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The modulation of whistler waves in nonthermal plasmas is investigated. The dynamics of the
magnetized plasma is described by the fluid equations and the electron velocity distribution function
is modeled via a nonthermal � distribution. A multiscale perturbation analysis based on the Krylov–
Bogoliubov–Mitropolsky method is carried out and the nonlinear Schrödinger equation governing
the modulation of the high-frequency whistler is obtained. The effect of the superthermal electrons
on the stability of the wave envelope and soliton formation is discussed and a comparison with
previous results is presented. © 2011 American Institute of Physics. �doi:10.1063/1.3556125�

I. INTRODUCTION

Since the discovery of whistler waves in the ionosphere
over 100 years ago,1 there has been a great interest in their
complex properties, like strong dispersion and ducting. In
space physics, the name “whistler” usually defines an elec-
tromagnetic �em� wave excited by lightning with all other
excitation mechanisms leading to “whistler-mode waves.” As
in laboratory plasma physics, here we call whistler any wave
propagating in the whistler-mode. Besides ongoing basic re-
search on whistlers and whistler-related phenomena in space
and laboratory plasmas, interesting applications of these
waves have arisen in recent decades. Whistlers have been
traditionally used for remote diagnostics of the Earth’s mag-
netosphere and ionosphere,2 but potential applications such
as predictions of earthquakes and volcanic eruptions,3 the
current drive in toroidal fusion devices,4 and a variety of
industrial applications5 have also been investigated. An inter-
esting review about whistlers and related phenomena in both
space and laboratory plasmas can be found in Ref. 6.

Whistlers are widely observed in the terrestrial magneto-
sphere and plasmasphere, where whistler-related modulated
structures associated with density perturbations have been
observed by recent satellite missions like Cluster,7 Freja,8

and Polar.9 Ionospheric density irregularities related to whis-
tlers have also been observed in natural events and in high-
frequency heating experiments.10 Whistler waves can be ex-
cited in the circumterrestrial plasma by wave-particle
interactions, e.g., via the Landau resonance with propagating
beams or via the cyclotron resonance in plasmas with elec-
tron temperature anisotropy.11,12 On the other hand, wave-
particle interactions can be responsible for the generation of
high-energy tails in the velocity/energy distribution functions
of the plasma particles.13 Superthermal electrons and ions are
a common feature in laboratory14,15 and space plasmas.16,17

However, which specific mechanism is behind the energiza-
tion of the plasma particles is still an open question. It is
believed that long-tail distributions are the result of wave
turbulence18 and that they represent stationary states far from
thermal equilibrium.19

Plasmas containing particles with velocities exceeding
the thermal velocity can present hard accelerated distribu-
tions, which can be conveniently modeled via a nonthermal
distribution function. The family of � distributions first dis-
cussed by Vasyliunas20 has been proven to be appropriate for
modeling non-Maxwellian plasmas. It has been employed to
analyze and interpret data on different plasma environments,
like the solar wind,16,21 the Earth’s magnetosphere22 and
ionosphere,23 and the solar corona.24 The reduced form of the
standard � distribution25 is equivalent to the distribution
function obtained from the maximization of the Tsallis en-
tropy, the q distribution.26 The parameters � and q measure
the deviation from the Maxwellian equilibrium �‘nonther-
mality’� and are related by the expression −�=1 / �1−q�. A
distribution with a small value of � describes a plasma with
an excess of superthermal particles, while in the limit �
→� �q→1�, the Maxwellian distribution is recovered. Tsal-
lis distribution and statistics have also been employed to in-
vestigate many problems in plasma physics,27–30 and some
authors claim that they form the basis to understanding the
observed nonthermal features in space plasmas.25

The dispersion relations predicted by the theory of
waves in a � plasma have been used to determine the index
� in space31 and laboratory experiments.14 A modified
plasma dispersion function for isotropic � distributions has
been obtained32 and successfully applied to the investigation
of electrostatic and both parallel and perpendicularly propa-
gating em waves.33 Recently, the �-Maxwellian distribution
has been introduced as more suitable for modeling magne-
tized plasmas, where the existence of a magnetic field sets a
preferred direction in space.34 The related plasma dispersion
function34 has been used to study obliquely propagating
waves in �-Maxwellian plasmas,33 and it is shown that the
presence of energetic particles can significantly change the
dispersion and damping of whistlers.35

In the present paper, we investigate the nonlinear modu-
lation of a whistler wave propagating in a nonthermal plasma
where electrons are modeled by a � distribution. The modu-
lation of whistlers due to the parametric coupling with low-
frequency wave modes has been discussed in the past by
many authors.36–39 Here we analyze the modulation of thea�Electronic mail: rios@cbpf.br.
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carrier wave due to the coupling with ion-acoustic perturba-
tions, which are ponderomotively driven by the high-
frequency em wave. The nonlinear coupling between the
high-frequency whistler and the electrostatic perturbations
produces an electric field envelope that, if unstable, under-
goes a modulational instability. The presence of a high-
energy tail in the distribution function should considerably
change the rate at which particles and plasma waves ex-
change energy. Therefore, conditions for the onset of insta-
bilities are also modified when compared to those in a
Maxwellian plasma.

This paper is organized as follows: In Sec. II, we discuss
the model and basic equations. The fluid model is used to
describe the dynamics of the magnetized plasma, where elec-
trons behave according to a nonthermal � distribution and
Maxwell’s equations describe the self-consistent electromag-
netic fields. The nonlinear Schrödinger �NLS� equation gov-
erning the modulation of the carrier wave is discussed in
Sec. III, where we also review the derivation of the pondero-
motive force acting on the plasma electrons. The NLS equa-
tion and the ponderomotive force are derived through a
multiscale perturbation analysis based on the Krylov–
Bogoliubov–Mitropolsky �KBM� method, with further de-
tails given in the Appendix. In Secs. IV and V, we discuss the
role of electron nonthermality �via parameter �� on the sta-
bility of the wave envelope and soliton formation, respec-
tively. The influence of the superthermal particles on the
growth rate of the modulational instability is investigated
and a comparison with previous results is presented. Section
VI is devoted to a summary of our results and some
conclusions.

II. MODEL AND BASIC EQUATIONS

The family of isotropic �three-dimensional� � distribu-
tions has the form

f��v� =
1

����2�3/2
��� + 1�

��� − 1/2�
�1 +

v2

��2�−��+1�

, �1�

where v is the particle velocity, ��x� is the gamma function,
and �= ���−3 /2� /��1/2vT is a generalized thermal speed re-
lated to the usual thermal speed vT=�2kBT /m. Note that
these distributions are properly defined only for ��3 /2. The
correct form of the � velocity distribution has been the sub-
ject of recent discussion.40,41 The expansion of Eq. �1� in
the limit �→� reveals the similarity between the � and
Maxwellian distributions.40

We consider a whistler wave propagating in a nonther-
mal magnetized electron-ion plasma. Whistlers are right-
hand circularly polarized electromagnetic electron-cyclotron
waves propagating in magnetized plasmas at frequencies be-
low the local electron-cyclotron frequency, �	�ce, where
�ce=eB0 /mec and B0 is the strength of the local magnetic
field. Assuming a field-aligned propagating wave, its disper-
sion relation is given by

c2k2

�2 = 1 −
�pe

2 /�2

�1 − �ce/��
, �2�

where �pe= �4�e2N0 /me�1/2 and N0 are the electron plasma
frequency and equilibrium plasma density, respectively. As
we can see, for whistlers, the phase velocity v
=� /k is al-
ways smaller than the speed of light c.

The em wave travels along the external magnetic field
B=B0ẑ and as it propagates, low-frequency electron density
fluctuations are generated due to the wave ponderomotive
force. The electrons are then subject to a total potential
�e=�sc+�p, where �sc and �p are the electrostatic and pon-
deromotive potentials, respectively. The ions follow the elec-
tron motion and are also subject to the space-charge poten-
tial, but their response to the high-frequency field can be
neglected. Using the energy conservation relation, we can
write the � distribution function for the plasma electrons in
the following form.

f��ve� =
N0

���e�e
2�3/2

���e + 1�
���e − 1/2�

��1 +
ve

2 − 2e�e/me

�e�e
2 �−��e+1�

. �3�

Integrating the � distribution �Eq. �3�� over velocity space,
one obtains the electron number density,

Ne�
e� = N0	1 −

e

��e − 3/2�
−��e−1/2�

, �4�

where Te is the electron temperature, 
e=e�e /kBTe, and kB

is the Boltzmann constant. The pressure is given by
Pe=me /3�ve

2f��ve�d3ve,

Pe�
e� = P0	1 −

e

��e − 3/2�
−��e−3/2�

, �5�

where P0=N0kBTe is the plasma pressure in the equilibrium
state.

We now assume that the normalized potential 
e is much
smaller than one �e�ekBTe�. Therefore, we can expand
Eqs. �4� and �5� around 
e=0 to obtain

Ne�
e� = N0�1 + �0
e + �1
e
2 + �2
e

3. . .� , �6�

Pe�
e� = P0�1 + 
e + �0
e
2 + �1
e

3. . .� , �7�

where �0 ,�1 , . . . ,�0 ,�1 , . . . are constants depending on �e.
Since we are considering the weak nonlinear regime, only
the first nonlinear terms are kept, i.e.,

ne = 1 + �0
e + �1
e
2, �8�

pe = 1 + 
e + �0
e
2, �9�

where ne=Ne /N0 and pe= Pe /N0kBTe are the normalized
electron density and pressure, respectively, and
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�0 = ��e − 1/2�/��e − 3/2� ,

�1 = ��0��e + 1/2��/�2��e − 3/2�� , �10�

�0 = �0/2.

Equations �8� and �9� together play the role of an ‘equation
of state’ for the nonthermal electron plasma. As we will see,
these equations are considered only when the longitudinal
�slow� motion of the plasma is investigated. We would like to
point out that Eqs. �8� and �9� are valid only when longitu-
dinal waves with v
vTe are considered, since in the limit
�e→�, the Boltzmann distribution is recovered �Eq. �8��.

The wave equation governing the propagation of a trans-
verse electron whistler in a magnetized plasma is

��2 −
1

c2

�2

�t2�A =
4�e

c
Neve�, �11�

where A= �Ax ,Ay ,0� is the vector potential and the
electromagnetic fields are given by E=−�1 /c��A /�t and
B=��A. The electron quiver velocity ve�= �vex ,vey ,0�
obeys the transverse component of the electron equation of
motion,

me� �

�t
+ ve · ��ve = − eE −

e

c
�ve � �B0 + B�� −

�Pe

Ne
,

�12�

with ve=ve�+vezẑ. The contribution of the generalized ther-
mal pressure Pe has been taken into account since we plan to
study the effect of the superthermal electrons on the propa-
gation of the whistler wave. As mentioned earlier, the high-
frequency wave travels along the z-direction. Here we con-
sider the one-dimensional problem and assume that all
quantities vary only with z, which turns Eq. �11� into

� �2

�z2 −
1

c2

�2

�t2�A =
4�e

c
Neve�, �13�

and the transverse component of Eq. �12� becomes

� �

�t
+ vez

�

�z
��ve� −

eA

mec
� = �ce�ẑ � ve�� . �14�

As the em wave propagates, the electrons are also accel-
erated in the longitudinal direction due to the combined ac-
tion of the ponderomotive and the restoring electrostatic
forces. The longitudinal electron motion is described by the
component z of Eq. �12�,

� �

�t
+ vez

�

�z
�vez = −

e

me
Ez −

e

mec
�vex

�Ax

�z
+ vey

�Ay

�z
�

−
1

meNe

�Pe

�z
, �15�

where Ez stands for the longitudinal electrostatic field. The
quantities Ne and vez are related by the continuity equation,

�Ne

�t
+

��Nevez�
�z

= 0. �16�

The ions do not experience the ponderomotive force but also
move in the longitudinal direction due to the electrostatic
field,

� �

�t
+ viz

�

�z
�viz =

e

mi
Ez, �17�

and the ion continuity equation

�Ni

�t
+

��Niviz�
�z

= 0, �18�

relates the ion density to the ion velocity viz.

III. KBM METHOD AND NLS EQUATION

We now investigate the nonlinear modulation of the em
wave by the low-frequency ion-acoustic perturbations. To
analyze the long time behavior of the high-frequency field,
we carry through a multiscale perturbation analysis based on
the Krylov–Bogoliubov–Mitropolsky �KBM� method.42 It is
shown here that the KBM method is useful in obtaining the
nonlinear Schrödinger �NLS� equation describing the ampli-
tude modulation of the whistler wave and also the expression
for the ponderomotive force acting on the plasma electrons.
An advantage of this method is that it is conceptually natu-
ral: It consists of varying the amplitude of the wave so
slowly that no secular terms can arise. First, all the transverse
quantities are considered weakly nonlinear waves,

f = �f1�a,a�,�� + �2f2�a,a�,�� + �3f3�a,a�,�� + . . . ,

�19�

where f stands for any physical quantity. We can see that all
the transverse quantities are functions of the complex ampli-
tude a, its complex conjugate a�, and the fast variable
�=kz−�t. In the above expression, ��O�a�1 and all the
significant terms up to order �3 are kept. As we will see, this
order of approximation is enough for our purpose in this
paper. The complex amplitude of the em wave is assumed to
be a slowly varying function of z and t through the relations

�ta = �A1�a,a�� + �2A2�a,a�� + �3A3�a,a�� + . . . ,

�20�
�za = �B1�a,a�� + �2B2�a,a�� + �3B3�a,a�� + . . . .

Equivalent relations can be written for a�. From Eq. �15�, it
is straightforward to see that the longitudinal quantities are
connected to the transverse ones through the Lorentz force.
Therefore, the lowest order term in the expansion of the lon-
gitudinal quantities originates from the product of two first
order perturbations. The normalized electron density can
then be written as

ne = 1 + �2ne2, �21�

and all the longitudinal variables take the form f = f0+�2f2,
where f0 is the value of f for the equilibrium state. Here, the
approximation up to order two is enough �also shown later�.
The low-frequency oscillations depend on the amplitude a
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�and a�� but not on the phase �, as will be seen when we
analyze the longitudinal motion.

The perturbation analysis is first applied to the transverse
equations. The procedure is very similar to the one presented
in our previous work for the linearly polarized em waves43

and the details are omitted here. Nonetheless, they can be
found in the Appendix. After applying the perturbation
method to the transverse equations, we get, to order �3,

i� �a

�t2
+ vg

�a

�z2
� +

1

2

dvg

dk

�2a

�z1
2 −

vg��pe
2

2kc2�� − �ce�

�	ne2 +
k�ce

��� − �ce�
vez2
a = 0, �22�

where t2=�2t=�t1 and z2=�2z=�z1 �the amplitude a of the
EM wave is normalized to mec

2 /e�. In the above equation,
vez2 is the second order longitudinal electron velocity
�vez=�2vez2�, vg is the group velocity of the whistler wave,
P= �1 /2�dvg /dk is the dispersion coefficient, and

� = −
vg��pe

2

2kc2�� − �ce�
	ne2 +

k�ce

��� − �ce�
vez2
 . �23�

The above nonlinear equation describes the modulation of
the em wave envelope. It is very similar to those used in
earlier works and which were derived by different perturba-
tion methods36–39 �in particular, this is the same equation
used in Ref. 39�. When compared to previous equations, the
differences in Eq. �22� are seen to be caused by the absence
of weak relativistic effects38 and by our one-dimensional
treatment.36,37

We now consider the equations describing the longitudi-
nal motion. Applying the perturbation method to Eq. �15�,
we obtain �O��2��

me
�vez2

�t
= − eEz2 −

1

N0

�Pe2

�z
+ fpz, �24�

where

Pe2

P0
= pe2 =

��e − 3/2�
��e − 1/2�

ne2, �25�

is derived from Eqs. �8� and �9� in their perturbed form and

fpz = − mec�vex1
�ax1

�z
+ vey1

�ay1

�z
� , �26�

is the ponderomotive force acting on the electrons. Here,
ax1=aei�+c .c., ay1= iaei�+c .c., vex1, and vey1 are the first
order components of the normalized vector potential and the
electron quiver velocity, respectively �see Appendix�, and
c .c. is the complex conjugate. If the definitions of ax1 and
ay1 and the higher-order corrections to vex1 and vey1 are taken
into account, Eq. �26� turns into

fpz = −
2me�c2

�� − �ce�
	 � a2

�z
−

k�ce

��� − �ce�
� a2

�t

 . �27�

Further details about this calculation can be found in the
Appendix. Equation �24� now becomes

�vez2

�t
= −

eEz2

me
− cse

2 �ne2

�z
−

2�c2

�� − �ce�

�	 � a2

�z
−

k�ce

��� − �ce�
� a2

�t

 , �28�

where Ez2 is the second order electrostatic field and
cse= �kBTe /me�0�1/2 is the generalized electron thermal
speed.

From the above equation and the perturbed form of Eqs.
�16�–�18�, we obtain a wavelike equation for the plasma den-
sity fluctuations,

� �2

�t2 − csi
2 �2

�z2�ne2

=
2�ei�c2

�� − �ce�
	 �

�z
−

k�ce

��� − �ce�
�

�t

 � a2

�z
, �29�

where �ei=me /mi, csi= ��ei�1/2cse, and the quasineutrality
condition ne2�ni2 has been assumed. In deriving Eq. �29�,
the electron inertia in Eq. �28� has also been neglected. It is
clear from the previous equation that the ion-acoustic oscil-
lations are driven by the ponderomotive force.

Let us assume that the low-frequency perturbations are
functions of the variable �= �z−vgt�. Then we can write
� /�t=−vg� /��, � /�z=� /��, and Eq. �29� becomes

�vg
2 − csi

2 �
�2ne2

��2 =
2�ei�c2

�� − �ce�
	1 +

k�cevg

��� − �ce�

 �2a2

��2 . �30�

Integrating the above equation and assuming a vanishing
density perturbation at infinity, we get

ne2 =
2�eic

2��2 + �ce�kvg − ����a2 − a�2�
�� − �ce�2�vg

2 − csi
2 �

. �31�

Comparing the above equation with the expressions derived
for ne2 in the case of a linearly polarized em wave �Eq. �56�
in Ref. 43�, it is easily seen that those are harmonics of the
high-frequency field, different from the result obtained here
for a circularly polarized wave.

Back to Eq. �22�, we now consider waves whose phase
velocity is small compared to the speed of light, � /ck1. In
this limit, the dispersion relation �Eq. �2�� reduces to

� =
�cec

2k2

��pe
2 + c2k2�

, �32�

a familiar expression for parallel propagating whistlers. This
expression can be further reduced to ���cec

2k2 /�pe
2 if we

consider the long-wavelength limit k�pe /c. The group ve-
locity becomes vg=−2���−�ce� /�cek, which leads us to
write the coefficient � in the form

� =
�pe

2 �2

�cek
2c2	ne2 −

2vez2

vg

 . �33�

If we assume that vez2 is much smaller than the group veloc-
ity, Eq. �22� can be rewritten as
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i� �a

�t2
+ vg

�a

�z2
� +

1

2

dvg

dk

�2a

�z1
2 −

2�ei�pe
2 �3�a2 − a�2�

�cek
2�� − �ce��vg

2 − csi
2 �

a

= 0, �34�

where now

ne2 = −
2�ei�c2�a2 − a�2�
�� − �ce��vg

2 − csi
2 �

. �35�

Introducing the coordinate transformation �= �1 /��
��z2−vgt2�=�� and �= t2, it is easily seen that Eq. �34� can
be transformed into the nonlinear Schrödinger equation,

i
�a

��
+ P

�2a

��2 + Q�a2 − a02�a = 0, �36�

where

P =
vg

2k�ce
��ce − 4�� , �37�

and

Q = −
2�ei�pe

2 �3

�cek
2�� − �ce��vg

2 − csi
2 �

, �38�

is the nonlinear coefficient. A finite value for a as �→ ��
has been assumed in Eq. �36�, a��a0. In going from
Eq. �34� to Eq. �36�, the term −Qa�2a can be removed.
This term is not so essential since it simply leads to a
phase shift in a, and it can be eliminated by setting
a→a exp�−iQa�2��. Equation �36� shows that, up to order
�3, a wave packet traveling at the group speed has its ampli-
tude a modified due to the linear dispersion and the action of
nonlinear effects.

The diffusion of the wave packet due to the dispersion in
a magnetized plasma can appear independently of nonlinear
effects. The fact that in our analysis both terms appear in the
same order can be understood if we analyze Eq. �22�. The
last term on the right-hand side �RHS� is clearly of order �3

since it results from the product of the amplitude a �O����
and quantities of order �2 �ne2 and vez2�. The dispersion term
becomes of order �3 due to our assumption that a varies
slowly with space and time according to the expressions
given in Eq. �20�. This is equivalent to the slowly varying
envelope approximation �SVEA�, where one assumes that
the envelope of a em wave pulse varies slowly in time and
space compared to a period or wavelength, i.e.,

� �a

�t
�  �a, � �a

�z
�  ka . �39�

For the space variable z, the previous approximation leads to
a /L ka, where L is the characteristic length of the
wave packet. Thus, we can say that the implicit condition
1 /kL1 is responsible for the appearance of the dispersion
and nonlinear terms in the same order in �. The first term on
the RHS of Eq. �22� simply represents the undistorted trans-
mission of the wave packet at the group speed vg �an equiva-
lent term appears when we consider the O��2� terms, see
Appendix�.

IV. MODULATIONAL INSTABILITY

A modulational instability arises when a whistler wave
propagates in a nonlinear dispersive medium. As the wave
travels through the plasma, it modifies those parameters
which affect its dispersion and thereby modifies its propaga-
tion and amplitude.6

To investigate the effect of electron nonthermality on the
stability of the modulation envelope described by the NLS
equation, we follow the standard analysis of Hasegawa.44

First, small perturbations on the phase and the amplitude of
the wave envelope are considered. After that, a linear analy-
sis shows that the mentioned perturbations cause a linear
modulation with frequency � and wavenumber K obeying
the dispersion relation

�2�K� = PK2�PK2 − 2Qa02� , �40�

where �� and Kk. From the above relation, we can see
immediately that for QP �or Q / P� 	0 the envelope is modu-
lationally stable for any value of K. On the other hand, if
Q / P�0, �2 becomes negative for K	Kcr= �2Q / P�1/2a0. It
means that, for a long-wavelength perturbation, the envelope
becomes unstable and undergoes a modulational instability
with a growth rate given by

� = PK�2a02
Q

P
− K2�1/2

, �41�

with the maximum growth attained for Kmax= �Q / P�1/2a0.
The nonlinear coefficient Q and the growth rate �, as well as
Kcr and Kmax, depend on �e. Thus, some influence of the
electron nonthermality on the behavior of the mentioned
quantities is expected.

For the numerical examples in the sequel, we consider
parameters valid for the Earth’s magnetopause,39,45,46 i.e.,
N0=10 cm−3, kBTe=8.5�102 eV, and a0=10−4. From
Eqs. �37� and �38� in the previous section, we notice that to
have Q / P�0, the condition

��ce − 4���vg
2 − csi

2 � � 0 �42�

must be fulfilled. From the above condition, we detect
two possible regions of instability: The first one, where
�	�ce /4 and vg�csi, and a second one, with ���ce /4 and
vg	csi.

First, we analyze the frequency range �	�ce /4. It im-
plies k	kcr, where kcr=�pe /�3c�3.4�10−4 m−1 for the
given plasma density. In Fig. 1, we plot the normalized group
velocity �g=vg /c versus the wavenumber k of the em wave
for B0=100 nT �10−3 G�. At the bottom of the figure are the
curves representing csi /c for extreme values of �e ��e=1.6
and 500�. As we can see, vg is larger than csi in almost the
whole range of interest ��=2� /k of the order of kilometers�.
However, vg�csi for k	kcr and no effect of electron non-
thermality is observable in this range. It is important to men-
tion that this is the interval where the whistler waves become
unstable due to the coupling with the ion-acoustic oscilla-
tions according to Ref. 39.

A second interval where the modulational instability can
occur is given by �ce /4	�	�ce, which corresponds to
k�kcr. In Fig. 1 we observe that as k increases, the group
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velocity becomes comparable to the sound speed csi and the
influence of the energetic electrons starts to appear. In Fig. 2,
we show how Q / P varies with k for three different values of
�e �1.6, 2.8, and 5�. We can see that the electron nonthermal-
ity affects the value of Q / P and also the wavenumber kl

where it changes its sign. The presence of the energetic par-
ticles seems to increase the value of Q / P and also the wave-
number �kl� where the em envelope becomes unstable. Since
Q / P is larger for plasmas containing superthermal electrons,
smaller growth rates are expected for plasmas close to the
thermal equilibrium ��e→��. This can be observed in
Figs. 3 and 4, where we plot the maximum growth rate and
� for k=6�10−3 m−1, B0=100 nT, and different values of
�e. Hence, the effect of the superthermal electrons is to in-
crease the growth rate and the instability window given by
0	K	Kcr. We point out that our results are different from
those obtained in Ref. 45, where the growth rate of the
modulational instability of whistlers has been seen to de-
crease due to the influence of energetic particles. This kind of
effect is observed when only the first term in the expression

of the ponderomotive force �Eq. �27�� is considered; for ex-
ample, what causes a change in the sign of Q / P.

V. BRIGHT SOLITONS

It is known that the NLS Eq. �36� admits localized solu-
tions in the form of envelope solitons generated due to the
combined effects of dispersion and nonlinearity.44 In the case
when the envelope is modulationally unstable �Q / P�0�,
wave collapse may lead to the formation of localized slowly
varying structures called bright solitons. These localized so-
lutions can be written in the form

a��,�� = ����,��ei���,��, �43�

where the real part is given by
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0.04

0.06

k

β
g

FIG. 1. �Color online� The normalized group velocity �g for B0=100 nT
�solid line� compared to csi /c evaluated for different values of �e.
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FIG. 2. �Color online� Q / P �m−2� vs k �m−1� for B0=100 nT and �e=1.6
�solid line�, �e=2.8 �dashed line�, and �e=5 �dotted line�.
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FIG. 3. �max �s−1� vs �e for k=6�10−3 m−1 and B0=100 nT.
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FIG. 4. �Color online� � �s−1� vs K �m−1� for k=6�10−3 m−1,
B0=100 nT and �e=1.8 �solid line�, �e=2.5 �dashed line�, �e=8
�dotted line�, �e=20 �dot-dashed line�, and �e=100 �dot-dot-dashed line,
Maxwellian case�.
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� = �0 sech2����0�� . �44�

In the above expression, �0 is the soliton amplitude,
�=Q / P, and �=�0� /2. Like in the case of the growth rate �,
here, no effect of the superthermal particles is observed for
k	kcr. For the interval k�kcr �with vg	csi�, the presence of
the energetic electrons causes �0 to decrease. This can be
seen in Fig. 5, where the amplitude is displayed for
�=10−2, k=6�10−3 m−1, B0=100 nT, and four different
values of �e.

VI. SUMMARY

In the present work, we investigate the modulation of
whistler waves in nonthermal plasmas where electrons are
modeled by a � distribution. The nonlinear modulation of the
high-frequency wave due to the coupling with low-frequency
ion-acoustic perturbations is considered. The fluid model is
used to describe the dynamics of the magnetized electron-ion
plasma and a multiscale perturbation analysis based on the
KBM method is carried out to derive the ponderomotive
force and the NLS equation governing the modulation of the
em wave. The influence of the superthermal electrons on the
stability of the wave envelope is investigated and it is shown
that the energetic particles significantly affect the wavenum-
ber range where the em wave becomes unstable. Our results
also show that the em envelope can become unstable for
���ce /4 and that for the considered conditions, the effect
of electron nonthermality is to increase the growth rate of the
modulational instability as well as the instability window. It
is important to point out that the mentioned effects are no-
ticeable only for large values of the wavenumber k �com-
pared to kcr=�pe /�3c�. The influence of the energetic par-
ticles on soliton formation is also discussed and we notice
that the apparent effect of nonthermality is to decrease the
amplitude of the bright solitons.

ACKNOWLEDGMENTS

We thank the referee for his/her constructive comments
and suggestions. This work has been supported by the Bra-
zilian Agencies CNPq �INCT-SC�, CAPES, and FAPERJ.

APPENDIX: DERIVATION OF THE NLS EQUATION
AND THE PONDEROMOTIVE FORCE

First, the transverse perturbations are written in the fol-
lowing form.

	Al

vel

 = �	Al1

vel1

 + �2	Al2

vel2

 + �3	Al3

vel3

 + . . . , �A1�

where l=x or y. The perturbation technique is first applied to
Eq. �13�. Substituting Eqs. �21� and �A1�into Eq. �13� and
separating powers of �, we get, to the first order in �,

�2al1

�z2 −
1

c2

�2al1

�t2 =
�pe

2

c3 vel1, �A2�

where al1=eAl1 /mec
2 �l=x ,y� are the components of the first

order normalized vector potential a1 �a1=ax1x̂+ay1ŷ�. Fol-
lowing the same steps, we now apply the perturbation tech-
nique to Eq. �14� and obtain

�

�t
��ex1 − ax1� = − �ce�ey1, �A3�

and

�

�t
��ey1 − ay1� = �ce�ex1, �A4�

where �el1=vel1 /c. As a starting solution to the first order
normalized vector potential a1, we choose

a1 = a�x̂ + iŷ�ei� + a��x̂ − iŷ�e−i�. �A5�

The electric field to the lowest order then becomes

E1 =
imec�

e
�a�x̂ + iŷ�ei� − a��x̂ − iŷ�e−i�� . �A6�

From Eqs. �A2� and �A5�, we obtain the first order electron
quiver velocity,

ve�1 =
c��2 − c2k2�

�pe
2 �a�x̂ + iŷ�ei� + a��x̂ − iŷ�e−i�� . �A7�

For a solution different from the trivial one �ax1=ay1=0�, we
obtain from Eqs. �A3� and �A4� the dispersion relation �2�:
D�� ,k�=�2−c2k2−��pe

2 / ��−�ce�=0.
Back to the perturbed form of Eqs. �13� and �14�, we

now collect the terms of order �2 and get

− � �D

��
A1 −

�D

�k
B1�ei� +

�2

�� − �ce�
�3ax2

��3 + �
�ax2

��

−
��ce

�� − �ce�
�2ay2

��2 + c . c . = 0, �A8�
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FIG. 5. �Color online� �= a2 vs � for k=6�10−3 m−1, B0=100 nT and
�e=2 �solid line�, �e=8 �dashed line�, �e=20 �dotted line�, and �e=100
�dot-dashed line, Maxwellian case�.
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− i� �D

��
A1 −

�D

�k
B1�ei� +

�2

�� − �ce�
�3ay2

��3 + �
�ay2

��

+
��ce

�� − �ce�
�2ax2

��2 + c . c . = 0, �A9�

where �D /��=1− �2���−�ce�+�2−c2k2� /�pe
2 , �D /�k

=2kc2��−�ce� /�pe
2 , and c .c. is the complex conjugate to the

first term in both previous equations. In finding Eqs. �A8�
and �A9�, we have used the operators

�t = ��A1�a + A1
��a�� + �2�A2�a + A2

��a�� − ��� + O��3� ,

�A10�
�z = ��B1�a + B1

��a�� + �2�B2�a + B2
��a�� + k�� + O��3� .

In order to make the solutions ax2 and ay2 free from secular
terms �� proportional terms�, the first term in Eqs. �A8� and
�A9� and its complex conjugate must be set equal to zero. It
leads to the condition

A1 + vgB1 = 0, �A11�

and its complex conjugate relation. Here,

vg = −
�D

�k
/
�D

��
=

d�

dk
=

2kc2�� − �ce�
��2 − c2k2 − �pe

2 + 2��� − �ce��
,

�A12�

is the group velocity of the transverse whistler. From Eq.
�20�, it turns out that A1 and B1 can be written as �a /�t1 and
�a /�z1 to the lowest order in �, where t1=�t and z1=�z.
Thus, the above relation may be interpreted as �a /�t1

+vg�a /�z1�0, which means that up to order �2, the ampli-
tude a is constant in the rest frame of the wave packet. Solv-
ing now the coupled Eqs. �A8� and �A9� for ax2 and ay2

yields

a2 = ax2x̂ + ay2ŷ = C1�x̂ + iŷ�ei� + C1
��x̂ − iŷ�e−i�, �A13�

where C1 and C1
� are arbitrary functions of a and a�.

Proceeding further in the perturbation analysis, we get,
to order �3,

− 	� �D

��
A2 −

�D

�k
B2� +

i

2
�vg

2�2D

��2 + 2vg
�2D

�� � k
+

�2D

�k2 ��B1
�B1

�a
+ B1

��B1

�a� �
ei� + i	�ne2 +
k�ce

�� − �ce�
vez2
aei�

+
�2

�� − �ce�
�3ax3

��3 + �
�ax3

��
−

��ce

�� − �ce�
�2ay3

��2 + c . c . = 0, �A14�

− i	� �D

��
A2 −

�D

�k
B2� +

i

2
�vg

2�2D

��2 + 2vg
�2D

�� � k
+

�2D

�k2 ��B1
�B1

�a
+ B1

��B1

�a� �
ei� − 	�ne2 +
k�ce

�� − �ce�
vez2
aei�

+
�2

�� − �ce�
�3ay3

��3 + �
�ay3

��
+

��ce

�� − �ce�
�2ax3

��2 + c . c . = 0. �A15�

In deriving Eqs. �A14� and �A15�, we have used the operator

A1
�

�a
+ A1

� �

�a�
= − vg�B1

�

�a
+ B1

� �

�a�� , �A16�

and the relations �2D /��2=−2�3�−�ce� /�pe
2 , �2D /���k

=2kc2 /�pe
2 , and �2D /�k2=2c2��−�ce� /�pe

2 , besides relation
Eq. �A11�. For the solutions ax3 and ay3 to be secular-free, it
is necessary that

�i� �D

��
A2 −

�D

�k
B2� +

1

2

�D

��

dvg

dk
�B1

�B1

�a
+ B1

��B1

�a� �
+ 	�ne2 +

k�ce

�� − �ce�
vez2
a�ei� = 0, �A17�

as well as its complex conjugate relation. In writing the
above expression, we have introduced the definition

dvg

dk
= −

�vg
2�2D/��2 + 2vg�

2D/�k � � + �2D/�k2�
�D/��

.

�A18�

Dividing Eq. �A17� by �D /�� and noting that

A2 =
�a

�t2
−

A1

�
,

B2 =
�a

�z2
−

B1

�
, �A19�

B1
�B1

�a
+ B1

��B1

�a�
=

�2a

�z1
2 ,

where t2=�t1 and z2=�z1, one then obtains
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i� �a

�t2
+ vg

�a

�z2
� +

1

2

dvg

dk

�2a

�z1
2 −

vg��pe
2

2kc2�� − �ce�

�	ne2 +
k�ce

��� − �ce�
vez2
a = 0. �A20�

The above equation describes the modulation of the em wave
envelope.

We now derive the expression for the ponderomotive
force, Eq. �27�. Back to Eq. �A7�, the expressions for vex1

and vey1 were derived from Eqs. �A2� and �A5� keeping only
the O��� terms. Thus, higher-order corrections can be incor-
porated if we include the terms of order �2 and higher in the
derivation of vex1 and vey1. These corrections are important
for the determination of the ponderomotive force acting on
the plasma electrons, as will be shown soon. Using Eqs. �A2�
and �A5� and keeping the higher-order terms, we get

vex1 =
c��2 − c2k2�

�pe
2 aei� +

2ic

�pe
2 �kc2�a

�z
+ �

�a

�t
�ei�

+ c . c . , �A21�

vey1 =
ic��2 − c2k2�

�pe
2 aei� −

2c

�pe
2 �kc2�a

�z
+ �

�a

�t
�ei� + c . c. ,

�A22�

where only the first order derivatives were maintained. Ana-
lyzing Eqs. �A21� and �A22�, we observe that only the first
term in each expression is a O��� term; the other terms are of
higher-order �see Eq. �20��. If we now use the definition of
the ponderomotive force, Eq. �26�, the following result is
obtained �O��3��.

fpz = −
2mec

2�

�pe
2 ���2 − k2c2��a�B1 + aB1

��

+ 2k2c2�a�B1 + aB1
�� + 2�k�a�A1 + aA1

��� , �A23�

where the higher-order terms in the derivatives of ax1 and ay1

have been kept. It is easy to check that if only the terms of
order � in vex1, vey1, �zax1, and �zay1 are considered,
the ponderomotive force becomes null. The second term in
the RHS of Eq. �A23� can be rewritten using Eqs. �20�,
�A11�, and �A12� and becomes −�2k2c2 /vg��a�A1+aA1

��.
With the help of Eq. �2� and writing A1

���=�a��� /�t1 and
B1

���=�a��� /�z1, we finally obtain the well-known expression
for the ponderomotive force,

fpz = −
2me�c2

�� − �ce�
	 � a2

�z
−

k�ce

��� − �ce�
� a2

�t

 . �A24�

The above equation can also be expressed in terms of the
electric field,

fpz = −
�pe

2

16�N0��� − �ce�
	 � E2

�z
−

k�ce

��� − �ce�
� E2

�t

 ,

�A25�

where E1=1 /2Eei�+c .c. and E= �2imec� /e��a�x̂+ iŷ��. This
is the same expression derived by Karpman and Washimi in
Ref. 37 for a right-hand circularly polarized em electron-

cyclotron wave propagating along the magnetic field in the
z-direction.
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