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Bouncing models have been proposed by many authors as a completion, or even as an alternative
to inflation for the description of the very early and dense Universe. However, most bouncing models
contain a contracting phase from a very large and rarefied state, where dark energy might have had
an important role as it has today in accelerating our large Universe. In that case, its presence
can modify the initial conditions and evolution of cosmological perturbations, changing the known
results already obtained in the literature concerning their amplitude and spectrum. In this paper,
we assume the simplest and most appealing candidate for dark energy, the cosmological constant,
and evaluate its influence on the evolution of cosmological perturbations during the contracting
phase of a bouncing model, which also contains a scalar field with a potential allowing background
solutions with pressure and energy density satisfying p = wǫ, w being a constant. An initial
adiabatic vacuum state can be set at the end of domination by the cosmological constant, and an
almost scale invariant spectrum of perturbations is obtained for w ≈ 0, which is the usual result
for bouncing models. However, the presence of the cosmological constant induces oscillations and a
running towards a tiny red-tilted spectrum for long wavelength perturbations.

PACS numbers: 98.80.Cq, 04.60.Ds

I. INTRODUCTION

Bouncing models [1, 2] have been widely investigated
as a solution of the singularity problem, and possibly as
an alternative to inflation as long as it can also solve, by
its own way, the horizon and flatness problems, and jus-
tify the power spectrum of primordial cosmological per-
turbations inferred by observations.

In the case where the contracting phase of a regular
bouncing model is dominated by some matter content
with a constant ratio between pressure and energy den-
sity, p/ǫ = w = const., it was shown by many authors, in
different frameworks [3–8], that this matter content must
be dust-like, perhaps connected to cold dark matter, in
order to obtain a scale invariant spectrum of scalar and
tensor cosmological perturbations.

On the other hand, since 1998 [9], cosmologists were
confronted with a highly unexpected observation: the
Universe is presently in a state of accelerated expansion.
This may be caused by the existence of some field violat-
ing the strong energy condition, called dark energy, by a
modification of general relativity at large scales, by the
influence of some large scale inhomogeneities, or simply
by a well suited cosmological constant. This last option
is by far the simplest explanation to the present accel-
eration of the Universe, although it poses a problem to
quantum field theory on how to accommodate its ob-
served value with vacuum energy calculations. Anyway,
the so called ΛCDM standard model assumes that there
exists a cosmological constant term in Einstein’s equa-
tions, which becomes dynamically important when the
typical scale of the Universe has the size of the present
Hubble radius.

In bouncing models without a cosmological constant,
vacuum initial conditions for quantum cosmological per-
turbations are set in the far past of the contracting phase,

when the Universe was very big and almost flat, justify-
ing the choice of an adiabatic Minkowski vacuum in that
phase. However, if a cosmological constant is present,
the asymptotic past of bouncing models will approach
de Sitter rather than Minkowski spacetime. Further-
more, the large wavelengths today become comparable
with the Hubble radius in the contracting phase when
the Universe was still slightly influenced by the cosmo-
logical constant. Hence, the existence of a cosmological
constant can modify the spectrum and amplitude of cos-
mological perturbations. Note that this is not a question
for inflation because initial conditions for quantum per-
turbations and the moment of Hubble radius crossing in
such models take place when the cosmological constant
is completely irrelevant: the Universe is fully dominated
by the inflaton field.

The aim of this paper is to investigate this issue in de-
tail in the context of a Friedmann-Lemâıtre-Robertson-
Walker geometry with a cosmological constant, and a
scalar field with potential allowing a constant equation of
state p = wǫ for the background field, like the exponential
potential in the scenario without cosmological constant.
Hence, this paper can be considered as an extension of
Ref. [4] through the introduction of a cosmological con-
stant in the model. Here, as in Ref. [4], our background
scenario is not intended to be a fully realistic description
of the contracting phase of a bouncing model, but to yield
a suitable framework to calculate the spectrum of linear
cosmological perturbations in bouncing models, and to
study how it depends on the presence of a cosmological
constant and on the equation of state of the matter con-
tent. In our model, the bounce itself takes place at very
short length scales, where the cosmological constant has
no role. Hence, its presence does not modify the evo-
lution of the background and perturbations in that pe-
riod, and the descriptions provided in Refs. [3–7, 10–12]
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can still be considered to be valid at the bounce. The
main difference is originated from processes much before
the bounce, when the initial conditions are set and the
cosmological constant is not irrelevant. In that case, a
Minkowski adiabatic vacuum can only be defined in a
precise time domain, i.e., at the end of cosmological con-
stant domination, but when the Universe was still very
big and rarefied. However, even in this time domain,
as the length scale associated with the cosmological con-
stant, given by the present acceleration of the Universe,
is not much bigger than the long wavelengths of physical
interest today, the spectrum of these scales can still be
slightly affected by the cosmological constant. And in-
deed we will show, analytically and numerically, that the
usual result for bouncing models, namely, that the fluid
should satisfy w ≈ 0 in order to have an almost scale in-
variant spectrum of long wavelength perturbations, still
holds, but the presence of the cosmological constant in-
duces small oscillations and a small running towards a
red-tilted spectrum for these scales.
In the next section, we will present the background

model and obtain the equations for the evolution of cos-
mological perturbations on this background. In section
III, we will discuss the choice of the initial state of the
cosmological perturbations on this background. In sec-
tion IV, we will obtain analytically and numerically the
power spectrum of perturbations for the model presented
in section III, and discuss its physical consequences. We
end up with the conclusions.

II. THE BACKGROUND MODEL AND THE

EQUATIONS FOR SCALAR PERTURBATIONS

The gravitational action we shall begin with is that of
General Relativity with a cosmological constant, i.e.

S
GR

= − 1

6ℓ2
Pl

∫ √−g(R+ 2Λ)d4x, (1)

where ℓ
Pl

= (8πG
N
/3)1/2 is the Planck length in natural

units (~ = c = 1), and Λ is the cosmological constant.
The geometry of the background is given by the spa-

tially flat homogeneous and isotropic line element in con-
formal time:

ds2 = a2(η)(dη2 − δijdx
idxj). (2)

The matter content of the model is described by a
canonical miminimally coupled scalar field ϕ with La-
grangian

L =
1

2
ϕ,αϕ

,α − U(ϕ), (3)

where the potential energy density of the scalar field is
given by

U(ϕ) = U0 sinh
2
(ϕ

F

)

, (4)

U0 =
3(1− w)H2

0ΩΛ

16πG
, F =

√

1

6πG(1 + w)
, (5)

and w is a constant. This potential was already studied
in Refs. [13, 14] for the case w = −1/3.

In the case of a homogeneous and isotropic back-
ground, one can find the scalar field solution

ϕ(t) = ±
√

1

6πG(1 + w)
ln
∣

∣

∣
tanh

[3(1 + w)

4

√

ΩΛH0t
]∣

∣

∣
,

(6)
and under these conditions the energy density and pres-
sure of the scalar field

ǫ =
1

2a2
ϕ′2 + U(ϕ) , p =

1

2a2
ϕ′2 − U(ϕ), (7)

satisfy p = wǫ (a prime denotes derivative with respect
to conformal time).

The Friedmann equations in conformal time read

H2 =
8πG

3
a2ǫ+ a2Λ, (8)

H′ −H2 = −4πGa2(ǫ + p), (9)

and ǫ satisfies the conservation equation

ǫ′ = −3H(ǫ+ p), (10)

where H ≡ a′/a.

In the present situation, where the pressure and energy
density of the matter content satisfy p = wǫ, with w
constant, the solution for the scale factor in terms of
cosmic time dt = a dη reads,

a(t) = a0

(

Ω0ω

ΩΛ

)1/3(1+ω) [

sinh

(

−3
√
ΩΛ(1 + ω)H0

2
t

)]2/3(1+ω)

, (11)
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where H0 = 72 km s−1 Mpc−1 is the present Hubble
parameter, Ω0ω ≡ ǫ0/ǫcrit with ǫcrit ≡ 3H2

0/(8πG), and
ΩΛ ≡ Λ/H2

0 . The subscript 0 indicates the present values
of the respective quantities.
Note from Eqs. (4,7) and p = wǫ that ϕ̇ =

√

2(1 + w)U0/(1− w) sinhϕ/F , and the kinetic energy
of the scalar field grows exponentially with ϕ, as usu-
ally expected for a scalar field in a contracting phase of
a Friedmann model. However, the potential increases in
the same way, and that is why p = wǫ is maintained.
Nevertheless, there is the question about the instability
against initial conditions of this tracking between poten-
tial and kinetic energies of the scalar field in order to keep
p = wǫ in the contracting phase, which is also an issue
for Ref. [4], but note that it is not necessary that this
tracking must be valid all the way to the bounce: here,
as in Ref. [4], we are interested in the spectrum of long
wavelength perturbations, which become comparable to
the Hubble radius in the contracting phase at scales not
much smaller than the Hubble radius today. Hence, our
calculations for the spectrum of long wavelength pertur-
bations should hold even if the tracking p = wǫ ceases
to be valid at smaller scales. This may affect the spec-
trum of small wavelength perturbations, but it will not
affect our forthcoming calculations for long wavelength
perturbations if the tracking p = wǫ holds at scales of
the order of the Hubble radius today, when the contract-
ing Universe is still very big. Hence, in the same way
that the conclusions of Ref. [4] proved to be valid for
more elaborate bouncing models, we expect that the re-
sults we will present later on will also be valid in more
elaborate models containing a cosmological constant.
Note also that as 1/

√
Λ is of the order of the Hub-

ble radius today, then all scales of physical interest had
causal contact in the contracting phase of the model be-
cause the particle horizon in that phase is of the order of
1/

√
Λ.

The evolution of linear scalar perturbations are de-
scribed by the metric

gµν = gbackµν + hµν , (12)

where gbackµν represents the homogeneous and isotropic
cosmological background given in Eq. (2), and the per-
turbations hµν can be decomposed into

h00 = 2a2φ

h0i = −a2B,i (13)

hij = 2a2(ψγij − E,ij).

Due to the constraint equations present in the Ein-
stein’s equations, the evolution of quantum perturbations
in a classical background is described by a single quan-
tum field, the gauge invariant Mukhanov-Sasaki variable
defined by (see Ref. [15] for details)

v ≡ a

(

δϕ+
ϕ′

back

H ψ

)

, (14)

where δϕ is the perturbed scalar field, and ϕback is its
background solution.

The Mukhanov-Sasaki variable satisfies the equation,

v′′ −∇2v − z′′

z
v = 0, (15)

where

z ≡ a2
√

4πGN (ǫ + p)

H . (16)

The equations above are not altered by the presence of
a cosmological constant, essentially because Eqs. (9,10)
are not modified by its presence and because, of course,
δΛ = 0.

In our choice of units a is dimensionless, hence we
will define the dimensionless conformal time η̃ ≡ η/RH ,
where RH ≡ 1/(a0H0) is the co-moving Hubble radius.
From now on we will omit the tilda over η. We will
also work with the dimensionless comoving wavenumber
k ≡ RH/λ, where λ is the comoving wavelength of the
perturbation modes. The region corresponding to long
wavelengths today is the interval 1 < k < 103.

Taking the model with scalar field and scale factor
given by Eqs. (6) and (11), respectively, one obtains that

z(t) = −
√

3(1 + w)

2

a(t)

cosh(γt)
, (17)

and

V (t) ≡ z′′

z
=

ΩΛa
2

a20

{

(1 − 3w)

2

[

1

sinh2(γt)
− (1 + 3ω)

2

]

− 9(1 + w)2

2 cosh2(γt)

}

, (18)
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where

γ ≡ 3
√
ΩΛ(1 + ω)H0

2
, (19)

and a is given by Eq. (11).
Solution (11) is defined in two domains: −∞ < t <

0 and 0 < t < ∞. The first one describes a universe
contracting from an asymptotic de Sitter spacetime in
the far past to a singularity at t = 0. The second one
describes a universe expanding from a singularity at t = 0
to an asymptotic de Sitter expansion in the far future.
Around t = 0, the field dominates the dynamics, and the
cosmological constant is unimportant. These behaviours
can be viewed by taking the limits e.g. , in the contracting
solution, t→ −∞ and t→ 0− in Eq. (11).

For t → −∞, Eq. (11) yields a(t) ≈ exp(−
√
Λt). In

conformal time

η + η∞ =

(

4

Ω0ω

)1/3(1+ω)
exp(

√
Λt)

ΩΛ
(1+3ω)/3(1+ω)

, (20)

where −η∞ < η ≪ 0, and η∞ is a positive constant, the
scale factor behaves as

a(η) =
a0√

ΩΛ(η + η∞)
. (21)

This is the usual de Sitter behaviour. In this case, the
potential (18) reads

V (η) ≡ z′′

z
≈ 9w2 − 1

4(η + η∞)2
, (22)

yielding the equation

v′′k +

[

k2 − (9w2 − 1)

4(η + η∞)2

]

vk = 0.. (23)

This equation is completely equivalent to an equation
for a massive scalar field in a de Sitter spacetime, with
mass given by

m =
3
√
Λ

2

√

1− w2. (24)

Its general solution reads

vk =
√
η
[

b1(k)H
(1)
ν (k(η + η∞)) + b2(k)H

(2)
ν (k(η + η∞))

]

,

(25)

where the H
(1,2)
ν are Hankel functions of first and second

kind, ν = 3w/2. As k(η + η∞) ≪ 1, we can write this
solution as

vk ≈ c1(k)(η+η∞)(1+3w)/2+c2(k)(η+η∞)(1−3w)/2. (26)

For t→ 0−, or η → 0−, one obtains from Eq. (11) that
a(t) ∝ t2/[3(1+w)] or, in conformal time, a(η) ∝ η2/(1+3w).
This is the usual Friedmann evolution for p = wǫ without
a cosmological constant. In this regime, we obtain

V (η) ≡ z′′

z
≈ 2(1− 3w)

(1 + 3w)2η2
. (27)

In this situation, z ∝ a (see Eq. (17)) and z′′/z = a′′/a.
Note that the potential V (t) diverges to ±∞ at the

infinity past for w > 1/3 and w < 1/3, respectively, and
diverges to ±∞ near the singularity at t ∝ η ≈ 0 for
w < 1/3 and w > 1/3, respectively. Hence, it must cross
zero in the middle of the line −∞ < t < 0. In Fig. 1 we
present the behaviours of the potential V (t) for t < 0 in
the cases w < 1/3, w = 1/3 and w > 1/3.
Our idea is that the singularity at t = 0 separating

the contracting and expanding solutions can be elimi-
nated through some new physics which produces a regu-
lar bounce connecting these two phases. As in the region
around t = 0 the cosmological constant is unimportant,
one can evoke the bounce descriptions provided e.g. , in
Refs. [3–7, 10–12]. For instance, the quantum cosmologi-
cal bounces with a perfect fluid studied in Refs. [7, 10–12]
present a regular scale factor given by

a(T ) = ab

[

1 +

(

T

Tb

)2
]

1
3(1−ω)

, (28)

where dT = a1−3wdη, and ab and Tb are positive con-
stants. Note that for |T | ≫ Tb, this solution approaches
the classical Friedmann solution for a perfect fluid given
by the limit t→ 0− of Eq. (11): a(η) ∝ η2/(1+3w). Hence,
the scale factor (11) can be smoothly connected to the
scale factor (28).
It was shown in Ref. [12] that the potential present in

the equations for the perturbations around these quan-
tum bounces reads

V (T ) ≡ a′′

a
=

2 a
3(1−w)
b

3(1− w)T 2
b

[

1

a1+3w
− 2

3

(

T

Tb

)2
a
3(1−w)
b

1− w
a−4

]

,

(29)
where Eq. (28) has been used. Their shapes are presented
in Fig. 2 for the cases w < 1/3, w = 1/3 and w > 1/3, and
they tend to the potential V (t) of Eq. (27) for γt << 1
in the limit |T | ≫ Tb, but they do not diverge in η = 0.
Hence, when these quantum effects become important
near η = 0 inducing the bounce, the two disjoint parts of
the classical potentials presented in Fig. 1 corresponding
to the contracting and expanding classical universes sep-
arated by a singularity can now be softly connected with
the potentials presented in Fig. 2. Then one can evolve
smoothly the perturbations from the contracting phase
to the expanding phase, and calculate their properties in
the present era. For other regular bouncing models, the
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FIG. 1: Behaviour of the potential V (t) given by Eq. (18) for
three different values of w.

situation must be similar, although somewhat more in-
trincate in the case there is an extra field which induces
the bounce.

In order to accomplish this program, one must set the
initial conditions for the perturbations in the past con-
tracting phase. Without the cosmological constant, the
Universe tends, in the far past, to Minkowski spacetime,
where the potentials become null (see Fig. 2). Hence,
an adiabatic Minkowski vacuum can be prescribed there.
In the presence of the cosmological constant, neither the
Universe tends to Minkowski spacetime in the far past
(in fact, it tends to de Sitter spacetime), nor the poten-
tial becomes null there (see Fig. 1, except for w = 1/3,
which is not physically interesting because it does not

-10 -5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

T

a "

a

w=0.01

-3 -2 -1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

T

a "

a

w=1�3

-0.4 -0.2 0.0 0.2 0.4

0

5

10

15

20

25

30

T

a "

a

w=0.98

FIG. 2: Behaviour of the quantum bouncing potential given
by Eq. (28) for three different values of w.

yield an almost scale invariant spectrum of perturba-
tions). However, as we have shown above, the poten-
tial crosses zero somewhere in the middle of its evolution
(which coincides with the moment when physically in-
teresting long wavelengths perturbation modes become
smaller than the Hubble radius), and perhaps one could
define an adiabatic Minkowski vacuum there. We will
show in the next section that this is indeed possible for
the scalar field model presented above.
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III. THE CHOICE OF INITIAL STATE FOR

THE QUANTUM PERTURBATIONS

In this section we will check whether an adiabatic
Minkowski vacuum can indeed be prescribed in the time
interval when the potential (18) is negligible and the
Universe is starting to be dominated by the field. In
this regime the scale factor is approaching the form
a(η) ∝ η2/(1+3w). Taking Ω0ω ≈ 0.3 and ΩΛ ≈ 0.7,
the zero of this potential occurs when y = yV ≡ γtV
(see Eq. (19) for the definition of γ). As yV depends on
the ω parameter, we will consider the following values for
ω < 1/3:

yV (ω ≈ 0) ≈ −0.34 ,

yV (ω ≈ 1/8) ≈ −0.23 ,

yV (ω ≈ 1/4) ≈ −0.13.

Around these points, one can numerically approximate
Eq. (15), now expressed in terms of the modes vk(η),
through

d2vk
dx2

+ (k2 + βx)vk = 0, (30)

where

β ≈ −3(1 + w)
√
ΩΛ

2

( a

a0

dV

dy

)∣

∣

∣

yV

, (31)

yielding

β(ω ≈ 0) ≈ −1.05 ,

β(ω ≈ 1/8) ≈ −1.65 ,

β(ω ≈ 1/4) ≈ −2.31.

and x ≡ η− ηV , with ηV being the dimensionless confor-
mal time corresponding to yV defined above.
It is important to remark the dependence of β with

ΩΛ by looking at Eqs. (11) and (18). Noting that yV is
independent of ΩΛ, and as Ω0w +ΩΛ = 1, one gets

β =
Ω

(1+3w)/[2(1+w)]
Λ (1− ΩΛ)

1/(1+w)

0.7(1+3w)/[2(1+w)]0.31/(1+w)
β0.7, (32)

where β0.7 are the values of β for ΩΛ = 0.7. One can see
that β → 0 as ΩΛ → 0.
Note also that, although yV is independent of ΩΛ, ηV

depends on ΩΛ as

ηV =
0.7(1+3w)/[6(1+w)]0.31/[3(1+w)]

Ω
(1+3w)/[6(1+w)]
Λ (1− ΩΛ)

1/[3(1+w)]
ηV (0.7), (33)

where, again, ηV (0.7) are the values of ηV for ΩΛ = 0.7.
One can see now that ηV → ∞ as ΩΛ → 0, as expected.
In this last calculation, we have assumed that the field
dominates at ηV .
The adiabatic vacuum is defined by the solution

vk(x) =
1

2[Ωk(x)]
1/2

exp

[

−i
∫ x

Ωk(x
′)dx′

]

, (34)

where Ωk(x) must satisfy the equation

Ω2
k = f2

k − 1

2Ωk

d2Ωk

dx2
+

3

4Ω2
k

(

dΩk

dx

)2

, (35)

and f2
k ≡ k2 + βx.

Order by order, one has:

(Ω
(0)
k )2 = f2

k ; (Ω
(2)
k )2 = f2

k

(

1 +
5

16

β2

f6
k

)

(Ω
(4)
k )2 = f2

k

[

1 +
5

16

β2

f6
k

− 490

256

(

β2

f6
k

)2
]

, (36)

where the upper indices (n) denote the order of the ap-
proximation. Hence, an adiabatic Minkowski vacuum
can be obtained if the parameter expansion β2/f6

k sat-
isfies β2/f6

k << 1. In fact, as β is of order unity,
x << 1, and the long wavelengths of physical interest sat-
isfy 1 < k < 103, the condition β2/f6

k ≈ β2/k6 << 1 is
satisfied. Note that for the largest scales (k approaching
1), deviations from the Minkowski vacuum become more
significant, and one should expect modifications against
the standard results.
This problem can be presented under another point

of view. A Minkowski vacuum can be defined for quan-
tum perturbations with wavelengths much smaller than
the Hubble radius, defined by RH(t) ≡ 1/H(t). From
Eq. (11), one obtains that

RH(t) =

√

1

Λ
tanh(−y). (37)

One has to compare this quantity with the physical
wavelength λphys = aλ which, from Eq. (11), reads

λphys = λnowphys

(

Ω0ω

ΩΛ

)1/3(1+ω)

sinh2/3(1+ω)(−y). (38)

The maximum value of RH , at t → −∞, is Rmax
H (t) =

Λ−1/2, while λphys diverges there. Eventually, they can
be comparable at some time in the contracting phase.
As in the case this is true one expects to obtain a similar
spectrum as the one obtained in bouncing models with-
out a cosmological constant, we will concentrate on the
case 0 < w << 1, which yields an almost scale invariant
spectrum. The quantities defined in Eqs. (37) and (38)
are comparable when

Ω
1/3
0ω Ω

1/6
Λ

λnowphys

Rnow
H

≈ sinh1/3(−y)
cosh(−y) , (39)
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where Rnow
H is the Hubble radius today. As

sinh1/3(−y)/ cosh(−y) < 0.73, Ω
1/3
0mΩ

1/6
0Λ ≈ 0.63, and

10−3 < λnowphys/Rnow
H < 1, this equality can be achieved

for some finite domain of y.
Note also from Eq. (39) that this domain interval of y

could be extended to large values of |y| if ΩΛ were much
smaller than our prescribed values. This can also be seen
from the analysis coming from the potential, where a
smaller ΩΛ would result in a smaller β in Eq. (36), and
an adiabatic vacuum could also be achieved for smaller
values of k.

IV. SPECTRUM OF QUANTUM

COSMOLOGICAL PERTURBATIONS

Let us now calculate the spectrum of quantum cos-
mological perturbations for this scenario. In Section III,
we have shown that an adiabatic Minkowski vacuum, for
the case of a canonical scalar field, could be prescribed in
the time interval where the potential becomes negligible
and the Universe is starting to be dominated by the field.

Hence, substituting the zero order term (Ω
(0)
k ) given in

Eq. (36) in the solution (34) of Eq. (30), we obtain

vk(x) ≈
1

2(k2 + βx)1/4
exp

[

− 2ik3

3β

(

1 +
βx

k2

)3/2]

, (40)

and the initial conditions are given by

vk(0) ≈
1

2
√
k
exp

(

− 2ik3

3β

)

, (41)

dvk
dx

∣

∣

∣

x=0
≈ −v(0)

( β

4k2
+ ik

)

. (42)

We have, therefore, to solve

v′′k +

(

k2 − z′′

z

)

vk = 0, (43)

with initial conditions given by Eqs. (41) and (42).

We calculated numerically the solution of Eq. (43) by changing the time variable from η to y, defining a new
function uk ≡ a1/2vk, and setting the above initial conditions at yini = yV . Taking the potential (18), the transformed
equation reads

d2uk
dy2

+

{

4k2

9(1 + w)2[Ω
(1+3w)/2
Λ Ω0w]2/[3(1+w)] sinh4/[3(1+w)](−y)

− w2

(1 + w)2
+

w

(1 + w)2 sinh2(y)
+

2

cosh2(y)

}

uk = 0.

(44)
The results are shown in Fig. 3.
The solutions of equation (43) can be expanded in powers of k2 according to the formal solution [16]

v

z
≃ A1(k)

[

1− k2
∫ η dη̄

z2 (η̄)

∫ η̄

z2 (¯̄η) d¯̄η+ ...

]

+A2(k)

[
∫ η dη̄

z2 (η̄)
− k2

∫ η dη̄

z2 (η̄)

∫ η̄

z2 (¯̄η) d¯̄η

∫ ¯̄η d¯̄̄η

z2
(

¯̄̄η
) + ...

]

, (45)

In Eq. (45), the coefficients A1(k) and A2(k) are two
constants depending only on the wavenumber k through
the initial conditions.

Since expansion (45) is valid at all times during con-
traction, the A1(k) and A2(k) dependencies coming from
the initial conditions hold when the Universe enters the
field dominated phase just before performing the bounce.
From then on, the evolution is guided by the particu-
lar physics of the bounce. For instance, in the quantum
bounce with potentials shown in Fig. 2, everything goes
as described in Ref. [7], with power spectrum in the ex-
panding phase given by

P ∝ k3|A2(k)|2, (46)

and spectral index

nS = 1 +
d ln(P)

d ln(k)
. (47)

This is a general feature of bouncing models: the spec-
trum A2(k) of the growing mode of the contracting phase,
which will be the decaying mode of the expanding phase
after the bounce, is transferred to the growing mode of
the expanding phase and dominates over A1(k). Hence,
to find the spectrum after the bounce one has to obtain
A2(k), which, in the case without cosmological constant,

reads A2(k) ∝ k
3(ω−1)
2(3ω+1) (see e.g., Ref. [7]), yielding the

spectral index

n
S
= 1 +

12ω

1 + 3ω
, (48)



8

10-15 10-12 10-9 10-6 0.001
10-7

10-5

0.001

0.1

10

ÈyÈ

Èu
Hy
LÈ

k=1

k=100

k=1000

w=10-3

10-15 10-12 10-9 10-6 0.001
10-7

10-5

0.001

0.1

10

ÈyÈ

Èu
Hy
LÈ

k=1

k=100

k=1000

w=1�8

10-15 10-12 10-9 10-6 0.001
10-7

10-5

0.001

0.1

10

ÈyÈ

Èu
Hy
LÈ k=1

k=100

k=1000

w=1�4

FIG. 3: Numerical results of Eq. (44) for w = 10−3, 1/8 and
1/4. Each curve shows uk(y) as a function of y for different
values of k, as indicated in the graphs.

with w ≈ 0 for an almost scale invariant spectrum.

In order to analytically predict the behaviour of the co-
efficient A2(k) for the case with a cosmological constant,
we have taken two approximate solutions of Eq. (43) close
to the point where the potential vanishes, where it has
the form given in Eq. (30), and matched them at a point
x∗ = (η∗ − ηV ), where 0 < x∗ << 1.

The first approximate solution comes from Eq. (40),
and is given by

vk(x∗) ≈
1

2
√
k

(

1− βx∗
4k2

)

exp
[

− i
(2k3

3β
+ kx∗

)]

, (49)

while its first derivative reads

dvk
dx

∣

∣

∣

x=x∗

≈ − 1

2
√
k

[ β

4k2
+ ik

(

1 +
βx∗
4k2

)]

× exp
[

− i
(2k3

3β
+ kx∗

)]

. (50)

The second approximate solution comes from the re-
mark that at η∗ and afterwards, up to the bounce phase,
the evolution of the background is dominated by the
scalar field, where the potential approaches the form
given in Eq. (27), yielding the solution

vk(η) =
√
η
[

C1(k)H
1
ν (kη) + C2(k)H

2
ν (kη)

]

, (51)

where ν ≡ 3(1−w)/2(1+3w). In the domain |kη∗| >> 1
this solution reads

vk(η∗) ≈
B1(k)

2
√
k

[

1− α1

2ikη∗

]

+
B2(k)

2
√
k

[

1 +
α1

2ikη∗

]

, (52)

and

dvk
dx

∣

∣

∣

η=η∗

≈ 1

2
√
k

{

B1(k)
[

ik− α1

2η∗

]

−B2(k)
[

ik+
α1

2η∗

]}

,

(53)
where

B1(k) ≡ 2C1(k) exp
[

i
(

kη∗ −
πν

2
− π

4

)]

, (54)

B2(k) ≡ 2C2(k) exp
[

− i
(

kη∗ −
πν

2
− π

4

)]

, (55)

α1 ≡ Γ(ν + 3/2)

Γ(ν − 1/2)
=

2(1− 3w)

(1 + 3w)2
. (56)

Performing the matching between Eqs. (49,50) and
Eqs. (52,53) at η∗, one gets for C1(k) and C2(k),

C1(k) ≈
(

iβ

16k3
− βx∗

8k2

)

exp
[

−i
(2k3

3β
+kx∗+α2

)]

(57)

and

C2(k) ≈ 1

2

(

1 +
iα1

2kη∗
− iβ

8k3

)

× exp
[

− i
(2k3

3β
+ kx∗ − α2

)]

, (58)

where

α2 ≡ kη∗ −
πν

2
− π

4
. (59)

In the limit kη → 0−, just before the new physics which
generates the bounce, the solution vk(η) approximately
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reads

vk(η) ≡ A1(k)η
1/2+ν +A2(k)η

1/2−ν

≈ √
η

{

(

kη

2

)ν
1

Γ(ν + 1)

[

C1(k) + C2(k) +

+ i [C1(k)− C2(k)] cot(νπ)

]

+

+

(

kη

2

)

−ν
i [C2(k)− C1(k)]

Γ(1− ν) sin(νπ)

}

, (60)

and the coefficient A2(k) of the growing mode of the con-
tracting phase is given by

|A2(k)|2 ≈ 1

4

(k

2

)

−2ν 1

[Γ(1− ν) sin(νπ)]2

×
[

1 +
βx∗
2k2

cos(2α2) +
α2
1

4k2η2
∗

− β

4k3
sin(2α2)

]

.(61)

Caculating the spectral index as defined in Eq. (47),
we find

nS = 1 +
12w

1 + 3w
− βx∗η∗

k
sin(2α2)

− 2

k2

[ α2
1

4η2
∗

+
η∗β

4
(1 + 2x∗) cos(2α2) +

η∗β

4
cos(2α2)

]

+
3β

4k3
sin(2α2). (62)

Substituting the parameters w ≈ 0, β ≈ −1.05, |η∗| ≈
|ηV | ≈ 2.19, x∗ << 1, α1 ≈ 2, α2 ≈ kη∗ − π, and 1 <
k < 103 in Eq. (62), we obtain an almost scale invariant
spectrum. Besides the usual 12w/(1 + 3w) result, there
are additional terms in Eq. (62) inducing a running red-
tilted spectrum and oscillations, both decreasing with k.
Note that for a vanishing cosmological constant we have
β ≈ 0 and |η∗| → ∞. In this case, the extra terms in
Eq. (62) disappear and nS → 1 even for small values of
k.
In order to check numerically this analytic calculation,

we took the following steps: from the numerical solutions
uk = a1/2vk presented in Fig. 3, we obtained vk, evalu-
ated it at very small y (y ≈ −10−15), expressed the re-
sult in conformal time (whose relation with y is trivial at
field domination), multiplied the result by η−ν−1/2 (see
Eq. (60)), and differentiated the final result with respect
to η in order to isolate A2(k). The results are shown in
Figs. 4 and 5.
It can be seen that A2(k) and nS follow the predicted

behaviour, A2(k) ∝ k3(w−1)/2(1+3w) and nS ≈ 1 + 12w
1+3w ,

for k & 1. We have also verified that small oscillations
and a red-tilted running with amplitudes decreasing with
k are superimposed to the power law overall behaviour,
as predicted in Eqs. (61) and (62). Note from Fig. 5 that
the oscillations do indeed become smaller for smaller ΩΛ,
showing that they are a consequence of the presence of
the cosmological constant.

1 5 10 50 100 500 1000
10-7

10-5

0.001

0.1

10

k

µ
ÈA

2
Hk
LÈ

w=1�4

w=1�8

w=10-3

FIG. 4: Numerical results for the behaviour of |A2(k)| for
w = 10−3, 1/8 and 1/4 evaluated at y = −10−15. The solid
lines show the numerical results and the dotted ones show,

for comparison, a curve proportional to k
3(ω−1)
2(3ω+1) .

10.05.02.0 20.03.01.5 15.07.0

1.008

1.010

1.012

1.014

1.016

1.018

k

n S

w=10-3

WL=0.7
__

WL=10-3--

WL=10-6.....

FIG. 5: Numerical results for nS(k) evaluated at y = −10−15,
obtained using w = 10−3. The solid line indicates the result
obtained using ΩΛ = 0.7, the dashed line for ΩΛ = 10−3 and
the dotted line for ΩΛ = 10−6. Note that the oscillations
become smaller for smaller ΩΛ, showing that they are due to
the presence of the cosmological constant. This result is in
agreement to Eq. (62).

V. CONCLUSION

In this paper we have investigated the effects of the
presence of a cosmological constant in the contracting
phase of a bouncing model. It turns out that the ini-
tial vacuum state, usually determined in the contracting
phase when the Universe was very large and rarefied, is
affected by the presence of the cosmological constant. In
order to get an almost scale invariant spectrum, one still
must have some phase with dust-like contraction, but
now the spectral index gets a red-tilted running and os-
cillations directly caused by the cosmological constant. It
is interesting to realize that bouncing models allow such
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an important role to the cosmological constant in the
physics of primordial cosmological perturbations, which
is not at all the case for always expanding models. This
opens a new area of research, which is to investigate the
influence of other models of dark energy on the primor-
dial spectrum of bouncing models.. In other words, if
the Universe had really bounced in the past, investigat-
ing its primordial spectrum can yield information about
dark energy.
There is also the question about the possibility of an

enormous growth of perturbation amplitudes in the de-
flationary contraction in the far past of the model, as
discussed in other contexts [17]. Note, however, that the
cosmological constant in our model is small and this al-
most de Sitter deflation will take place when the Universe
was very large compared to the present Hubble radius,
and for a fixed time interval. In conformal time, this time
interval can be estimated using Eq. (20) by saying that
it should be smaller than η∗ + η∞ given by this equation
when t ≈ −1/

√
Λ. Taking the usual values ΩΛ = 0.7 and

Ω0w = 0.3, one can see that η∗ + η∞ < 1. Note that
for a cosmological constant dominated model (Ω0w ≈ 0),
one would obtain η∗ + η∞ >> 1. Let us examine the
behaviour of the Bardeen potential in this phase. From
Eq. (26) we obtain that

Φ ∝ (ǫ+ p)a2

k2H
(v

z

)

′

≈ c1(η + η
∞
)3 +

c2
k2

(η + η∞) (63)

for w = 0. Hence, as this almost de Sitter deflation-
ary phase will not take long enough in conformal time,
η∗+η∞ < 1, because of the smallness of the cosmological
constant, perturbations will not grow alarmingly in this
epoch. Now, once the Universe leaves this deflationary
contraction to a non-deflationary contraction when it is
still very large, then it can be subjected to dissipation
effects, as the ones discussed in Ref. [7], which could dis-
sipate the existing inhomogeneities. Another approach to
this problem should be to think in terms of the Anthropic
Principle and state that the Universe is composed funda-
mentally by a small cosmological constant (dark energy)
and some matter content as the one used in our model
(dark matter?). In many regions it will expand to de

Sitter and it will freeze, in some it will contract inhomo-
geneously, and in a few homogeneous regions within one
particle horizon size it may contract to make a bounce,
where new particles (photons and baryons) will be cre-
ated, and expand again to a Universe with some galaxies
and stars where intelligent life can exist. The results of
our paper can then be applied to this last possibility, the
only one which can interest us. Of course these tenta-
tive answers to this basic question must be worked out
more precisely, but we think that a final and complete
answer to the issue on why the primordial Universe was
so homogeneous, in any cosmological scenario, demands
a theory of initial conditions, perhaps quantum cosmol-
ogy. One interesting investigation should be a quantum
cosmological analysis of eternal asymptotically (in time)
de Sitter models.
Our approach here was concentrated on general fea-

tures of the spectrum of cosmological perturbations in
the presence of a cosmological constant in general bounc-
ing models, and because of that we were not able to fix
the amplitude of the perturbations. Our next step will
be to take a specific model in which the physics at the
bounce fixes the bounce scale, and hence the amplitude
of the perturbations, in order to determine the influence
of the new fetures of the spectrum of primordial pertur-
bations we obtained in this paper in the anisotropies of
the microwave background radiation, and to compare the
results with observations. Another interesting problem
should be to investigate the situation where the required
dust-like contraction was not caused by a scalar field but
by a hidrodynamical fluid with c2s = w. In this case, the
prescription of an adiabatic vacuum can be much more
involved because of the smallness of the sound horizon.
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