the area-preserving ¢ase0, so that the only relevant
parameters arg, |).

The unperturbed map yields a lemniscate invariant curvie avitelf-intersection at the origin that is a fixed point
of saddle type. Fog # 0, separatrices split and the map presents a thin chaotic dagund two islands. Increasing
€, chaotic regions spread in tlg, y, plane.

Within these chaotic regions, we have analyzed the histogfethe normalized sums of (5) for a wide range of
parametersg( 1) and have identified some generic pdfs in the form-@aussiansandexponentials- e k2, which



6 Author's Name

have a triangular shape on semi-logarithmic scale and wéotalonveniencdriangular distributions Monitoring
their ‘time evolution’ under increasingly large numbersitgfationsN, we typically observe the occurrence of
different QSS described by these distributions. We have also compld. o« and corresponding phase space
plots and summarized our main results in Figures 3 and 4. Thémnal Lyapunov exponents for the cases shown in
Figures 3 and 4 are listed in Table 2.
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Fig. 3. Dynamical and statistical behavior of chaotic arioit the MacMillan map for parameter valugs- 1.6, ande = 0.2,0.9,1.8 (from
left to right). Figs.(a)-(c) represent the pdfs of the ndimeal sums ofN iterates;Nic is the number of randomly chosen initial conditions,
from a squarg0,10-6) x (0,10-%). Figs.(d)-(f) depict the corresponding phase space plots.

Table 2. Maximal Lyapunov exponents of the MacMillan mapthwi
p=0.6 ande =0.2,0.5,0.9,1.1,1.2,1.8.

€ 0.2 0.5 0.9 11 12 18

Lmax 0.0867 0082 Q0875 003446 00513 005876

Below, we discuss the time-evolving statistics of two exkapf the MacMillan map, which represent respec-
tively: (1) One set of cases with a ‘figure eight’ chaotic damahose distributions pass through a succession of
pfds before converging to an ordinary Gaussian (Fig. 3),(@h@ set with more complicated chaotic domains ex-
tending around many islands, wher&aussian pdfs dominate the statistics for very long tinmes@nvergence to
a Gaussian is not observed (Fig. 4).

2.2.1. (¢=0.9, p=1.6)-MacMillan map

The (Q9, 1L6)-MacMillan map is a typical example producing time—euadvpdfs. As shown in Fig. 3, the corre-
sponding phase space plots yield a seemingly simple chagjiien in the form of a ‘figure eight’ around two islands,
yet the corresponding pdfs dmt convergeo a single distribution, but pass frongaGaussian-looking function to

atriangular distribution.
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Fig. 4. Dynamical and statistical behavior of chaotic arloit the MacMillan map for parameter valugs- 1.6, ande = 0.5,1.1,1.2 (from
left to right), where the orbits evolve around a central ‘figeight’ chaotic region. Figs. (a)-(c) represent the pdthe normalized sums of
N iteratesNic is the number of randomly chosen initial conditions, frongaare(0,10-%) x (0,1079). Figs. (d)-(f) depict the corresponding
phase space plots.
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Fig. 5. Panel (a): PDFs of the renormalized sumbldferates of theg = 0.9, p= 1.6)-MacMillan map, folN < 10, andNic randomly
chosen initial condition in a squaf®,10-%) x (0,1076). Panel (b1)-(b2): Corresponding phase space plotll fer2'2 andN = 216,

Analyzing carefully the time evolution of these pdfs, we elved that there exist at least three long-lived QSS,
whose iterates mix in the 2—dimensional phase space to@emaiperimposed pdfs of the corresponding sums (5).
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Fig. 6.

2
17x2 2 g Ng 242

=4

: :
24x2 < N< 342

/n

34x2" <N 36x24 / )
V, d

36x2" <N= 45x2Y

4552 <N 4ox 212

i,

49x 2 <N<s0x2!?

7 P
=N

N i

50x2M <N 55x 21

ssx2teNe 2!

(e =0.9, p= 1.6)-MacMillan map partial phase space evolution. The iterare calculated starting form a randomly chosen initial

condition in a squaré0, 10-%) x (0,1078). N is the number of plotted iterates. Note the long-standirapistationary states that sequentially
superimpose on phase space plots.
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Fig. 7. Panel (a):4= 0.9, u= 1.6)-MacMillan phase space plots foe= 1...N (N > 223) iterates, starting form a randomly chosen initial
condition in a squaré0,1076) x (0,1078). Panel (b)-(c): Corresponding PDR4 is the number of randomly chosen initial condition in a

squarg(0,107%) x (0,1076).

Consequently, for = 1...N = 216, a QSS is produced whose pdf is close to a fare- 1.6)-Gaussian whos@
parameter increases Bsncreases and the density of phase space plot grows (se®) Fithis kind of distribution,
in a fully chaotic region, is affected not only by a Lyapunoypenent being close to zero, but also by a “stickiness”
effect around islands of regular motion. In fact, the bouiedaof these islands is where the ‘edge of chaos’ regime
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is expected to occur in conservative maps [Zaslawvatidl., 1991].

Fig. 5 and Fig. 6 show some phase space plots for differenbetsrof iteratedN. Note that forN = 1...216,
our plots depict first a ‘figure eight’ chaotic region that kes essentially around two islands (Fig. 5). However, for
N > 216 a more complex structure emerges: lterates stick arowvdsiends, and a change of QSS is evident from
g-Gaussian to exponentially decaying shapes (see Fig. 6).

Clearly, therefore, foe = 0.9 (and other similar cases with= 0.2, 1.8) more than one QSS coexist whose pdfs
are the superposition of their corresponding# 1)—Gaussians. Note in Fig. 7 that this superposition of QS8rscc
for 10'® < N < 22! and produces a mixed distribution where the central patilisll-described by dq = 1.6)—
Gaussian. However, as we continue to iterate the mayp 40223, this g—-Gaussian is hidden by a superposition of
intermediate states, which pass through a triangulariloligion. From here on, a > 223, the central part of the
pdfs is close to a Gaussian (see Fig. 8 and Fig. 9) and a trues@auis expected in the limiN(— o). The evolution
of this sequence of successive QSMNaacreases is shown in detail in Fig. 9.

v N=2%%; Nic=10° (g=1.22, p=1)
N —n26. N[iae A5 (= -
_ w - N=2% Nic=10° (g=1.13, p=1)
@ N
o et
= S
b L
N
o1 1
>
S
& £=0.9
n=1.6
10— — —
0 5 10

(zls )’

Fig.8. Plots of ther-logarithm (inverse function of trgeexponential (7)) vs(z/o)? applied to our data of the normalized pdf of tike<(0.9,

p = 1.6)-MacMillan mapN is the number of iterates, starting frddg randomly chosen initial condition in a squ&@ 106) x (0, 106).

For g—Gaussians this graph is a straight line, whose slopeisfor the right value ofg. Note that the pdfs approach a true Gaussian (with
B =1) sinceqtends to 1 adl increases.

2.2.2. (¢=1.2, p=1.6)-MacMillan map

Let us now analyze the behavior of tfie2, 1.6)—MacMillan map, whose maximum Lyapunov exponerit iy~
0.05, smaller than that of the= 0.9 case [(max~ 0.08). As is clearly seen in Fig. 10, a diffusive behavior sets i
here that extends outward in phase space, envelopping & chisiands of an order 8 resonance, where the orbits
“stick” as the number of iterations grows o= 21°,

Again, chaotic motion starts by encircling the same ‘figughe as in thee = 0.9 case and the central part of the
corresponding pdf attains(g = 1.6)-Gaussiarform for N < 216 (see the upper panel of Fig. 11). No transition to a
different type of QSS is detected, until the orbits diffus@twider chaotic region in phase space, ffr2 N < 218,

Let us observe in Fig. 11, the corresponding pdfs of the tedcsums of iterates, where even the tail of the pdf
appears to converge tog = 1.6)-Gaussian (lower panel of Fig. 11). For lardérfurther diffusion ceases as orbits
“stick” to the outer islands, where the motion stays frontéhen. This only affects the tail of the distribution, which
now further converges to a trig = 1.6)-Gaussiarrepresenting this QSS up b= 220).

The remaining cases of Figures 3 and 4 can be viewed from ¢asipg@rspective. Indeed, the above analysis
of thee = 1.2 example can serve as a guide for the= 0.5,u= 1.6)— and(e = 1.1,y = 1.6)-MacMillan maps, as
well. In every case, the smallness of thg,x but also the details of the diffusion process seem to playyade in
explaining the convergence of pdfs t@dsaussian. What differs is the particular phase spacerpithat emerges
and the number of iterations required to achieve the cooredipg QSS.

We conclude, therefore, that the dynamics of the MacMillaprorpy = 1.6 ande = 0.2,0.9, 1.8, where chaotic
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Fig. 10. Structure of phase space plots of the MacMillan neapérameter values= 1.2 andp = 1.6, starting from a randomly chosen
initial condition in a squar¢0,10-°) x (0,1079), and forN iterates.

orbits evolve around the two islands of a single ‘figure €ightotic region possess pdfs which pass rather quickly
from ag-Gaussian shape to exponential to Gaussian. By contrastages witlt = 0.5,1.1,1.2 possess a chaotic
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Fig. 11. Pdfs of the rescaled sums of iterates of the MacNlitteap fore = 1.2 andp = 1.6 are seen to converge tq@= 1.6)-Gaussian.
This is shown in the panel (a) for the central part of the paf & < 218) and in the panel (b) for the tail pai(> 218). N is the number of
initial conditions that have been randomly chosen from asg(0,10-6) x (0,1076).

domain that is considerably more convoluted around mangraoge islands and hence apparently richer in “stick-
iness” phenomena. This higher complexity of the dynamicg veay well be the reason why these latter examples
have QSS witl—Gaussian-like distributions that persist for very longe&though we are not at an ‘edge of chaos’
regime wherd_ax = 0, we suggest that it is the detailed structure of chaotimrsg with their network of islands
and invariant sets of cantori, that is responsible for algi QSS with long-lived}-Gaussian distributions in these
systems.

3. Four—dimensional conservative maps

We now briefly discuss some preliminary results on the oetwwe of QSS and nonextensive statistics in a 4—

dimensional symplectic mapping model of accelerator dyosuBountis & Kollmann, 1994]. This model describes

the effects of sextupole nonlinearities on a hadron beamimgthrough a cell composed of a dipole and two

quadrupole magnets that focuses the particles’ motiondrhtirizontal (x)— and vertical (y)—directions [Bountis &

Tompaidis, 1991]. After some appropriate scaling, the ggusa of the mapping are written as follows:

Xni1 = 2Cc — Xn-1— PXa + YA (10)
Yn+1 = 2Cy¥n — Yn—1+ 2Xn¥n

wherep = Bys,/BySy, Cxy = COS(2MMyy) ands,y = Sin(2myy), Oxy is the so-called betatron frequencies dhg
are the betatron functions of the accelerator. As in [Bau&tiKollmann, 1994], we assume th@t, are constant
and equal to their mean values, i.e. proportionah;gé (ox = 0.21, gy = 0.24) and place our initial conditions at a
particular point in 4-dimensional space associated witakngiffusion phenomena in the-direction. In particular,
our (Xp,X1) = (—0.0049 —0.5329 coordinates are located within a thin chaotic layer surdinothe islands around
a 5-order resonance in thxg, x,_1 plane of a purely horizontal beam, wigh = y,_1 = 0. We then place our initial
V1,Yo coordinates very close to zero and observe the evolutiohedf;s indicating the growth of the beam in the
vertical direction as the number of iteratioNsggrows.

Let us observe this evolution in Fig. 12 separately inxhe, x, (first column) andy,.1,y, (second column)
2—dimensional projections of our chaotic orbits. Cleahg behavior of these projections is very different: In the
x—plane the motion keeps evolving in a thin chaotic layer adofive islands, “feeding” as it were thgh, Yn+1)
oscillations, which show an evidently slow diffusive grovaf their amplitude.

In Table 3 we list, for different initial values gf (y; = 0), the maximum amplitude of the-oscilaltions ymax
while Fig. 13 shows the corresponding pdfs of the normalizeahs of iterates of thg,-variable. Note that, just
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gy = 0.24, xg = —0.0049 and initial conditions; = —0.5329,yy = 0.0001 andy;, = 0 (case Il of Table Ill).N represents the number of
plotted iterates.

as in the case of 2—dimensional maps, these distributianmially of the g-Gaussiantype, evolving slowly into
triangular-like distributions, which finally approach Gaussians. 1g.A.3 we follow this evolution by performing
four computations oN = 2'° jterates using § which increases every time by a factor of 10.

Table 3. Es-
timation of (Ymax)—coordinate
after the diffusion process oc-
curred alongN = 1P itera-
tions, for different y-motion
initial conditions yp. In all
cases,gx = 0.21, gy = 0.24,
%o = —0.0049,x; = —0.5329,
andy; = 0.

case Yo Ymax

| 0.00001 000002
Il 0.0001 00003
Il 0.001 Q004
\ 0.01 0015

The similarity with the 2—dimensional case makes us sugpattthe orbits of our 4—dimensional map also
follow a sequence of weakly chaotic QSS, whose time—evgl¥@atures are evident in plots of tlgemotion in
Fig 12 (second column), for increasimd Note, for example, that one such QSS with a maximum amifd
about 000001 is observed up td > N = 29, diffusing slowly in they—direction. The pdf of this QSS is shown in
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Fig. 13. Pdfs of the normalized sums of iterates ofythehaotic orbit of the 4—dimensional map (10), for differgntin all casesgy = 0.21,
gy = 0.24,%x9 = —0.0049,x; = —0.5329 andy; = 0. The number of (summed) iteratesNs= 219, and the number of randomly chosen initial
conditions within an interval0.9yo, yo] is Nic = 10°.

the upper left panel of Fig 13 and has the shape gf@aussian up to this value bf. However, for higher values
of yp, due to the sudden increase of feamplitudes alN = 22°, the “legs” of the pdf are lifted upward and the
distribution assumes a more triangular shape.

This rise of the pdf “legs” to a triangular shape is shown irrendetail in Fig. 14, for initial conditiongg =
10-°,1074, as the number of iterations grows kb= 220, Clearly, thecloser we startto yo = y; = 0 the more
our pdf resembles g-Gaussian, while as we move further out in tedirection our pdfs tend more quickly
towards a Gaussian—like shape. This sequence of distnitzuis reminiscent of what we found for the 2—dimensional
MacMillan map at(e = 0.9, = 1.6). Recall that, in that case also, a steady slow diffusion viseved radially
outward, similar to what was observed for the 4—dimensiomab (10), which does not appear to be limited by a
closed invariant curve in the,, y, plane.

One might wonder if it is possible to obtain for the 4-dimemsil map (10) also long—liveg-Gaussian pdfs
of the type we found in the 2—dimensional MacMillan map. Tikelihood of this occurrence is small, however,
as all orbits we computed for the accelerator map (10) eefiptescaped to infinityThis implies that stickiness
phenomena on island boundaries and sets of cantori are roori@ahnt and tend to slow down diffusion more in 2—
dimensional maps like the MacMllan map than the 4—dimerdispace of the accelerator map. It would, therefore,
be very interesting to study, in a future paper, higher—disienal maps whose chaotic orhitsver escap# infinity
(e.g. coupled standard maps) and compare their statistibsmlat we have discovered for the examples treated in
the present paper.

4. Conclusions

Our work serves to connect different types of statisticatriiutions of chaotic orbits (in the context of the Central
Limit Theorem) with different aspects of dynamics in the gdnapace of conservative systems. What we have found,
in several examples of the MacMillan and Ikeda 2—dimengianga preserving maps as well as one case of a 4—
dimensional symplectic accelerator map, is tp&aussians approximate well quasi-stationary states YQ@fch

are surprisingly long—lived, especially when the orbitsele® in complicated chaotic domains surrounding many
islands. This may be attributed to the fact that the maxinyalpunov exponent in these regions is small and the
dynamics occurs close to the so—called “edge of chaos” wdtadness effects are important near the boundaries
of these islands.
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0y = 0.24,%9 = —0.0049,%; = —0.5329, andy; = 0.

On the other hand, in simpler—looking chaotic domains (urding e.g. only two major islands) the observed
QSS passes, as time evolves, from-&aussian to an exponential pdf and may in fact become Gausss the
number of iterations becomes arbitrarily large. Even irs¢heases, however, the successive QSS are particularly
long-lasting, so that the Gaussians associated with umifoergodic motion are practically unobservable.

Interestingly enough, similar results have been obtainéd-dimensional Hamiltonian systems [Antonopoulos
et al, 2010; Leoet al,, 2010] describing FPU particle chains near nonlinear nomwes which have just turned
unstable as the total energy is increased. Since these snedale in a multi-dimensional phase space,dhe
Gaussian pdfs last for times typically of the ordeP libien pass quickly through the triangular stage and cosverg
to Gaussians, as chaotic orbits move away from thin layevgider “seas”, where Lyapunov exponents are much
larger. However, as long as the motion evolves near an “efigj@gams” region the distributions ageshaped for long
times, exactly as we found in the present paper.

These conclusions are closely related to results obtaigerier authors [Baldoviet al., 2004a,b], who also
study QSS occurring in low-dimensional Hamiltonian syséike 2-D and 4-D maps, but not from the viewpoint of
sum distributions. They define a variance of momentum 8isions representing a temperature-like quarfity)
and show numerically thdt(t) follows a “sigmoid” curve starting from small values and eerging to a final value,
which they identify as the Boltzmann Gibbs (BG) state. Altgb their initial conditions are spread over a wide
domain and do not start from a precise location in phase spaoeour studies, they also discover many examples
of QSS which remain at the initial temperature for very loingets, before finally converging to the BG state.
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