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Abstract. In plasmas with two distinct populations of hot and cold electrons waves with wave
frequency larger than the ion plasma frequency can be generated. In the nonlinear regime, the
existence of rarefaction waves and shocks in two-electron temperature isothermal plasmas has
been analyzed in the past. In the present work we investigate the conditions for the existence
of rarefaction waves and shocks in nonthermal two-electron plasmas. Here the cold and hot
electrons are modeled by the Maxwellian and κ distributions, respectively. Some preliminary
results are presented, and the influence of electron nonthermality is discussed.

1. Introduction
It is well known that laboratory and space plasmas can contain distinct populations of hot
and cold electrons [1]. In two-electron plasmas, electron-acoustic waves (EAWs) with wave
frequency larger than the ion plasma frequency can be generated [2]. In their classical paper
of 1978, Bezzerides, Forslund and Lindman [3] investigate the nonlinear regime and analyze the
existence of rarefaction waves and shocks in a two-electron temperature isothermal plasma. The
study of rarefaction waves (and shocks) is important for a variety of problems in plasma physics,
including the so-called current-free double layers [4].

A double layer (DL) consists of a positive/negative Debye sheath, connecting two quasineutral
regions of a plasma. These nonlinear structures can be found in a variety of plasmas, from
discharge tubes to space plasmas. A DL may be regarded as a BGK equilibrium in some cases,
for which certain conditions must be fulfilled. The best known of these structures is the strong
Langmuir DL, which is characterized by two counterstreaming plasmas, carrying a large electric
current across the DL. The current-free double layer (CFDL) constitutes a different group, for
which there is no trapped ion population. Contrary to the Langmuir DL, the CFDL is weak,
with φ < kBTh/e (φ is the potential drop across the layer and Th is the temperature of the hot
electron population). It is worth to mention that in general the plasma distributions near a DL
are strongly non-Maxwellian [5].

As a preparatory step for a deeper investigation of CFDLs, we follow the steps of reference
[3] and analyze the conditions for the existence of rarefaction waves and shocks in nonthermal
two-electron plasmas. The dynamics of the plasma is described by the fluid equations, with
the cold and hot electrons modeled by the Maxwellian and κ distributions, respectively. The
family of κ distributions has been employed to analyze and interpret data on different plasma
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environments, like the solar wind [6] and the Earth’s ionosphere [7]. The reduced form of the
standard κ distribution is equivalent to the distribution function obtained from the maximization
of the Tsallis entropy, the q distribution [8], with the parameter κ measuring the deviation from
the Maxwellian equilibrium (in the limit κ → ∞ the Maxwellian distribution is recovered).
Here some preliminary results of our work are presented, and the influence of the superthermal
electrons present in the long tails of the κ distribution is discussed.

2. Model equations
First we consider the general rarefaction wave problem. The ions are assumed to obey the
cold hydrodynamic equations, and the ion and electron densities are related through Poisson’s
equation

∂2φ

∂z2
= −4πe [Ni −Ne (φ)] . (1)

The electron number density can be written as

Ne (φ) = Nc (φ) +Nh (φ) , (2)

where

Nc (φ) = Nc0e
eφ/kBTc , (3)

Nh (φ) = Nh0

[
1− eφ

(κ− 3/2) kBTh

]−(κ−1/2)

, (4)

with κ > 3/2. In the above equations Tc is the temperature of the cold electrons and
Nc0 + Nh0 = N0. In the limit κ → ∞ we obtain the Boltzmann distribution (3) also for
the hot electrons .

Introducing the similarity parameter ξ = (z/t)/ch, where ch = (kBTh/mi)
1/2, and following

reference [3] we obtain the equation that governs the electrostatic potential ϕ, i.e.

dϕ

dξ

(
1 +

1

2

dc2s
dϕ

)
+ cs = 0, (5)

where ϕ = eφ/kBTh and

c2s =
dPe

dne
≡ ne (ϕ){

nc (ϕ) τ + nh (ϕ)
(κ−1/2)
(κ−3/2)

[
1− ϕ

(κ−3/2)

]−1
} , (6)

with ne(φ) = Ne(φ)/N0 and ni = Ni/N0. The above expression is the square of the normalized
speed of sound, where τ = Th/Tc and Pe ≡ Pe(ϕ) is the normalized pressure, which obeys the
relation dPe(ϕ)/dϕ = ne(ϕ). A complete solution for (5) exists provided ϕ is a single valued
function of ξ. However, multiple valued solutions occur when

dc2s
dϕ

+ 2 ≤ 0, (7)

with the equality defining the onset of the singularity in the rarefaction wave.
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Figure 1. κ = 500 and τ = 10. Figure 2. κ = 500 and τ = 12.

3. Rarefaction waves and shocks
As discussed by Bezzerides, Forslund and Lindman, the threshold for rarefaction shocks and
the onset of the singularity in the rarefaction wave are expressed by the same condition,
dc2s/dϕ + 2 = 0. When both electron populations are modeled via Maxwellian distributions,
condition (7) reduces to τ ≥ 5 +

√
24 ≈ 9.9 [3]. This can be seen in figure 1, where we plot

z = 2 + dc2s/dϕ as a function of x = α = Nh0/N0 and y = −ϕ for κ = 500 (Maxwellian limit).
For τ = 10 we observe that z = 0 (onset of the singularity) for a broad range of α’s. For
τ = 12 (figure 2) we notice that z ≤ 0 also for a broad range of α’s, with the formation of the
shock between the two extremes of ϕ. However, as κ decreases (figure 3, κ = 5), we notice the
singularity starts to appear (for a short range of α’s) only for τ ≈ 11. As τ increases (figure
4), we have the formation of the shock for all the values of α. For longer tails (figure 5), the
singularity

Figure 3. κ = 5 and τ = 11. Figure 4. κ = 5 and τ = 16.

appears only for a larger value of τ (≈ 13). For the same value of τ , we observe that electron
nonthermality seems to “disturb” the formation of the shock: as κ decreases, the shock does not
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Figure 5. κ = 2.5 and τ = 13. Figure 6. κ = 2.5 and τ = 16.

Figure 7. κ = 500, α = 0.01 and
τ = 9.9.

Figure 8. κ = 500, α = 0.01 and
τ = 20.

Figure 9. κ = 2.5, α = 0.01 and
τ = 10.2.

Figure 10. κ = 2.5, α = 0.2 and
τ = 14.2.

appear for all the values of α (figures 4 and 6).
Solving (5) numerically, we can analyze the different profiles obtained for the electrostatic

potential ϕ. In figures 7 and 8 we present the results for κ = 500, α = 0.01 and τ = 9.9 and
20, respectively. In figure 7 we notice the eminent formation of the shock (singularity), while
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in figure 8 it is observed that ϕ is not a single valued function of ξ. This discontinuity in the
profile of the electrostatic potential represents the shock formation: in a reference frame moving
with velocity ξ ≈ 0.9 we observe two different values for ϕ. For such a small value of α (= 0.01)
and κ = 2.5, the onset of the singularity appears for τ = 10.2 (figure 9). As α grows (α = 0.2,
figure 10), the shock becomes eminent only for τ = 14.2. Is is also noticed that the shock starts
to appear for smaller values of ξ as α becomes larger.

4. Conclusions
The presented results indicate that electron nonthermality (represented by the parameter κ)
influences the onset of the singularity in the rarefaction wave and the formation of the shock.
For distributions with longer tails (small κ) the formation of the shock becomes eminent only
for larger values of τ when compared to the Maxwellian case. It is also noticed that, for a fixed
τ , a decrease in κ implies the disappearance of the shock for larger values of α.
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