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The self-modulation of a linearly polarized electromagnetic wave propagating in a non-Maxwellian
plasma is investigated. The plasma electrons �ions� obey a � distribution function, which has been
proved to be appropriate for modeling nonthermal distributions. The fluid model is used to describe
the plasma dynamics, and a multiscale perturbation analysis is carried out to obtain the nonlinear
Schrödinger equation governing the modulation of the high-frequency field. The effect of
superthermal particles on the modulation of the wave and soliton formation is discussed.
© 2010 American Institute of Physics. �doi:10.1063/1.3389228�

I. INTRODUCTION

Propagation and nonlinear processes associated with lin-
early polarized electromagnetic �EM� waves in plasmas have
been extensively studied, with particular attention to topics
such as particle acceleration and self-modulation in
laboratory1–4 and space and astrophysical plasmas.5–9 The
propagation of linearly polarized EM waves in plasmas is a
far more complex problem than the propagation of circularly
polarized EM waves, since it results in harmonic
generation.10 These harmonics consist of longitudinal oscil-
lations generated by the ponderomotive force of the EM
wave. The nonlinear coupling of the EM wave �high fre-
quency� with the electrostatic perturbations causes the ampli-
tude modulation of the high-frequency field, which can be
described by a Schrödinger-type equation.11 Harmonic gen-
eration is an important subject by itself, since it may have
applications such as the generation of coherent radiation
sources.12,13

In the present paper we analyze the self-modulation of a
linearly polarized EM wave propagating in a non-
Maxwellian plasma. A number of experiments indicate the
presence of superthermal particles �electrons and ions� in
laboratory14 and space plasmas.15–17 Particles with velocities
exceeding the thermal velocity may arise due to external
forces acting on the plasma or due to wave-particle interac-
tion. The presence of superthermal particles results in a dis-
tribution function with a high-energy tail, which can be con-
veniently modeled via a nonthermal distribution function.
The family of � distributions, first discussed by Vasyliunas,18

is recognized to be highly appropriate for modeling non-
Maxwellian plasmas. It has been extensively used to analyze
and interpret data on different plasma environments, such as
the solar wind,15,16,19 the Earth’s magnetosphere20–22 and the
solar corona.23,24 The � distribution is equivalent to the
distribution function obtained from the maximization of
the Tsallis entropy, the q distribution.25 The parameters �
and q measure the deviation from the Maxwellian equilib-
rium �“nonthermality”� and are related by the expression

−�=1 / �1−q� �if the reduced form of the � distribution is
considered26�. As we will see, the � function is properly de-
fined only for ��3 /2, with the Maxwellian distribution re-
covered for �→��q→1�. As the � function, Tsallis distribu-
tion �and statistics� has also been used in the study of many
problems related to plasma physics, such as in the analysis of
the magnetic field fluctuations in the solar wind27 and in the
experimental investigation of the anomalous diffusion in
two-dimensional dusty plasmas.28

Although the � function is commonly used to model
non-Maxwellian plasmas, its origin is still not clear.29

Leubner30 has suggested the Tsallis nonextensive statistics25

as the basis to understand the observed nonthermal features
in space plasmas. Treumann et al.31 considered the collision-
less Vlasov equation and discussed the possibility of a non-
thermal distribution arising from a particular collisionless
equilibrium state �turbulent but stable states, far from ther-
mal equilibrium�. As mentioned earlier, and despite the lack
of theoretical justification, the � distribution has proved to
be appropriate for modeling the nonthermal features of
different plasma environments. Investigation on the effects
of superthermal particles in space plasmas has motivated
the development of a plasma dispersion function for �
distributions.32,33 Recently, Hellberg and Mace34 introduced
the �-Maxwellian distribution, an anisotropic distribution
suitable for magnetized plasmas, where there is a preferred
direction in space. This distribution simplifies the problem of
finding the generalized plasma dispersion function for wave
studies in magnetized plasmas, a hard task when using an
isotropic � function.35

Here we investigate the self-modulation of a linearly po-
larized EM wave propagating in a plasma with particles
obeying a � distribution function. In Sec. II we discuss the
model and the basic equations: the fluid model is used to
describe the dynamics of the electron-ion plasma and Max-
well’s equations describe the behavior of the EM fields. We
analyze two cases: the coupling of the EM wave with elec-
tron plasma oscillations and ion-acoustic waves. In Sec. III a
multiscale perturbation analysis is carried out and the non-
linear Schrödinger �NLS� equation governing the modulationa�Electronic mail: rios@cbpf.br.

PHYSICS OF PLASMAS 17, 042116 �2010�

1070-664X/2010/17�4�/042116/8/$30.00 © 2010 American Institute of Physics17, 042116-1

Downloaded 13 May 2010 to 152.84.50.243. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1063/1.3389228
http://dx.doi.org/10.1063/1.3389228
http://dx.doi.org/10.1063/1.3389228


of the carrier wave is derived. The effect of nonthermality
�via parameter �� on the modulation of the wave envelope
is discussed in Sec. IV, where the influence of the super-
thermal electrons and ions on the nonlinear frequency shift
and soliton formation is investigated.

II. MODEL AND BASIC EQUATIONS

The family of isotropic �three-dimensional� � distribu-
tions has the form

f��v� =
1

����2�3/2
��� + 1�

��� − 1/2�
�1 +

v2

��2�−��+1�

, �1�

where v is the velocity, ��x� is the gamma function, and
�= ���−3 /2� /��1/2vT is a generalized thermal speed
�vT=�2kBT /m�. Note that these distributions are properly de-
fined only for ��3 /2. The correct form of the � distribution
function has been the subject of recent discussion.36–38 The
expansion of the � function in the limit �→� reveals its
similarity with the Maxwellian distribution.36

We consider a linearly polarized EM wave propagating
in an unmagnetized electron-ion plasma. The EM wave
propagates along the z direction with E= �Ex ,0 ,0� and
B= �0,By ,0�. As it propagates, electron density perturbations
are generated due to the wave ponderomotive force. The
electrons are then subject to a total potential �=�sc+�p,
where �sc is the electrostatic potential �produced due to
charge separation� and �p is the ponderomotive potential.
Using the energy conservation relation, we can write the �
distribution function for the electrons in the following form:

f��ve� =
N0

���e�e
2�3/2

���e + 1�
���e − 1/2��1 +

ve
2 − 2e�/me

�e�e
2 �−��e+1�

,

�2�

where N0 is the electron �ion� equilibrium number density, ve

is the electron velocity, kB is the Boltzmann constant, e is the
fundamental charge, and Te and me are the electron tempera-
ture and rest mass, respectively. Integrating the � distribution
over velocity space, one obtains the electron number density

Ne��� = N0�1 −
�

��e − 3/2�	−��e−1/2�

, �3�

where �=e� /kBTe is the normalized total potential. The
pressure is given by Pe=me /3
ve

2f��ve�d3ve

Pe��� = P0�1 −
�

��e − 3/2�	−��e−3/2�

, �4�

where P0=N0kBTe is the pressure in the equilibrium state.
Assuming that the ions also have a � velocity distribution
function

f��vi� =
N0

���i�i
2�3/2

���i + 1�
���i − 1/2��1 +

vi
2 + 2e�sc/mi

�i�i
2 �−��i+1�

�5�

we have similar expressions for the ion number density and
pressure

Ni��sc� = N0�1 +
�sc

��i − 3/2�	−��i−1/2�

, �6�

Pi��sc� = P0	ie�1 +
�sc

	ie��i − 3/2�	−��i−3/2�

, �7�

where 	ie=Ti /Te and �sc=e�sc /kBTe. Notice that the pon-
deromotive potential is not included in expression �5�, since
the ions are too heavy and do not experience the pondero-
motive force. Assuming that e� and e�sc are small compared
to kBTe �� and �sc
1�, we can expand Eqs. �4�–�7� around
���sc�=0 and obtain

Ne = N0�1 + �0� + �1�2 + �2�3. . .� , �8�

Pe = P0�1 + � + �0�2 + �1�3. . .� , �9�

Ni = N0�1 − 0
�sc

	ie
+ 1��sc

	ie
�2

− 2��sc

	ie
�3

. . .	 , �10�

and

Pi = P0	ie�1 −
�sc

	ie
+ �0��sc

	ie
�2

− �1��sc

	ie
�3

. . .	 , �11�

where �0 ,�1 , . . . ,�0 ,�1 , . . . ,0 ,1 , . . . ,�0 ,�1 , . . . are con-
stants depending on �e and �i. Since we are considering the
weak nonlinear regime, only the first nonlinear terms in Eqs.
�8�–�11� are kept, and we define

�0 = ��e − 1/2�/��e − 3/2� ,

�1 = ���e − 1/2���e + 1/2��/�2��e − 3/2�2� ,

�0 = ��e − 1/2�/�2��e − 3/2�� ,

�12�
0 = ��i − 1/2�/��i − 3/2� ,

1 = ���i − 1/2���i + 1/2��/�2��i − 3/2�2� ,

�0 = ��i − 1/2�/�2��i − 3/2�� .

Considering the limit �e,i→� �Maxwellian case�, we ob-
serve that the constants in �12� tend to 1 ��0 and 0� and 1/2
��1 ,�0 ,1 and �0�. From Eqs. �8�–�11� we notice that, in this
limit, the ideal gas law Pe,i=Ne,ikBTe,i is recovered. There-
fore, Eqs. �8�–�11� together work as an “equation of state”
for the non-Maxwellian plasma.

Assuming that all quantities vary only with z, the fluid
and Maxwell’s equations can be written as

�Ex

�z
= −

1

c

�By

�t
, �13�

�By

�z
=

4�e

c
Nevex −

1

c

�Ex

�t
�14�

with Ex=−�1 /c��Ax /�t, By =�Ax /�z and
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me� �

�t
+ vez

�

�z
�vex = − eEx +

e

c
vezBy , �15�

where Eq. �15� describes the motion of the electrons in the
transverse field, and

meNe� �

�t
+ vez

�

�z
�vez = − eNeEz −

e

c
NevexBy −

�Pe

�z
, �16�

miNi� �

�t
+ viz

�

�z
�viz = eNiEz −

�Pi

�z
, �17�

�Ne

�t
+

��Nevez�
�z

= 0, �18�

�Ni

�t
+

��Niviz�
�z

= 0, �19�

and

�Ez

�z
= − 4�e�Ne − Ni� �20�

for the longitudinal plasma motion. Ez stands for the longi-
tudinal electrostatic field, Ez=−��sc /�z.

III. PERTURBATION ANALYSIS AND NLS EQUATION

We are interested in investigate the low-frequency
modulation of the EM wave amplitude. To perform this in-
vestigation we carry through a multiscale perturbation analy-
sis based on the Krylov–Bogoliubov–Mitropolsky method
for nonlinear wave modulation.39,40 It is well known that this
method is efficient in describing the long time behavior of
the solution: It consists in varying the amplitude of the wave
so slowly that no secular terms can arise.40 Following Ref.
40, all the physical quantities can be considered weakly non-
linear waves. Then we can use the expansion

f = f0 + �f1�a,a�,�� + �2f2�a,a�,�� + �3f3�a,a�,�� + . . . ,

�21�

where f stands for any physical quantity. Here �
�O�eA /mec

2�
1, �=kz−�t is the fast variable and f0

represents the equilibrium state. The complex amplitude
a=eA /mec

2 of the EM wave is assumed to be a slowly vary-
ing function of z and t through the relations

�a

�t
= �A1�a,a�� + �2A2�a,a�� + �3A3�a,a�� + . . . �22�

and

�a

�z
= �B1�a,a�� + �2B2�a,a�� + �3B3�a,a�� + . . . . �23�

Equivalent relations can be written for a�, the complex con-
jugate to a. We keep all significant terms up to order �3; as
we will see, this order of approximation is enough for our
purpose in this paper.

First we consider the transverse wave. From Eq. �15�
and the definitions of Ex and By we obtain

� �

�t
+ vez

�

�z
�vex = � �

�t
+ vez

�

�z
� eAx

mec
�24�

which implies the conservation of the transverse momentum,
mevex−eAx /c=0 �vex=0 for Ax=0�. Using Eqs. �13� and �14�
and the result obtained above, we get the wave equation

� �2

�z2 −
1

c2

�2

�t2�ax =
�pe

2

c2 neax. �25�

In the above equation ax and ne are the normalized
vector potential and density, ax=eAx /mec

2 and ne=Ne /N0,
respectively.

Now the perturbation technique is applied to Eq. �25�.
Writing explicitly the expansion for ax and ne around the
equilibrium state, we have

�ax

ne
	 = �0

1
	 + ��ax1

0
	 + �2�ax2

ne2
	 + �3�ax3

ne3
	 + . . . .

�26�

As we can notice, ��O�eA /mec
2�
1 is also a measure of

the amplitude of the EM wave, which is connected to the
longitudinal motion through the term vxBy in Eq. �16�. It is
straightforward to see that the longitudinal quantities are
harmonics of the transverse wave: they originate from the
EM wave through the Lorentz force. Then, it is expected
that vz ,Ez ,N , P ,��O��2� and we can set vz1=Ez1=N1= P1

=�1=0.
Substituting �26� into Eq. �25� and separating powers of

� we get, to the first order in �

�2ax1

�z2 −
1

c2

�2ax1

�t2 =
�pe

2

c2 ax1. �27�

As a starting solution of the above wave equation, we choose
a monochromatic plane wave

ax1 = aei� + a�e−i�. �28�

To obtain a solution different from the trivial one �ax1=0�,
the following relation must be satisfied:

D��,k� = �2 − �pe
2 − k2c2 = 0. �29�

Expression �29� is the dispersion relation for an EM wave
propagating in an unmagnetized plasma, �2=�pe

2 +k2c2.
To order �2 we obtain

iei�

c2 � �D

��
A1 −

�D

�k
B1� +

�2ax2

�z2 −
1

c2

�2ax2

�t2 −
�pe

2

c2 ax2 + c.c.

= 0, �30�

where we have used the relations �D /��=2� and �D /�k
=−2kc2, and c .c. is the complex conjugate to the first term in
�30�. In finding Eq. �30�, we have introduced the operators

�t = ��A1�a + A1
��a�� + �2�A2�a + A2

��a�� − ��� + O��3� ,

�31�

�z = ��B1�a + B1
��a�� + �2�B2�a + B2

��a�� + k�� + O��3� .

In order to make the solution ax2 free from secular terms
�� proportional terms�, the condition
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A1 + vgB1 = 0 �32�

and its complex conjugate relation must be fulfilled. Here

vg = −
�D

�k � �D

��
=

d�

dk
=

kc2

�
�33�

is the group velocity of the transverse wave �vg=vg�� ,k��.
Expression �32� can be written in the form �a /�t1

+vg�a /�z1=0, where t1=�t, z1=�z and O��� terms have
been neglected. It reveals that, up to order �2, the amplitude
a is constant in time if we are in the rest frame of the wave
packet. Solving now Eq. �30� yields

ax2 = C1ei� + C1
�e−i�, �34�

where C1 and C1
� are arbitrary functions of a and a�.

Proceeding in the perturbation analysis of Eq. �25�
�using the expansion �26�� we now collect the terms of order
�3 and get

 i

c2� �D

��
A2 −

�D

�k
B2� −

1

2c2� �2D

��2�A1
�A1

�a
+ A1

��A1

�a� �
+

�2D

�k2 �B1
�B1

�a
+ B1

��B1

�a� �	�ei� −
�pe

2

c2 ne2aei�

+
�2ax3

�z2 −
1

c2

�2ax3

�t2 −
�pe

2

c2 ax3 + c.c. = 0, �35�

where we have used the relations �2D /��2=2, �2D /�k2

=−2c2 and �34�. Using the definition

dvg

dk
=

�vg

��

d�

dk
+

�vg

�k

= −
�vg

2�2D/��2 + 2vg�
2D/�k � � + �2D/�k2�

�D/��
�36�

�in our particular case �2D /�k��=0� and the operator

A1
�

�a
+ A1

� �

�a�
= − vg�B1

�

�a
+ B1

� �

�a�� �37�

besides expressions �31� and �32�, we can write

� i

c2� �D

��
A2 −

�D

�k
B2� +

1

2c2

�D

��

dvg

dk

��B1
�B1

�a
+ B1

��B1

�a� � −
�pe

2

c2 ne2a	ei� +
�2ax3

�z2

−
1

c2

�2ax3

�t2 −
�pe

2

c2 ax3 + c.c. = 0. �38�

In order to determine ne2 in Eq. �38�, we have to consider the
equations for the longitudinal motion. First we analyze the
coupling of the high-frequency wave with the electron
density perturbations. In this case the ions just form a neu-
tralizing background, and Eqs. �17� and �19� can be ne-
glected. We also rewrite Poisson’s equation in the form
�Ez /�z=4�e�N0−Ne�. Using expressions �8� and �9� we can
write

�Pe

�z
= � dPe/d�

dNe/d�
� �Ne

�z
� � dPe

dNe
�

�=0

�Ne

�z
=

kBTe

�0

�Ne

�z
.

�39�

As mentioned before, all the longitudinal quantities are
O��2�. Since we carry on the perturbation analysis up to
order �3, we can neglect terms such as vz�vz /�z and reduce
Eqs. �16� and �18�, and Poisson’s equation to

� �2

�t2 − cse
2 �2

�z2�ne + �pe
2 �ne − 1� =

c2

2

�2ax
2

�z2 , �40�

where

cse = � 1

me
� dPe

dNe
�

�=0
	1/2

= � kBTe��e − 3/2�
me��e − 1/2� 	1/2

. �41�

Defining a generalized temperature T�e= ��e−3 /2�Te / ��e

−1 /2�, we can write

��e =
cse

�pe
=� kBT�e

4�N0e2 =� kBTe��e − 3/2�
4�N0e2��e − 1/2�

. �42�

The parameter ��e can be understood as the Debye length for
a �-plasma.34 For large values of �e, the classical expression
for the Debye length is recovered. As �e→3 /2, ��e de-
creases and tends to zero. Thus one effect of the superther-
mal electrons is to reduce the shielding length.

Substituting �26� into Eq. �40� we get, to O��2�

� �2

�t2 − cse
2 �2

�z2 + �pe
2 �ne2 =

c2

2

�2ax1
2

�z2 . �43�

The term in the right-hand side originates from the Lorentz
force and represents the ponderomotive force. From Eq. �43�,
we can see that the density perturbations are driven by this
term. Using expression �28� for Ax1 and the operators already
defined in �31� we obtain

�2ne2

��2 −
�pe

2

�k2cse
2 − �2�

ne2 =
2c2k2

�k2cse
2 − �2�

a2e2i� + c.c. �44�

As discussed before, the longitudinal oscillations are har-
monics of the high-frequency field and are generated due to
the ponderomotive force of the wave. To avoid a secular
behavior of ne2, we exclude the solution
exp��pe� /�k2cse

2 −�2� when solving Eq. �44� and write

ne2 =
2c2k2

�4�2 − 4k2cse
2 − �pe

2 �
a2e2i� + c.c. �45�

Back to Eq. �38�, we can write

�i�A2 + vgB2� +
1

2

dvg

dk
�B1

�B1

�a
+ B1

��B1

�a� � −
�pe

2

2�
ne2a	ei�

+
c2

2�
� �2ax3

�z2 −
1

c2

�2ax3

�t2 −
�pe

2

c2 ax3+� + c.c. = 0, �46�

where the original equation has been divided by
�1 /c2��D /��=2� /c2. Introducing expression �45� into the
above equation gives
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�i�A2 + vgB2� +
1

2

dvg

dk
�B1

�B1

�a
+ B1

��B1

�a� �
−

�pe
2 c2k2

��4�2 − 4k2cse
2 − �pe

2 �
�a�2a	ei�

+
c2

2�
� �2ax3

�z2 −
1

c2

�2ax3

�t2 −
�pe

2

c2 ax3�
−

�pe
2 k2c2

��4�2 − 4k2cse
2 − �pe

2 �
a3e3i� + c.c. = 0. �47�

For the solution ax3 in Eq. �47� to be secular-free it is
necessary that

i�A2 + vgB2� +
1

2

dvg

dk
�B1

�B1

�a
+ B1

��B1

�a� �
−

�pe
2 c2k2

��4�2 − 4k2cse
2 − �pe

2 �
�a�2a = 0. �48�

Noting that

A2 =
1

�2

�a

�t
−

A1

�
=

�a

�t2
−

A1

�
,

B2 =
1

�2

�a

�z
−

B1

�
=

�a

�z2
−

B1

�
, �49�

B1
�B1

�a
+ B1

��B1

�a�
=

1

�2

�2a

�z2 =
�2a

�z1
2

we obtain, from Eq. �48�

i� �a

�t2
+ vg

�a

�z2
� +

1

2

dvg

dk

�2a

�z1
2

−
�pe

2 c2k2

��4�2 − 4k2cse
2 − �pe

2 �
�a�2a = 0. �50�

To study the influence of the ions in the modulation of the
EM wave, Eqs. �17� and �19� must be taken into account.
Manipulating Eqs. �16�–�20� we obtain

�2

�z2 ��sc − pe� =
mec

2

2kBTe

�2ax
2

�z2 �51�

and

�2ni

�t2 =
kBTe

mi

�2

�z2 ��sc + pi� , �52�

where ni=Ni /N0, pe= Pe / P0, and pi= Pi / P0 and the electron
inertia has been neglected in Eq. �16� �terms such as vz� /�z
have also been neglected�.

Now we perform the perturbation analysis �21� in Eqs.
�51� and �52�. Using Eqs. �8�–�11� and the expansion

ni = 1 + �2ni2 + �3ni3 + . . . �53�

we get, to O��2�

� �2

�t2 − �cTi
2 + csi

2 �
�2

�z2	ne2 =
mec

2

2mi

�2ax1
2

�z2 , �54�

where the quasineutrality condition ni2�ne2 has been as-
sumed. Here cTi= �kBTi /0mi�1/2 and csi= �me /mi�1/2cse. Us-
ing operators �31� and the solution for ax1 we obtain

�2ne2

��2 = −
2mec

2k2

mi��2 − �cTi
2 + csi

2 �k2�
a2e2i� + c.c. �55�

and its solution

ne2 =
mec

2k2

2mi��2 − �cTi
2 + csi

2 �k2�
a2e2i� + c.c. �56�

FIG. 1. ��1 vs � �low-frequency limit� for n0=10 cm−3, kBTe=2 keV
and �e=1.55 �solid line�, �e=3.5 �dashed line�, �e=15 �dotted line�, and
�e=500 �dot-dashed line, Maxwellian case�—all curves are superimposed,
in this case.

FIG. 2. ��1 vs � �intermediate frequencies� for n0=10 cm−3,
kBTe=2 keV and �e=1.55 �solid line�, �e=3.5 �dashed line�, �e=15 �dotted
line�, and �e=500 �dot-dashed line, Maxwellian case�—here the last two
curves are superimposed.
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Therefore, to investigate the wave modulation due to the
coupling with the longitudinal ion oscillations we must con-
sider the previous result together with Eq. �46�. To avoid
secularities in ax3 we get

i�A2 + vgB2� +
1

2

dvg

dk
�B1

�B1

�a
+ B1

��B1

�a� �
−

me�pe
2 c2k2

4mi���2 − �cTi
2 + csi

2 �k2�
�a�2a = 0. �57�

Using the identities already defined in �49� we can write the
above equation in the form

i� �a

�t2
+ vg

�a

�z2
� +

1

2

dvg

dk

�2a

�z1
2

−
me�pe

2 c2k2

4mi���2 − �cTi
2 + csi

2 �k2�
�a�2a = 0. �58�

As a summary of our results, Eqs. �50� and �58� can be
written as follows:

i� �a

�t2
+ vg

�a

�z2
� + P

�2a

�z1
2 + Q�a�2a = 0, �59�

where

P =
1

2

dvg

dk
=

c2�pe
2

2�3 �60�

and

Q = � Q1 = −
�pe

2 c2k2

��4�2 − 4k2cse
2 − �pe

2 �
�EM wave coupled with electron oscillations�

Q2 = −
me�pe

2 c2k2

4mi���2 − �cTi
2 + csi

2 �k2�
�EM wave coupled with ion oscillations� � �61�

are the dispersion and nonlinear coefficients, respectively.
Introducing the coordinate transformation

� =
1

�
�z2 − vgt2� = z1 − vgt1 = ��z − vgt� ,

�62�
� = t2 = �t1 = �2t .

Equation �59� can be transformed into the NLS equation

i
�a

��
+ P

�2a

��2 + Q�a�2a = 0. �63�

The above equation describes the modulation of the EM
wave, with the second and last terms accounting for the ef-
fects of dispersion and nonlinearity on the dynamics of the
envelope.

IV. NONLINEAR FREQUENCY SHIFTS
AND ENVELOPE HOLES

As discussed before, the nonlinear interaction between
the high-frequency field and the electrostatic perturbations
produces an electric field envelope which obeys the NLS
equation �63�. In this section the effect of nonthermality on
the modulation of the envelope is investigated.

A standard stability analysis reveals that the EM wave
envelope is unstable only for Q / P�0.11 From Eqs. �29�,
�60�, and �61� we notice that, for our case, Q / P is always
negative. This result means that the wave is modulationally
stable, and phenomena such as wave splitting can occur.41

The condition Q / P�0 means that the group dispersion P
and the nonlinear frequency shift ��=−Q have the same

sign �P and ���0�. The effect of the superthermal particles
appears in the coefficient ���Q�, which results from the
nonlinear coupling between the EM wave and the electro-
static density perturbations. In Fig. 1 we plot the nonlinear
frequency shift ��1=−Q1 for small values of the normalized
frequency �=� /�pe �long-wavelength limit, v�=� /k�c�.
For this frequency range, the influence of the superthermal
electrons is negligible. However, for high electron tempera-
tures and intermediate values of ��v��c� we observe that
the effect of electron nonthermality is to decrease �� �Fig.
2�. The effect is maximum for the frequency range shown in
Fig. 2, but it is still observable for larger values of �.
Including the ion dynamics we get ��2=−Q2

�me�pe
2 c2k2 /4mi�

3, since �cTi
2 +csi

2 �
c2. Therefore, here the
effect of ion nonthermality can be neglected for any fre-
quency range.

It is known that the NLS equation admits, among others,
localized solutions in the form of envelope solitons. The con-
dition Q / P�0 implies that only dark or gray solitons exist.
These solutions are also called envelope holes, since they
represent an intensity dip in a continuous-wave background.
For linearly polarized EM waves the inclusion of relativistic
effects has a profound influence on the dynamics of the wave
packet.8,42 Introducing the real variables � and �, which rep-
resent the real and the imaginary parts of a �Ref. 11�

a��,�� = ����,��ei���,�� �64�

we have, for the envelope holes
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� = �0�1 − p2 sech2������0p��� �65�

and

� = arcsin p tanh������0p��

�1 − p2 sech2������0p���1/2� + �� , �66�

where �0 is the soliton amplitude, p is an independent pa-
rameter related to the soliton width L=2 / p��0����1/2

=constant, �=Q / P, and �=−�0����3− p2� /2. In Fig. 3 we
plot ����= �a�2 for a dark soliton �p=1� for different values of
�e. As we can see, the effect of electron nonthermality in this
case is negligible, even for larger frequencies. Localized
stationary solutions for p=0.3 �gray solitons, p�1� and
�=1.4 and 5 are shown in Figs. 4 and 5, respectively. As the
frequency increases, the amplitude �0 diminishes for all val-
ues of �e. However, gray solitons with �e→3 /2 are less
affected. Thus, the effect of the superthermal electrons is to

slow the decrease of �0. As p increases this effect becomes
negligible. Like before, the inclusion of the ion dynamics
results in no effect of nonthermality for both dark and gray
solitons.

As we can see, the electron nonthermality has some in-
fluence on the dynamics of the wave packet. Linearly polar-
ized EM waves propagating in plasmas far from thermal
equilibrium ��e→3 /2� generate harmonics that are influ-
enced by the nonthermality of the plasma �Eq. �45��. The
coupling with these harmonics causes the modulation of the
EM wave, which is described by the NLS Eq. �63� with a
modified nonlinear coefficient Q. Due to electron nonther-
mality these modulated waves experience smaller frequency
shifts, and the resultant gray solitons have larger amplitudes
�when compared to EM waves propagating in Maxwellian
plasmas�. Although these effects are small, they are notice-
able at the tail of gray solitons, at least for high temperatures
and intermediate to high frequencies. This effect could, in
principle, be experimentally detected by an electrostatic
probe measuring the shape of the plasma density perturba-
tions associated with the solitons.

V. SUMMARY

In the present paper the self-modulation of a linearly
polarized EM wave propagating in a plasma with particles
obeying a � distribution function has been investigated. The
fluid model is used to describe the dynamics of the electron-
ion plasma, and two cases have been analyzed: first, the cou-
pling of the EM wave with the electron density perturba-
tions, and later the ion dynamics has been included. A
multiscale perturbation analysis has been carried out and the
NLS equation governing the modulation of the EM wave in
both cases has been derived. The effect of nonthermality on
the modulation of the wave envelope has been observed only
for the EM wave coupled with the electron density perturba-
tions. Superthermal electrons have no influence on the sta-
bility of the wave envelope but, for high electron tempera-
tures, we notice that the effect of nonthermality is to reduce

FIG. 3. �a�2 vs � for n0=10 cm−3, kBTe=2 keV, L=1, p=1 �dark soliton�,
�=1.8 and �e=1.55 �solid line�, �e=3.5 �dashed line�, �e=15 �dotted line�,
and �e=500 �dot-dashed line, Maxwellian case�—all curves are
superimposed.

FIG. 4. �a�2 vs � for n0=10 cm−3, kBTe=2 keV, L=1, p=0.3 �gray soliton�,
�=1.4 and �e=1.55 �solid line�, �e=3.5 �dashed line�, �e=15 �dotted line�,
and �e=500 �dot-dashed line, Maxwellian case�—the last two curves are
superimposed.

FIG. 5. �a�2 vs � for n0=10 cm−3, kBTe=2 keV, L=1, p=0.3 �gray soliton�,
�=5 and �e=1.55 �solid line�, �e=3.5 �dashed line�, �e=15 �dotted line�,
and �e=500 �dot-dashed line, Maxwellian case�—the last two curves are
superimposed.
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the nonlinear frequency shift and increase the amplitude of
gray solitons �for intermediate to high frequencies of the EM
wave�. For EM waves coupled with ion-acoustic oscillations
no effect of nonthermality has been observed.
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