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Time evolution of interacting vortices under overdamped motion
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A system of interacting vortices under overdamped motion, which has been commonly used in the literature to
model flux-front penetration in disordered type-II superconductors, was recently related to a nonlinear Fokker-
Planck equation, characteristic of nonextensive statistical mechanics, through an analysis of its stationary state.
Herein, this connection is extended by means of a thorough analysis of the time evolution of this system. Numerical
data from molecular-dynamics simulations are presented for both position and velocity probability distributions
P (x,t) and P (vx,t), respectively; both distributions are well fitted by similar q-Gaussian distributions, with the
same index q = 0, for all times considered. Particularly, the evolution of the system occurs in such a way that
P (x,t) presents a time behavior for its width, normalization, and second moment, in full agreement with the
analytic solution of the nonlinear Fokker-Planck equation. The present results provide further evidence that this
system is deeply associated with nonextensive statistical mechanics.
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I. INTRODUCTION

The use of nonlinear (NL) equations in physics has opened
the possibility of an appropriate description of a wide range of
real phenomena in recent years [1,2]. Many physical systems
exhibit complicated collective behavior associated with NL
phenomena, e.g., those characterized by spatial disorder, due
to some type of inhomogeneous media, or those with long-
range interactions and/or strong correlations among particles.
Considerable advances have been attained recently in the study
of NL equations, essentially due to the latest advances in
computer technology, since in many cases these equations have
to be investigated numerically.

Two of the most studied NL differential equations are
generalizations of the Schrödinger [3] and Fokker-Planck
equations [4]. In both cases, the NL contributions lead to
important novel insights, which are relevant for modeling
several new physical aspects. In the most common formulation
of the NL Schrödinger equation, one introduces a new cubic
term in the wave function, which, for some particular type
of solution, is responsible for the modulation of the wave
function. Such a procedure, characterized by the addition of
extra NL terms, has been much used in the literature for
constructing such equations. A different approach consists
of transforming one or more linear terms into NL ones, as
usually happens in generalized Fokker-Planck equations [4].
This later procedure has been used in a recent generalization
of important equations of quantum physics, and particularly
in a new proposal of a NL Schrödinger equation, which also
presents a modulation for the wave function [5].

Among nonlinear Fokker-Planck equations (NLFPEs), we
focus on the one usually associated with nonextensive statisti-
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cal mechanics [6]. Defining the probability P (x,t) for finding
a given particle at a position x in time t , this equation is given
by [7,8]

η
∂P (x,t)

∂t
= −∂[A(x)P (x,t)]

∂x

+Dν
∂

∂x

{
[L0P (x,t)]ν−1 ∂P (x,t)

∂x

}
, (1)

where η and D represent the friction and diffusion constants,
respectively, and A(x) = −dφ(x)/dx is an external force
associated with a confining potential. From the normalization
condition

∫ ∞
−∞ dxP (x,t) = 1, one readily sees that P (x,t)

presents dimension (length)−1; therefore, the argument of
the nonlinear term, introduced herein by means of the real
exponent ν, should be dimensionless. The length scale L0,
which should appear naturally from the physical system
considered,1 is introduced in order to yield the correct
dimensions for Eq. (1); this difficulty does not occur in the
particular case ν = 1, i.e., in the corresponding linear equation
[9]. This NLFPE was solved for an external harmonic force,
A(x) = −αx (α � 0), the initial condition P (x,0) = δ(x), and
η = L0 = 1 (i.e., for a conveniently rescaled dimensionless
probability) [7,8]:

P (x,t) = B(t)[1 − β(t)(ν − 1)x2]
1

ν−1
+ , (2)

where [y]+ = y, for y > 0, and zero otherwise. From the
equation above one readily identifies the q-Gaussian distribu-
tion of nonextensive statistical mechanics if ν = 2 − q [6]. To
guarantee the normalization of the probability for any time t ,

1Although one could think of more general physical situations,
defined in terms of various independent length scales, our main
interest herein concerns an application characterized by a single
length scale.
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the time-dependent parameters B(t) and β(t) should be directly
related to their values at some reference time t0,

β(t)

β(t0)
=

[
B(t)

B(t0)

]2

, (3)

with the normalization factor B(t) being given by

B(t) = B(t0)

[
1

K2
+

(
1 − 1

K2

)
e− t

τ

]− 1
1+ν

,

(4)

τ = 1

α(1 + ν)
,

and

K2 = α

2νDβ(t0)[B(t0)]ν−1
. (5)

From the probability distribution of Eq. (2) one can find its
moments; particular attention is usually given to the second
moment [10],

〈x2〉 ∝ {1 − exp[−α(1 + ν)t]} 2
1+ν , (6)

which is finite for ν > 1/3. For times much smaller than those
characteristic of the approach to the stationary state (t � 1),
one gets an evolution ruled by anomalous diffusion, 〈x2〉 ∝
t

2
ν+1 , representing a signature of the NLFPE in Eq. (1). At

longer times, one gets a crossover to a different evolution,
characteristic of the approach to the stationary state [10].

One important consequence from NLFPEs is the H theorem
[4,10–17]. For a system in contact with a thermal bath this
theorem concerns a well-defined sign for the time derivative
of the free energy, (dF/dt) � 0:

F = U − γ S, U =
∫ ∞

−∞
dx φ(x)P (x,t), (7)

with γ representing a positive Lagrange multiplier. The
entropy may be defined in a very general form,

S[P ] = 1

L0

∫ ∞

−∞
dx g[L0P (x,t)],

g(0) = g(1) = 0, (8)

d2g

d(L0P )2
� 0,

where the functional g[L0P (x,t)] presents units of entropy. In
order to satisfy (dF/dt) � 0, the NLFPE and the entropy must
be related [4,10–17]; for the NLFPE in Eq. (1) one should have

g[L0P ] = k
[L0P (x,t)]ν − L0P (x,t)

1 − ν
,

(9)

S[P ] = k
1 − Lν−1

0

∫ ∞
−∞ dx [P (x,t)]ν

ν − 1
,

where we defined k = D/γ . The extremization of the entropy
above under the constraints of probability normalization, and
the internal energy defined as in Eq. (7), lead to the probability
distribution of Eq. (2).

Next, we will present a physical application characterized
by a NLFPE and its associated entropy in the forms presented
above, with an exponent ν = 2 [18] (see also Ref. [19]).
Since the distribution of Eq. (2) is identified as the q-
Gaussian distribution of nonextensive statistical mechanics for

ν = 2 − q [6], the corresponding distribution presents an index
q = 0.2 In this case, the entropy and the distribution are given,
respectively, by

S[P ] = k

{
1 − L0

∫ ∞

−∞
dx [P (x,t)]2

}
, (10)

P (x,t) = B(t)[1 − β(t)x2]+. (11)

Moreover, the parameters B(t) and β(t) are related through
[cf. Eqs. (3)–(5)],

B(t)β(t) = B(t0)β(t0)

K2
[1 + (K2 − 1)e−3αt ]−1

= a0[1 + a1e
−3αt ]−1, (12)

a0 = α

4D
, a1 = α

4Dβ(t0)B(t0)
− 1. (13)

II. PHYSICAL APPLICATION: INTERACTING VORTICES
UNDER OVERDAMPED MOTION

The physical system of interest consists of interacting
vortices performing an overdamped motion, which has been
used in the literature to model flux lines in disordered type-II
superconductors (see, e.g., Refs. [20–23]). In a previous work
[18], a very good agreement was found between the particle-
position stationary-state distributions obtained by means of
molecular-dynamics simulations and the solution of a NLFPE
for both T = 0 and T > 0; the temperature T , which is
associated with a linear-diffusion term, comes, as usual, from a
thermal noise of a Langevin equation. In this case, it was shown
that: (i) for T = 0 the data was well fitted by a q-Gaussian
distribution with q = 0; (ii) the distribution changes due to the
temperature, being given in terms of a W-Lambert function for
T > 0; and (iii) for sufficiently high values of T one recovers
a Gaussian distribution. In the present study we will restrict
ourselves to T = 0, i.e., no thermal noise. We will provide
further evidence that the connection of case (i) holds also
during the whole time evolution of the system. Moreover,
similar q-Gaussian distributions are found for the particle
velocities.

The equation of motion of a flux line i under overdamped
motion [i.e., with (dvi/dt) = 0], in a medium with an effective
friction coefficient η, may be written as

ηvi = Fpp
i + Fext

i (i = 1,2, . . . ,N ), (14)

where vi stands for its velocity and the terms on the right-
hand side depict the forces acting on the vortex. The first
contribution, Fpp

i , takes into account the interactions among
particles [each vortex interacts with the remaining (N − 1)
vortices], whereas Fext

i represents an external force acting on
vortex i. Although this problem can be formulated easily in
a three-dimensional space, herein it will be discussed in two

2It is important to notice that the “duality” q ↔ (2 − q) between
the distribution index q = 0 and the entropic index ν = 2 occurs
whenever the entropy is extremized by considering the energy
definition in Eq. (7); equal indexes appear when one uses a generalized
definition for the internal energy [6].
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dimensions to conform with the numerical simulations that
will be presented later. We consider

Fpp
i = 1

2

∑
j �=i

B
pp
ij (rij ) r̂ij , (15)

and as usual the factor 1/2 compensates for the double
counting of interactions. The distance between particles i and
j is rij = |ri − rj |, and r̂ij = (ri − rj )/rij is a vector defined
along the axis of each pair of particles. In the interactions
above, Bpp(rij ) = f0K1(rij /λ), with K1 representing a mod-
ified Bessel function of the second kind of order 1 and f0 a
positive constant. These interactions are defined in terms of
a single characteristic length scale λ, known as the London
penetration length. The vortex-vortex interactions B

pp
ij (rij ) are

repulsive and radially symmetric, whereas the external forces
Fext

i should be associated with a confining type of potential, so
that the system can reach an stationary state after a sufficiently
long time.

For a description in terms of continuous variables, we
perform a coarse graining by introducing a local density of
vortices at time t , ρ(r,t), making use of the continuity equation

∂ρ(r,t)
∂t

= ∇ · J, (16)

and defining the current density, J = ρv. Supposing that the
local density varies smoothly within the range of interactions
B

pp
ij (rij ), one may consider ρ(r,t) ≈ ρ(0,t) + r · ∇ρ(r,t), so

that the effect of the remaining (N − 1) vortices on a given
vortex may be written in terms of a mean force Fpp,

Fpp = 1

2

∫
d2rρ(r,t)Bpp(r)r̂

≈ 1

2

∫
d2r[r · ∇ρ(r,t)]Bpp(r)r̂, (17)

where we have used the property that the integral over ρ(0,t)
yields zero, due to symmetry. Without loss of generality, we
will take ∇ρ(r,t) along the x axis; in this way, one may see
easily that the y component of Fpp is zero, leading to a force
acting along the same axis chosen for ∇ρ(r,t). Since the local
density changes slowly within the range of interactions (which
is typically of order λ), one may approximate the integral above
by3

Fpp ≈ a∇ρ(r,t); a = π

∫ ∞

0
dr r2Bpp(r), (18)

and for the particle-particle interactions defined above, one has
a = 2πf0λ

3. Let us consider for the external forces on each
particle Fext = −A(x)x̂. Substituting these results into Eq. (16)
and using Eq. (14), one gets

η
∂ρ(r,t)

∂t
= ∇ · {ρ(r,t)[a∇ρ(r,t) + Fext]}

= ∂

∂x

{
ρ(r,t)

[
a

∂ρ(r,t)
∂x

− A(x)

]}
, (19)

3The present approximations are expected to yield small discrepan-
cies with respect to the results obtained from the molecular-dynamics
simulations, as will be verified later on.

where ρ(r,t) ≡ ρ(x,y,t) and we have used the fact that
∇ρ(r,t) is along the x-axis.4 Since the spatial derivatives only
operate on the x variable, one may consider the equation above
for a fixed y [18,23]. Accordingly, defining the probability
of finding a given particle with a coordinate x at time t as
P (x,t) = (Ly/N )ρ(x,t), one obtains

η
∂P (x,t)

∂t
= −∂[A(x)P (x,t)]

∂x

+ 2D
∂

∂x

{
[λP (x,t)]

∂P (x,t)

∂x

}
, (20)

where D = (Nπf0λ
2)/Ly . Comparing this NLFPE with the

one of Eq. (1), one readily identifies the characteristic length
L0 = λ and the exponent ν = 2.

III. RESULTS

In order to compare time-dependent properties of the
solution of the NLFPE in Eq. (19) [or equivalently, in Eq. (20)]
with those of the above-mentioned physical system, we have
performed molecular-dynamics simulations by integrating the
N equations of motion defined in Eq. (14). Since this NLFPE
was solved for an external harmonic force A(x) = −αx

(α � 0) and the initial condition P (x,0) = δ(x) [7,8], we will
use the same confining potential and an initial condition for
the particle positions as close as possible to this one in the
following simulations. From now on, we will consider the
friction coefficient η = 1 and all lengths will be given in units
of λ. Except for the illustration in Fig. 1, all our simulations
were carried for a system of N = 4000 particles. The particles
were confined in a two-dimensional box of size Lx = 280λ

and Ly = 20λ, with periodic boundary conditions in the y

direction; the restoring constant used was α = 10−3f0/λ.
According to Eqs. (11)–(13), the particular choice of α should
only affect the time required for the approach to the stationary
state, as well as the time evolution of parameters B(t) and
β(t), but not the functional forms of P (x,t) and B(t)β(t).
As an approximation to the initial condition P (x,0) = δ(x),
the simulation starts at time t = 0 with the particles confined
according to a “water-bag” distribution (all particles uniformly
distributed in a narrow region around x = 0); this condition
is commonly used in numerical solutions of Fokker-Planck
equations [10]. In order to reduce a dependence on the
particular initial distribution of particles, averages were carried
over 100 samples. Due to this confinement of particles, the
effect of the harmonic potential is very weak initially, and the
repulsive interactions dominate, making the particles move
away rapidly from the origin. Then the confining potential
starts playing an important role, decreasing the velocities of
the particles in such a way that after a sufficiently long time
the forces on each particle cancel, with the system attaining a

4We call attention to the fact that the calculated parameter herein,
a = 2πf0λ

3, corresponds to twice the one of Ref. [18]. In fact there
are a few misprints in Eqs. (12) and (13) of this reference, where the
following changes should be made: (i) in the left-hand side of Eq. (12),
a → 2a; (ii) in the right-hand side of Eq. (12), J (�r)/2 → J (�r)/4;
(iii) in Eq. (13), a → 2a. The previous simulations were carried for
this rescaled parameter.
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FIG. 1. Snapshots showing the particle positions at typical times
t , for a single sample of N = 1000 particles. In each snapshot,
the horizontal and vertical axes (x/λ and y/λ, respectively) show
the relevant part of a box of size Lx = 280λ and Ly = 20λ. At
t = 5 the state is very close to the initial distribution, whereas
the stationary state is almost reached at t = 1200. The time is
dimensionless, measured in terms of the molecular-dynamics time
step δt , as described in the text.

stationary state. As usual, the time is dimensionless, measured
in terms of the integration time step δt , characteristic of the
molecular-dynamics procedure. We have varied δt depending
on the average velocities of the particles: for smaller times
(0 < t < 5), i.e., in the high-velocity regime, we considered
δt = 10−3; for intermediate times (5 � t < 150), δt = 10−2;
in the slow-velocity regime (t � 150), we used δt = 10−1.
As an illustration of this time evolution, we exhibit in Fig. 1
snapshots of the particle positions for typical times t of a

single sample with N = 1000 particles. At the smallest time
shown (t = 5), one has a situation very close to the initial
distribution, whereas for t = 1200 the system is very close
to the stationary state. However, we have verified that the
stationary state, where all particles typically stop moving, is
attained only for t ≈ 3000.

For any desired time t of the simulation, one can compute
the corresponding profile for the density of particles ρ(x,t),
considering averages over samples. These results should be
compared with the theoretical prediction given by the solution
of Eq. (20); since P (x,t) = (Ly/N )ρ(x,t), Eqs.(11)–(13) lead
to

ρ(x,t) = NB(t)β(t)

Ly

[
1

β(t)
− x2

]
+

, (21)

where

NB(t)β(t)

Ly

= α

2a
[1 + (K2 − 1)e−3αt ]−1. (22)

In Fig. 2 the results from the simulations (symbols) are
compared to the above theoretical prediction (solid lines). In
Fig. 2(a) we show density profiles for typical situations in the
high- and intermediate-velocity regimes, whereas in Fig. 2(b)
profiles of the approach to the stationary state are shown. It is
important to remember that we obtained a = 2πf0λ

3 through
the coarse-graining approximation; the theoretical curves of
Fig. 2 were obtained from Eqs. (21) and (22) by setting
a = (5.87 ± 0.02)f0λ

3, where the error bars come from the
best least-squares fits of the theoretical curves, at different
times. Such disagreement with the analytical estimate, leading
to a relative discrepancy around 7% on the parameter a, is
attributed to the approximations carried in Eqs. (17) and (18).

In Fig. 3(a) we represent all data of Fig. 2 in a plot of
ρ(x,t)/ρ(0,t) versus λxρ(0,t). Notice that in this represen-
tation the densities profiles do not show time dependence
on the width, and data for all times collapse into a single
universal curve; the solid line is a parabola ρ(x,t)/ρ(0,t) =
[1 − b{λxρ(0,t)}2]+, with b ≈ 4.3 × 10−5. Another important
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FIG. 2. (Color online) The dimensionless density of particles λ2ρ(x,t) is plotted versus x/λ, for typical times t : (a) short and intermediate
times; (b) in the approach to the stationary state. The symbols are results from the simulations, whereas the solid lines represent the theoretical
solution of the NLFPE, as given in Eqs. (21) and (22).
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FIG. 3. (Color online) (a) Collapse of all data of Fig. 2 into a universal curve, using the representation ρ(x,t)/ρ(0,t) versus λxρ(0,t); the
solid line is a parabola, as described in the text. (b) Time evolution of the dimensionless coefficient C(t) = λ4NB(t)β(t)/Ly ; the empty circles
are molecular-dynamics data, whereas the solid line corresponds to the theoretical prediction obtained from Eq. (22) by setting a = 5.85f0λ

3.
The time is dimensionless, measured in terms of the molecular-dynamics time step δt .

accordance found between the simulations and analytical
results is shown in Fig. 3(b), where we present the time evolu-
tion of the dimensionless coefficient C(t) = λ4NB(t)β(t)/Ly ,
whose theoretical prediction is given in Eq. (22). The solid line
corresponds to this analytical result by setting a = 5.85f0λ

3,
which is in full agreement with the value of a used for the
curves in Fig. 2.

A strong support for q-Gaussian distributions is presented
in Fig. 4, where we plot the q logarithm, lnq u = (u1−q −
1)/(1 − q) (u > 0) [6], for some typical times of Fig. 2
[Fig. 4(a)] as well as of the collapsed representation of
Fig. 3(a) [Fig. 4(b)] in conveniently scaled variables. In this
representation, q-Gaussian distributions become straight lines.
In all cases the symbols, which represent the data from the
simulations, show a good agreement with the straight line
characteristic of the plot, considering the index q = 0.

In Ref. [10] the time dependence of the second moment
〈x2〉 of the q-Gaussian distribution in Eq. (2) was calculated
[cf. Eq. (6)]. In Fig. 5 we present this quantity at different times
of the evolution process, as computed from our simulations.
For short times one finds the expected anomalous-diffusion
regime, 〈x2〉 ∼ t2/3, and deviations from this regime are found
for longer times, where the confining potential drives the
system toward its stationary state. The line corresponds to
the analytical result of Eq. (6), showing a good agreement
with the simulations for all times.

All numerical data presented so far are related to the
distribution P (x,t). They provide strong evidence that the time
evolution of the system of vortices defined above should be
described appropriately by means of the NLFPE in Eq. (20);
its solution, given in Eq. (11), corresponds to a q-Gaussian
distribution with q = 0. From now on, we will be concerned
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FIG. 4. (Color online) Plots of ln0[ρ(x,t)/ρ(0,t)] versus dimensionless abscissas for some typical times: (a) three times from Fig. 2; (b) the
same times from the collapsed representation of Fig. 3(a). The straight lines correspond to the analytical results obtained from Eq. (21).
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FIG. 5. (Color online) Time behavior of the dimensionless second
moment 〈(x/λ)2〉; for short times we verified an anomalous diffusion
characterized by 〈x2〉 ∼ t2/3. The symbols are data from the simu-
lations, whereas the line corresponds to the analytical calculation of
Eq. (6) with ν = 2.

with the time behavior of the corresponding velocities vx . It
should pointed out that, in this case, to our knowledge there is
no analytical result for the associated probability distributions;
therefore, the following results are only numerical.

Since for the conditions considered at the initial time
all particles are located close to the origin, around which
the harmonic potential is very weak, the prevalence of the
repulsive interactions make the particles move away from the
origin rapidly in the x direction, leading to possible large values
for the corresponding velocities {vix} (i = 1,2, . . . ,N ). After
some time, the confining potential starts playing an important
role, and its main effect is to decrease these velocities until
they reach the stationary state shown in Fig. 1. We have
investigated the time evolution of the probability distribution
P (vx,t), associated with the velocities {vix}, and the results
are exhibited in Fig. 6. It should be mentioned that herein the
time is dimensionless, measured in terms of the molecular-
dynamics time step δt , and so velocities are presented with a
dimension of length. As expected, these distributions present
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FIG. 6. (Color online) The dimensionless probability distributions λP (vx,t) versus vx/λ is exhibited for typical increasing times: (a) at
the beginning of the evolution; (b) intermediate times; (c) in the approach to the stationary state. All these data fall into a universal curve, for
conveniently rescaled variables, as shown in (d). Since time is dimensionless, velocities are presented with a dimension of length. The symbols
represent simulation data, whereas solid curves are q-Gaussian distributions with q = 0.
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FIG. 7. (Color online) Plots of ln0[P (vx,t)/P (0,t)] versus dimensionless abscissas for some typical times: (a) three times from Fig. 6(b);
(b) three typical times from the collapsed representation of Fig. 6(d). The straight lines are guides to the eye.

larger widths at the beginning of the evolution and they become
narrow as time increases, approaching a delta function for
sufficiently large times, i.e., limt→∞ P (vx,t) = δ(vx) [cf., e.g.,
the case t = 500 in Fig. 6(c)]. However the most interesting
conclusion of Fig. 6 concerns the fact that the velocities {vix}
follow q-Gaussian distributions similar to the positions {xi},

P (vx,t) = Bv(t)
[
1 − βv(t)v2

x

]
+, (23)

where we have introduced the time-dependent parameters
Bv(t) and βv(t) in correspondence with Eq. (11). This evidence
is given by the good agreement between the numerical data
and the solid lines in Fig. 6. In the collapsed representation, the
solid line represents a universal parabola, P (vx,t)/P (0,t) =
[1 − b{vxP (0,t)}2]+, with b ≈ 1.77. Further indication for the
behavior of Eq. (23) is given in Fig. 7, where we present plots of
ln0[P (vx,t)/P (0,t)] versus dimensionless abscissas for some
typical times chosen either from Fig. 6(b) [leading to the plots
of Fig. 7(a)] or from the collapsed data of Fig. 6(d) [yielding
the plot of Fig. 7(b)]. The results shown above strongly suggest
that the same index q = 0 applies for both distributions P (x,t)
and P (vx,t); the distribution P (x,t) found herein is supported
by a previously studied NLFPE, whereas P (vx,t) still lacks an
appropriate theoretical background.

Similarly to what was done in the case of positions, where
we examined the product of the time-dependent coefficients
B(t) and β(t) [cf. Fig 3(b)], we have also investigated the
time evolution of the dimensionless quantity λ3Bv(t)βv(t), as
presented in Fig. 8. Analogous to those quantities shown in
Figs. 3(b) and 5, one sees two distinct time behaviors: a short-
time regime where λ3Bv(t)βv(t) ∼ t5/2, followed by a different
behavior in the approach toward the stationary state.

IV. CONCLUSION

We have studied a system of interacting vortices under
an overdamped motion, which has been commonly used in
the literature to model flux-front penetration in disordered
type-II superconductors. In a previous work [18], this model
was related to a nonlinear Fokker-Planck equation, typical

of nonextensive statistical mechanics in a two-fold way:
(i) analytically, through a coarse-graining approximation;
and (ii) numerically, by showing that the stationary-state
solution of this equation was in good agreement with results
obtained from molecular-dynamics simulations. Herein, this
relation has been extended by showing that it holds along
the whole time evolution, with the probability distribution
for the positions, P (x,t), given by a q Gaussian with q = 0
(i.e., a parabola), for all times. Along its time evolution
P (x,t) spreads in time (keeping fixed the value of q), and
its width, normalization, and second moment were shown to
be in full agreement with the analytic solution of the nonlinear
Fokker-Planck equation. The present results strongly reinforce
the approach used in Ref. [18] and corroborate the reply in
Ref. [19].

Moreover, we have also presented results for the
x-component velocity probability distribution P (vx,t),
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FIG. 8. (Color online) Time evolution of the dimensionless
coefficient λ3Bv(t)βv(t), defined in Eq. (23). The symbols are data
from the simulations, whereas the solid straight line presents a slope
of 5/2.
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showing that it is given by a q-Gaussian distribution totally
analogous to P (x,t), with the same value of q, namely
q = 0. However, contrary to P (x,t), the distribution P (vx,t)
shrinks in time, approaching a delta function as the system
evolves toward the stationary state. In contrast to P (x,t),
for which there is a theoretical background in accordance
with the present results, we are not aware of any the-
oretical analysis related to the distribution P (vx,t). This
may be given by a kind of nonlinear Kramers equation
involving a joint probability distribution P (x,vx,t), from
which the distributions found herein would represent marginal
probabilities; analytical investigations in this direction are
welcome.

To summarize, we have presented broad evidence that
a system of interacting vortices under overdamped motion
constitutes an important physical application for nonextensive
statistical mechanics. Its time-dependent properties, in addi-
tion to those of the stationary state, were shown to be fully
compatible with this theory.

ACKNOWLEDGMENTS

We thank CAPES, CNPq, and FAPERJ (Brazilian Agen-
cies) for financial support. We are grateful to Constantino
Tsallis, J. S. Andrade Jr., and A. A. Moreira for fruitful
conversations.

[1] Encyclopedia of Nonlinear Science, edited by A. C. Scott (Taylor
and Francis, New York, 2005).

[2] A. C. Scott, The Nonlinear Universe (Springer, Berlin, 2007).
[3] C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation:

Self-Focusing and Wave Collapse (Springer, New York, 1999).
[4] T. D. Frank, Nonlinear Fokker-Planck Equations: Fundamentals

and Applications (Springer, Berlin, 2005).
[5] F. D. Nobre, M. A. Rego-Monteiro, and C. Tsallis, Phys. Rev.

Lett. 106, 140601 (2011).
[6] C. Tsallis, Introduction to Nonextensive Statistical Mechanics

(Springer, New York, 2009).
[7] A. R. Plastino and A. Plastino, Physica A 222, 347 (1995).
[8] C. Tsallis and D. J. Bukman, Phys. Rev. E 54, R2197 (1996).
[9] L. E. Reichl, A Modern Course in Statistical Physics, 2nd ed.

(John Wiley and Sons, New York, 1998).
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