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Repulsive particles under a general external potential: Thermodynamics by neglecting thermal noise
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A recent proposal of an effective temperature θ , conjugated to a generalized entropy sq , typical of nonextensive
statistical mechanics, has led to a consistent thermodynamic framework in the case q = 2. The proposal was
explored for repulsively interacting vortices, currently used for modeling type-II superconductors. In these
systems, the variable θ presents values much higher than those of typical room temperatures T , so that the
thermal noise can be neglected (T/θ � 0). The whole procedure was developed for an equilibrium state obtained
after a sufficiently long-time evolution, associated with a nonlinear Fokker-Planck equation and approached due
to a confining external harmonic potential, φ(x) = αx2/2 (α > 0). Herein, the thermodynamic framework is
extended to a quite general confining potential, namely φ(x) = α|x|z/z (z > 1). It is shown that the main results
of the previous analyses hold for any z > 1: (i) The definition of the effective temperature θ conjugated to the
entropy s2. (ii) The construction of a Carnot cycle, whose efficiency is shown to be η = 1 − (θ2/θ1), where θ1

and θ2 are the effective temperatures associated with two isothermal transformations, with θ1 > θ2. The special
character of the Carnot cycle is indicated by analyzing another cycle that presents an efficiency depending on z.
(iii) Applying Legendre transformations for a distinct pair of variables, different thermodynamic potentials are
obtained, and furthermore, Maxwell relations and response functions are derived. The present approach shows a
consistent thermodynamic framework, suggesting that these results should hold for a general confining potential
φ(x), increasing the possibility of experimental verifications.
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I. INTRODUCTION

The connection of the entropy concept with dynamics
represents an outstanding result of nonequilibrium statistical
mechanics [1–3]. Statistical entropy is defined as a functional
depending only on the probabilities of a physical system [2],
i.e., s ≡ s{Pi(t)} [for a discrete set of states, where Pi(t)
represents the probability for finding the system in a state
i, at time t], or s ≡ s[P (x,t)] (for continuous states, where
x usually denotes the position in one-dimensional space).
The association with dynamics appears through the following
properties: (i) it may be extremized under certain constraints
in order to yield an equilibrium probability that coincides with
the stationary-state distribution obtained from some equations
describing the time evolution of the probabilities (e.g., the
Fokker-Planck equation [4]); and (ii) it follows an H-theorem,
which is proven by considering the statistical entropy and a
given equation for the time evolution of the probabilities [1–4].

These associations have been extended recently for gen-
eralized entropic forms, mostly by making use of nonlinear
Fokker-Planck equations (NLFPEs) [5–16], relating many
nonlinear phenomena occurring in complex systems, e.g.,
anomalous diffusion, as well as entropy production [17], with
generalized entropies. A particular interest has been dedicated
to the NLFPE leading to anomalous diffusion [18,19], which
is associated with Tsallis entropy [20], and it has produced
an appropriate framework for dealing with a wide range of
natural phenomena [21–23].

Recently, a system of particles interacting repulsively, under
overdamped motion, has appeared as a potential physical appli-
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cation for nonextensive statistical mechanics, being associated
with Tsallis entropy with an entropic index q = 2 [24–33].
This connection has emerged by means of a coarse-graining
procedure in the corresponding equations of motion, leading
to the following NLFPE [24–28]:

∂P (x,t)

∂t
= −∂[A(x)P (x,t)]

∂x
+ 2D

∂

∂x

{
[λP (x,t)]

∂P (x,t)

∂x

}

+ kT
∂2P (x,t)

∂x2
, (1.1)

where λ is a characteristic length of the system, whereas
D results from the coarse-graining procedure, being directly
related to particle-particle interactions, and thus it depends
on the physical system under investigation. The equation
above also takes into account the effects of a heat bath at
a temperature T (with k denoting the Boltzmann constant),
whose contribution may be obtained in the standard way,
through the introduction of thermal noise in the system [1].
Additionally, A(x) = −dφ(x)/dx corresponds to an external
force derived from a confining potential φ(x), being funda-
mental for the approach to equilibrium, as well as for the
resulting form of the probability distribution. For a system of
N particles in a rectangular box, the parameter D is given
by D = aN/(2λLy), with Ly corresponding to the size of
the system in its y direction, whereas a is defined, within
the coarse-graining procedure, as an integral over space of the
particle-particle interactions [24–28]. For repulsive particles
with forces characterized by an amplitude f0 (f0 > 0) and
a characteristic length λ, one has a = 2πf0λ

3 for vortices
in type-II superconductors [26–28], as well as for charged
particles, interacting through a Yukawa potential [27], these
later systems being considered as relevant for describing
dusty plasmas and colloidal suspensions [34–38]. Moreover,
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for particles interacting through a Gaussian core potential,
useful in complex fluids such as polymer chains dispersed in
a solvent [38,39], one obtains a = πf0λ

3/2 [27].
In this work, we shall restrict ourselves to the particle-

particle interactions considered in Refs. [25–27], typical of
vortices in type-II superconductors. In this case, the vortex-
vortex interactions are repulsive and radially symmetric, being
given by [24,40–43]

Fpp
i = f0

2

∑
j �=i

K1(rij /λ) r̂ij , (1.2)

where rij = |ri − rj | stands for the distance between vortices
i and j , and r̂ij = (ri − rj )/rij is a vector defined along the
axis joining them. Moreover, K1 represents a modified Bessel
function of the second kind of order 1; the quantities f0 and
λ present constant values for each type-II superconducting
material [40], the latter corresponding to the London penetra-
tion length. The vortices penetrate a two-dimensional box of
dimensions Lx and Ly , which are measured in units of length
λ. Within the coarse-graining approach, the above interactions
lead to the nonlinear diffusion term in Eq. (1.1), where its
coefficient provides the definition of an effective temperature
θ [29],

kθ ≡ D = Nπf0λ
2

Ly

= nπf0λ
2. (1.3)

One should notice that θ is proportional to the linear density
n = N/Ly , as well as to the intensity of interactions between
vortices f0, being always positive; moreover, according to
recent advances in experimental techniques, the density of
vortices became a controllable quantity [44–47], leading to the
desirable possibility of a variable effective temperature. The
quantity kθ presents dimensions of energy, and it was shown
recently to be much larger than typical thermal energies of
a type-II superconducting phase, i.e., kθ � kT [29], so that
Eq. (1.1) may be approximated by

∂P (x,t)

∂t
= −∂[A(x)P (x,t)]

∂x

+ 2D
∂

∂x

{
[λP (x,t)]

∂P (x,t)

∂x

}
. (1.4)

The stationary-state solution of the above equation may be
found for any integrable confining potential φ(x),

Pst(x) = 1

2kθλ
[φ0 − φ(x)]+, (1.5)

where [y]+ = y, for y > 0 (zero otherwise), and φ0 is an
integration constant [48]. In the particular case of a harmonic
potential, φ(x) = αx2/2, one has [25,26]

Pst(x) = α

4kθλ

(
x2

e − x2
) = αλ

4kθ

[(
xe

λ

)2

−
(

x

λ

)2]
, (1.6)

with |x| < xe, where xe = (3kθλ/α)1/3 is found from the
normalization condition for Pst(x).

In fact, for the harmonic external potential, and considering
an initial condition P (x,0) = δ(x), one can show that the
time-dependent solution of Eq. (1.4) falls in the class of
q-Gaussian distributions, typical of nonextensive statistical

mechanics [21–23],

P (x,t) = B(t)[1 − b(t)x2]+. (1.7)

In the equation above, the time-dependent parameters B(t)
and b(t) are related to each other to yield a normalized distri-
bution for all times [18,19]. Hence, P (x,t) presents a compact
support in the interval [−x̄(t),x̄(t)], where x̄(t) increases in
time following x̄(t) = b−1/2(t), so that limt→∞ x̄(t) = xe.

In addition to this, one may prove the H-theorem using
Eq. (1.4) and imposing a well-defined sign for the time
derivative of the one-vortex free-energy functional [25–27],

f = u − θs2, u =
∫ x̄(t)

−x̄(t)
dx φ(x)P (x,t), (1.8)

where θ has to be identified precisely as the effective tem-
perature of Eq. (1.3). As usual, the internal energy is defined
solely in terms of the external potential; the contribution of
the interactions among vortices appears through the parameter
θ . To satisfy the H-theorem, the associated entropy should be
given by [25–27]

s2[P ] = k

{
1 − λ

∫ x̄(t)

−x̄(t)
dx[P (x,t)]2

}
, (1.9)

which corresponds to the particular case q = 2 of Tsallis
entropy sq [21–23]. It is important to remember that the
distribution in Eq. (1.7) coincides with the one obtained
through an extremization of the above entropy, considering
the constraint for probability normalization, in addition to the
constraint of Eq. (1.8) for the internal energy.

Recent works have indicated the entropy s2[P ] as deeply
associated with the present system [29–33], and herein we
will reinforce its relevance. It should be mentioned that this
entropic form has already been useful in other systems, being
directly related to the enstrophy Z2[P ] [49,50] by means of

s2[P ] = k {1 − 2λZ2[P ]}. (1.10)

From the above relation, one sees that the enstrophy Z2[P ]
tends to decrease as s2[P ] increases in time (considering an
isolated system); the former quantity has shown its importance
for fluids, where it is defined as an integral of the square of
the vorticity. Within the context of relative entropies (also
known as mutual information measures, or f divergences), the
corresponding generalization of the Kullback-Leibler measure
of information [defined as the Boltzmann-Gibbs entropy for
two distributions P (x,t) and P0(x,t)] has led to the mutual
information measure Iq[P0(x,t),P (x,t)] [51], expressed in
terms of the entropy sq . The particular case I2[P0(x,t),P (x,t)]
is also very important within the context of information theory,
being directly related to well-known quantities, such as the
Pearson and Neyman chi-squared divergences, χ2

P and χ2
N,

respectively [52–54].
Due to the H-theorem, the stationary-state distribution of

Eq. (1.6) is considered as an equilibrium distribution. Based
on this, a consistent thermodynamic framework has been
developed recently, using the effective temperature introduced
in Eq. (1.3) as the parameter thermodynamically conjugated
to the entropy of Eq. (1.9) [29–33]. However, the general
form of the H-theorem proven in Refs. [12–14] guarantees
that the stationary-state solution of Eq. (1.5) is an equilibrium

022120-2



REPULSIVE PARTICLES UNDER A GENERAL EXTERNAL . . . PHYSICAL REVIEW E 94, 022120 (2016)

distribution for any confining potential φ(x). The purpose
of the present work is to show that such a thermodynamic
framework is valid for a quite general class of powerlike,
nonharmonic potentials; the present results suggest that this
scheme should hold for any integrable and differentiable (at
least once) confining potential. In the next section, we define
the confining potential, present the corresponding equilibrium
distribution, and calculate the internal energy and entropy
in Eqs. (1.8) and (1.9), showing the consistency of the
effective-temperature definition of Eq. (1.3). In Sec. III, we
propose a form for the first law of thermodynamics, within
the present nonextensive context, and derive the equation
of state. In Sec. IV, we define physical transformations and
study two thermodynamic cycles, namely the Carnot and Otto
cycles. It is shown that the Carnot cycle is very special,
preserving the well-known form of standard thermodynamics
for its efficiency, contrary to the Otto cycle, whose efficiency
presents a dependence on both entropy and external potential
parameters. In Sec. V, we explore further the first law by
applying Legendre transformations, deriving thermodynamic
potentials and Maxwell relations. For completeness, we show
that the response functions are very similar to those found
in standard thermodynamics. One should emphasize that all
results obtained herein recover the previous ones, obtained for
the confining harmonic potential as a particular case [29–32].
Finally, in Sec. VI, we present our conclusions.

II. EXTERNAL POTENTIAL AND EQUILIBRIUM STATE

Herein we will extend the harmonic potential employed in
Refs. [25,26,29–33] to a quite general form; the potential, and
associated confining force that appears in Eq. (1.4), will be
considered as

φ(x) = α|x|z
z

,

A(x) = −dφ(x)

dx
= −α|x|z−1 sgn(x) (z > 1). (2.1)

The motivation for the above potential is to amplify the
range of validity of the recently introduced thermodynamics
framework, recovering the previous studies in the particular
case z = 2. The positive quantity α is defined in such a way
that αλz presents dimensions of energy for each z > 1 [55].

Time-dependent solutions of Eq. (1.4) are not known for
nonharmonic potentials, like the ones of Eq. (2.1) for z �= 2;
however, approximate approaches have been proposed in the
literature, e.g., the ansatz of Ref. [27] or the maximum-entropy
procedure discussed in Ref. [56]. In the former case, an
approximate solution has considered two known limits: (i)
In the short-time regime, since the system starts with all
particles confined in a narrow region around the origin, the
effects of the external potential become negligible. In the
absence of an external force, Eq. (1.4) describes an anomalous
diffusion, and hence for the initial condition P (x,0) = δ(x)
its solution should be precisely the one for the external
harmonic potential, given by Eq. (1.7). (ii) In the long-time
limit, one should approach the stationary distribution of
Eq. (1.5). Taking into account these two limiting behaviors, the
following approximate time-dependent solution was proposed

in Ref. [27]:

P (x,t) = B̄(t)[1 − β̄(t)x2 − γ̄ (t)|x|z]+, (2.2)

where B̄(t), β̄(t), and γ̄ (t) are arbitrary, positive, time-
dependent coefficients. To recover the above limits, one should
have γ̄ (0) = 0, whereas in the large-time limit, β̄(t) → 0, with
B̄(t) and γ̄ (t) approaching well-defined values. By adjusting
numerically the time-dependent coefficients, B̄(t), β̄(t), and
γ̄ (t), good approximations were found for the time-dependent
solution P (x,t), by analyzing typical values of z.

As mentioned above, since the NLFPE of Eq. (1.4),
together with its associated entropy in Eq. (1.9), satisfies
an H-theorem [25–27], from now on we will refer to the
time-independent solution of Eq. (1.4) as an equilibrium state,
so that the corresponding distribution will be denoted by
Peq(x). In this way, substituting the above potential in Eq. (1.5),
one gets

Peq(x) = 1

2zλz+1

αλz

kθ

[
xz

e − |x|z]+ (2.3)

with |x| < xe, where xe is found from the normalization
condition for Peq(x),

xe = λ

[
(z + 1)

kθ

αλz

]1/(z+1)

, (2.4)

representing a typical positive length, as expected. Hence,
the distribution of Eq. (2.3) is characterized by a cutoff xe,
which increases with the effective temperature as xe ∝ θ1/(z+1).
Moreover, Peq(x) presents a variance,

〈x2〉 = (z + 1)(z+3)/(z+1)

3(z + 3)
λ2

(
kθ

αλz

)2/(z+1)

= z + 1

3(z + 3)
x2

e ,

(2.5)

from which one obtains

kθ = αλz

{
3(z + 3)

(z + 1)(z+3)/(z+1)

〈x2〉
λ2

}(z+1)/2

. (2.6)

Therefore, the effective temperature θ is related to the variance
in particle positions, such that θ ∝ 〈x2〉(z+1)/2

. This behavior
is a signature of the NLFPE of Eq. (1.4), and it should be
contrasted with the standard classical dilute gas [1,2], for
which the temperature is related linearly to the second moment
of the corresponding velocity probability distribution, i.e.,
T ∝ 〈v2〉.

In fact, the results above may be extended by calculating
the mean value 〈|x|z′ 〉, where in general one may have z′ �= z.
One obtains

〈|x|z′ 〉 = z + 1

(z′ + 1)(z + z′ + 1)
xz′

e , (2.7)

which recovers Eq. (2.5) in the case z′ = 2. Moreover, one also
has

〈|x|z′ 〉 = z + 1

(z′ + 1)(z + z′ + 1)
λz′

[
(z + 1)

kθ

αλz

]z′/(z+1)

, (2.8)

showing the relation θ ∝ 〈|x|z′ 〉(z+1)/z′
, which presents a form

typical of a generalized equipartition theorem for the present
system.
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Making use of the equilibrium probability distribution in
Eq. (2.3), one may calculate average values corresponding
to physical quantities, such as those defined in Eqs. (1.8)
and (1.9),

u =
∫ xe

−xe

dx
α|x|z

z
Peq(x) = (z + 1)z/(z+1)

z(2z + 1)
αλz

(
kθ

αλz

)z/(z+1)

,

(2.9)

s2

k
= 1 − λ

∫ xe

−xe

dx[Peq(x)]2

= 1 − (z + 1)z/(z+1)

2z + 1

(
αλz

kθ

)1/(z+1)

. (2.10)

Using Eq. (2.6) the entropy above may also be written in
the form

s2

k
= 1 − a(z)

(
λ2

〈x2〉
)1/2

, (2.11)

where a(z) represents a positive number for any z > 1. Hence,
for increasing values of 〈x2〉, the entropy grows with a
power that does not depend on the parameter z. One should
recall that the equilibrium state, for which the following
thermodynamic framework will be developed, consists of a
mechanical equilibrium, so that the present approach comes
as a direct consequence of the fluctuations in particle positions
(leading to a variance 〈x2〉 > 0), as illustrated in the quantities
of Eqs. (2.6) and (2.11).

Manipulating Eqs. (2.9) and (2.10), one can rewrite the
entropy in terms of the internal energy in the following way:

s2(u,α)

k
= 1 − z + 1

2z + 1

[
αλz

z(2z + 1)u

]1/z

, (2.12)

where we have expressed the dependence s2 = s2(u,α) for
reasons that will become clear in the next section.

From Eq. (2.12) one obtains the fundamental thermody-
namic relation, (

∂s2

∂u

)
α

= 1

θ
, (2.13)

which is analogous to the temperature definition of standard
thermodynamics [1,2,57], showing that the parameter θ

introduced in Eq. (1.3) represents an appropriate effective-
temperature definition for any z > 1.

The result of Eq. (2.13) suggests a definition of a type of
energy exchange, δQ = θds2, to be referred to hereafter as heat
exchange [30–32]. In what follows, we will use these results
to construct a thermodynamic framework for this system.

III. FIRST-LAW PROPOSAL

In the previous studies [30–32], the work contribution
related to the external potential was associated with variations
in the parameter α, which controls directly the volume
occupied by the vortices in the equilibrium state. In this
way, an infinitesimal change in α, modifying the external
potential acting on each particle, leads to an infinitesimal
work defined as δW = σdα, where σ represents a parameter
thermodynamically conjugated to α, to be determined. This

definition, together with the one for the infinitesimal amount
of heat, δQ = θds2, yields a proposal equivalent to the first
law [30–32],

du = δQ + δW = θds2 + σdα, (3.1)

where δW corresponds to the work done on the system, and σ

should present dimensions [L]z. In this way, the dependence
s2 = s2(u,α) [cf. Eq. (2.12)] becomes clear; the consistency
of this proposal for the first law will be shown throughout the
next sections.

From Eq. (3.1), one gets that(
∂s2

∂α

)
u

= −σ

θ
, (3.2)

and deriving Eq. (2.12) with respect to α, using the internal
energy of Eq. (2.9), one obtains the following equation of state:

σ = (z + 1)z/(z+1)

z(2z + 1)
λz

(
kθ

αλz

)z/(z+1)

. (3.3)

Therefore, the parameter σ increases with θ (for α fixed),
whereas for a fixed θ , an increase in σ yields a decrease in α.
Moreover, comparing Eq. (3.3) with Eq. (2.9), one notices the
interesting relation u = σα, which will have implications on
the thermodynamic potentials, particularly on the enthalpy, to
be discussed later on.

Using Eq. (2.6) in the equation of state above, one obtains

σ = λz

z(2z + 1)

[
3(z + 3)

z + 1

〈x2〉
λ2

]z/2

, (3.4)

relating σ and the variance 〈x2〉, showing that the work term
acts directly on the equilibrium distribution.

IV. TRANSFORMATIONS AND CYCLES

From the proposal of Eq. (3.1) for the first law, one can study
the possible physical transformations and reversible cycles,
like those investigated in Refs. [30–32]. In analogy with the
standard thermodynamic processes [1,57], one can define the
isothermic process (θ = const), the adiabatic process (s2 =
const), and two additional ones, corresponding to constant
values of the parameters in the work contribution of Eq. (3.1),
namely iso-α and iso-σ . The adiabatic process corresponds to
one of the conditions [cf. Eqs. (2.9)–(2.12) and (3.3)]

α

θ
= const, σ = u

α
= const, (4.1)

showing that the adiabatic and iso-σ transformations cor-
respond precisely to the same process. Below, we describe
the three possible transformations associated with Eq. (3.1),
taking the system from an initial equilibrium state i to a final
equilibrium state f .

A. Adiabatic (or iso-σ ) transformations

The total work done on the system in an adiabatic
transformation, from an initial state characterized by (θi,αi)
to a final one, with (θf ,αf ), is given by

uf − ui = W =
∫ αf

αi

σdα = σ (αf − αi), (4.2)
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so that work is positive (negative) for αf > αi (αf < αi).
Along this transformation, the parameter σ is given by

σ = (z + 1)z/(z+1)

z(2z + 1)
λz

(
kθi

αiλz

)z/(z+1)

= (z + 1)z/(z+1)

z(2z + 1)
λz

(
kθf

αf λz

)z/(z+1)

. (4.3)

B. Isothermal transformations

From the equation of state [cf. Eq. (3.3)], one may
obtain isothermal transformations, which present a decay
(σ/λz) ∼ (αλz)−[z/(z+1)], as exhibited in Fig. 1(a) for dif-
ferent values of z. For an isothermal process at a tem-
perature θ , one has for the heat and work contributions,
respectively,

Q =
∫ s2,f

s2,1

θds2 = θ (s2,f − s2,i) = (z + 1)z/(z+1)

2z + 1
kθ

{(
αiλ

z

kθ

)1/(z+1)

−
(

αf λz

kθ

)1/(z+1)}
, (4.4)

W =
∫ αf

αi

σdα = λz

z(2z + 1)

[
(z + 1)

kθ

λz

]z/(z+1) ∫ αf

αi

α−z/(z+1)dα = (z + 1)(2z+1)/(z+1)

z(2z + 1)
kθ

{(
αf λz

kθ

)1/(z+1)

−
(

αiλ
z

kθ

)1/(z+1)}
.

(4.5)

Consistently, one notices that the sum of the two forms of energy above coincides with the internal energy difference [using
Eq. (2.9)],

uf − ui = Q + W = (z + 1)z/(z+1)

z(2z + 1)
kθ

{(
αf λz

kθ

)1/(z+1)

−
(

αiλ
z

kθ

)1/(z+1)}
. (4.6)

Then, the work and variation of internal energy are positive (negative), whereas the system releases (absorbs) heat if αf > αi

(αf < αi).

C. Iso-α transformations

For a transformation from an initial state (θi,α) to a final state (θf ,α), the work done on the system is zero, since δW = σdα.
The process is characterized by du = δQ = θds2, so that

uf − ui = Q =
∫ θf

θi

θds2 = αλz

z(2z + 1)

{[
(z + 1)

kθf

αλz

]z/(z+1)

−
[

(z + 1)
kθi

αλz

]z/(z+1)}
. (4.7)

D. Carnot cycle

From the above transformations, one can define a set of
transformations analogous to the Carnot cycle by considering
two isothermal and two adiabatic processes, intercalated, as
illustrated in Fig. 1(b) for the particular case z = 4. The
quantities σ and α present dimensions that vary with z, being
defined such that the ordinate σ/λ4 is dimensionless, whereas
the abscissa αλ4 presents dimensions of energy. Some of the
properties of the cycle shown in Fig. 1(b) are described next. (i)
An amount of heat Q1 is absorbed in the isothermal process at
the higher temperature θ1, whereas the system releases heat
Q2 in the isothermal process at the lower temperature θ2.
(ii) In a plot σ versus α [or equivalently σ/λ4 versus αλ4,
as in Fig. 1(b)], the work associated with a given process
corresponds to the area below such a transformation. As shown
previously, work is positive (negative) for transformations
that increase (decrease) α. Therefore, the total work done
on the system, calculated as W = Wab + Wbc + Wcd + Wda ,
is given by the area enclosed in the cycle of Fig. 1(b),
being negative, as expected from Eq. (3.1). If one defines
W = −W as the work done by the system, considering that
the variation of internal energy is zero for the complete cycle,
one has Q1 = W + Q2 (conventionalizing all three quantities
as positive). (iii) Manipulating Eqs. (3.3) and (4.4), one obtains
the well-known result relating the two isothermal processes,
(Q1/Q2) = (θ1/θ2), leading to the celebrated efficiency of the

Carnot cycle,

η = W
Q1

= Q1 − Q2

Q1
= 1 − θ2

θ1
(0 � η � 1). (4.8)

This reinforces the fact that the Carnot cycle is very special
within thermodynamics, so that its efficiency does not depend
on the system under study, the external potential, or the particu-
lar entropic form considered. As shown in Refs. [30,32], where
a harmonic external potential was considered, by following
the cycle in the reverse way one obtains the corresponding
Carnot refrigerator; this property holds also for the cycle in
Fig. 1(b), as well as for those defined in terms of the general
external potential of Eq. (2.1), for any z > 1. These results
give further support for the fundamental relation of Eq. (3.1),
as well as for the effective-temperature definition of Eq. (1.3),
as appropriate for a consistent thermodynamic framework of
the present system. Next, we analyze another cycle to show
that its efficiency depends on the external potential considered,
i.e., on the exponent z.

E. Otto cycle

The standard Otto cycle represents a rough approximation
of a gasoline engine, consisting of two adiabatic and two
isovolumetric transformations, intercalated [57,58]. Herein we
will investigate a cycle analogous to the Otto cycle, consisting
of two adiabatic and two iso-α transformations, as considered

022120-5



MAURICIO S. RIBEIRO AND FERNANDO D. NOBRE PHYSICAL REVIEW E 94, 022120 (2016)

0 5 10

αλz
0.0

0.2

0.4

0.6

0.8

1.0

σ/
λz

z=4
z=3
z=1.5

0.0 0.5 1.0 1.5

αλ4

0.2

0.3

0.4

0.5

σ/
λ4

z=4     b

a

c

d

Q1Q2

W

(a) (b)

FIG. 1. (a) Isothermal transformations are exhibited in the plane
σ/λz (dimensionless) vs αλz (dimensions of energy) for typical values
of z; accordingly, the dimensions of both quantities σ and α vary
with z in such a way that the product σα presents dimensions of
energy. (b) The Carnot cycle a → b → c → d → a is represented
in the particular case z = 4. The transformations for σ constant are
adiabatic, and herein they were chosen to occur for (σ/λ4) = 0.45
(b → c) and (σ/λ4) = 0.25 (d → a). The isothermal transformations
are characterized by σ ∼ α−4/5 [cf. Eq. (3.3)], and they occur for
kθ1 = 5 (units of energy) in a → b, and kθ2 = 1 (units of energy)
in c → d , i.e., θ1 > θ2. The area inside the cycle represents the total
work W done on the system, which is negative, as expected from
Eq. (3.1). The cycle above holds for any system of units, e.g., one
may consider all quantities with dimensions of energy in Joules.

in Ref. [32]. The motivation for analyzing this particular cycle
consists in the fact that its efficiency will depend on the
parameter z, characteristic of the external potential. The main
proprieties of this cycle are described next. (i) In the plane
σ/λz versus αλz, this cycle is represented by a rectangle, as
illustrated in Fig. 2 for the particular case z = 4. The effective
temperature changes along all four transformations, presenting
the set of values (θa,θb,θc,θd ), at the corresponding vertices
of the rectangle. (ii) An amount of heat Q1 is absorbed in the
iso-α transformation a → b, whereas the system releases heat
Q2 in the iso-α transformation c → d. The total work done on
the system is given by the area enclosed in the cycle of Fig. 2.
Similarly to the procedure carried out for the Carnot cycle, if
one defines W = −W as the work done by the system, the
variation of internal energy is zero for the complete cycle, and
one has Q1 = W + Q2. (iii) From the equation of state and
the condition for the adiabatic transformation, (α/θ ) = const,
one finds that θb > θa > θd and θb > θc > θd , so that θb and θd

represent, respectively, the highest and lowest temperatures of
the cycle. (iv) Using Eq. (4.7), one can calculate Q1 and Q2,

Q1 = αaλ
z

z(2z + 1)

×
{[

(z + 1)
kθb

αaλz

]z/(z+1)

−
[

(z + 1)
kθa

αaλz

]z/(z+1)}
,

(4.9)

Q2 = αcλ
z

z(2z + 1)

×
{[

(z + 1)
kθc

αcλz

]z/(z+1)

−
[

(z + 1)
kθd

αcλz

]z/(z+1)}
,

(4.10)

0 1 2 3 4

αλ4

0.10

0.15

0.20

0.25

σ/
λ4

b

a

c

d

Q1Q2

W

FIG. 2. The Otto cycle is represented for the particular case z = 4;
the cycle is composed of two adiabatic (σ constant) transformations
and two iso-α (α constant) transformations, intercalated. The abscissa
αλ4 presents dimensions of energy (e.g., Joules), whereas the ordinate
σ/λ4 is dimensionless. An amount of heat Q1 is absorbed at
transformation a → b, whereas Q2 is released at c → d . The area
inside the cycle represents the total work W done on the system,
which is negative, as expected from Eq. (3.1). The cycle above holds
for any system of units, e.g., one may consider all quantities with
dimensions of energy in Joules.

which are both positive quantities, with Q1 > Q2. In the adi-
abatic transformation b → c, one has that (αc/αb) = (θc/θb),
and using that αb = αa , the efficiency of the cycle follows,

η = 1 − Q2

Q1
= 1 − θd

θa

[
(θc/θd )z/(z+1) − 1

(θb/θa)z/(z+1) − 1

]
. (4.11)

It is important to mention that for the standard Otto cycle,
with an ideal gas as the working substance, the efficiency η

differs from the expression above through a replacement of the
exponents z/(z + 1) by unit [58]. This result generalizes the
previous one presented in Ref. [32], recovered as the particular
case z = 2. Comparing Eqs. (4.8) and (4.11), one notices the
special nature of the Carnot cycle, which presents an efficiency
that depends only on the two temperatures of the isothermal
transformations.

V. THERMODYNAMIC POTENTIALS AND RESPONSE
FUNCTIONS

Now we will explore the first-law proposal of Eq. (3.1)
by following the usual procedures [1,2,57], e.g., performing
Legendre transformations, in order to introduce additional
thermodynamic potentials. Additionally, we define quantities
analogous to the response functions of standard thermodynam-
ics.

A. Internal energy

From Eq. (3.1), one has that the internal energy depends
on the pair of independent variables (s2,α), i.e., u ≡ u(s2,α).
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Inverting Eq. (2.12), one gets

u(s2,α) = αλz

z(2z + 1)z+1

(
z + 1

1 − s2/k

)z

. (5.1)

From the above equation, one obtains the equivalent to the
effective-temperature definition [Eq. (2.13)], as well as the
equation of state [Eq. (3.3)], respectively,(

∂u

∂s2

)
α

= θ,

(
∂u

∂α

)
s2

= σ. (5.2)

Considering u(s2,α) as a state function, its second deriva-
tives should be independent of the order of differentiation,
leading to the following Maxwell relation:

∂2u

∂α∂s2
= ∂2u

∂s2∂α
⇒

(
∂σ

∂s2

)
α

=
(

∂θ

∂α

)
s2

. (5.3)

B. Helmholtz free energy

Now we deal with the Helmholtz free energy, f (θ,α),
defined in Eq. (1.8),

f (θ,α) = u − θs2 ⇒ df = −s2dθ + σdα. (5.4)

The following free energy is obtained:

f (θ,α) = αλz

{
(z + 1)(2z+1)/(z+1)

z(2z + 1)

(
kθ

αλz

)z/(z+1)

− kθ

αλz

}
,

(5.5)

which satisfies the relations(
∂f

∂θ

)
α

= −s2,

(
∂f

∂α

)
θ

= σ. (5.6)

Furthermore, the corresponding Maxwell relation appears,

∂2f

∂α∂θ
= ∂2f

∂θ∂α
⇒

(
∂s2

∂α

)
θ

= −
(

∂σ

∂θ

)
α

. (5.7)

C. Gibbs free energy

We define the Gibbs potential g(θ,σ ) through

g(θ,σ ) = f − σα = u − θs2 − σα

⇒ dg = −s2dθ − αdσ. (5.8)

Using the above potentials, one gets

g(θ,σ ) = kθ

{
z + 1

(2z + 1)(z+1)/z

(
λz

zσ

)1/z

− 1

}
, (5.9)

which satisfies(
∂g

∂θ

)
σ

= −s2,

(
∂g

∂σ

)
θ

= −α. (5.10)

The Maxwell relation associated with this pair of variables
is obtained as

∂2g

∂σ∂θ
= ∂2g

∂θ∂σ
⇒

(
∂s2

∂σ

)
θ

=
(

∂α

∂θ

)
σ

. (5.11)

One curious property that follows by manipulating
Eqs. (5.9), (2.10), and (3.3) is the relation g = −θs2, whose
consequences will be discussed next.

D. Enthalpy

Previously, we have seen that by comparing Eqs. (3.3)
and (2.9), the relation u = σα follows; moreover, the Gibbs
potential above satisfies g = −θs2. These relations imply a
trivial enthalpy, defined as

h(s2,σ ) = u − σα = f + θs2 − σα = g + θs2 = 0. (5.12)

Hence,

dh = θds2 − αdσ = 0 ⇒ ds2 = α

θ
dσ, (5.13)

showing that variations in σ are directly related to variations
in the entropy s2, reinforcing the previous result that for an
adiabatic process, for which the conditions of Eq. (4.1) apply,
the present system cannot exchange “heat” (i.e., it cannot vary
its entropy) for σ fixed.

Therefore, a complete thermodynamic framework is given
in terms of the three previously defined potentials, namely
internal energy, u(s2,α), and free energies, f (θ,α) and g(θ,σ );
the enthalpy h(s2,σ ) should not contain any new information.
Similar behavior is also found in other well-known systems, as
in the three-dimensional ideal gas, for which pv = 2u/3 (valid
for the classic case, as well as in both quantum statistics [1]),
leading to an enthalpy h = 5u/3, showing that in this case, the
enthalpy does not represent an independent thermodynamic
potential.

In spite of this, Eq. (5.13), which results from such a trivial
enthalpy, may still be useful, e.g., it yields an equivalent way to
calculate entropy changes in given transformations, by using
only the equation of state [Eq. (3.3)]. As an example, for iso-α
transformations, one has

s2,f − s2,i =
∫ θf

θi

α

θ

(
∂σ

∂θ

)
α

dθ, (5.14)

which leads to

s2,f − s2,i = (z + 1)z/(z+1)

2z + 1
k

×
{(

αλz

kθi

)1/(z+1)

−
(

αλz

kθf

)1/(z+1)}
. (5.15)

E. Response functions

A quantity analogous to the specific heat was introduced in
Refs. [29,30,32] for a fixed α, in such a way that it may be
calculated in three different ways,

cα =
(

∂u

∂θ

)
α

= θ

(
∂s2

∂θ

)
α

= −θ

(
∂2f

∂2θ

)
α

= k

(2z + 1)

[
1

(z + 1)

αλz

kθ

]1/(z+1)

, (5.16)

leading to cα � 0. In a similar way, one can define cσ ,

cσ = θ

(
∂s2

∂θ

)
σ

=
(

∂h

∂θ

)
σ

= 0, (5.17)

following trivially as a consequence of the fact that h = 0, and
expected, since the system cannot exchange heat for σ fixed.

In the Appendix, we show that important quantities,
corresponding to the coefficient of expansion and isothermal
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compressibility of standard thermodynamics, can be ex-
pressed, respectively, as

γ = 1

α

(
∂α

∂θ

)
σ

= 1

θ
(5.18)

and

κ = − 1

α

(
∂α

∂σ

)
θ

= z + 1

zσ
. (5.19)

Moreover, in the Appendix we also show that the response
functions defined above are related by

cα = αθ
γ 2

κ
, (5.20)

showing that γ , κ , and cα are all positive for any z > 1.
Therefore, these quantities behave very similarly to the cor-
responding ones of standard thermodynamics [57], including
the relation between them [Eq. (5.20)], which is independent
of z.

VI. CONCLUSIONS

The analyses of Refs. [29–32] were carried for an equilib-
rium state, reached after a sufficiently long-time evolution of
a system of vortices interacting repulsively under overdamped
motion, and in the presence of an external harmonic potential,
φ(x) = αx2/2 (α > 0). Since the corresponding equilibrium
probability distribution Peq(x) depends on φ(x), and important
thermodynamic quantities (e.g., internal energy and entropy)
are calculated from Peq(x), a natural question emerges con-
cerning whether the main thermodynamic results obtained
depend on the particular form of φ(x). To investigate this
aspect, herein we have extended the former works to a wider
class of potentials, of the form φ(x) = α|x|z/z (z > 1), so that
the previous results are recovered in the particular case z = 2.

The approach is based on the definition of an effective
temperature θ , conjugated to a generalized entropy sq with
q = 2, typical of nonextensive statistical mechanics. The
physical system in mind corresponds to a model for type-II
superconductors, for which the variable θ presents values
much higher than those of typical room temperatures T , so
that the thermal noise can be neglected (T/θ � 0). Moreover,
θ is proportional to the linear density of vortices, which,
according to recent advances in experimental techniques, be-
came a controllable quantity [44–47], leading to the desirable
possibility of a variable effective temperature. Consequently,
definitions analogous to those of standard thermodynamics
were introduced, such as an infinitesimal amount of heat,
δQ = θds2, and a first-law proposal, du = δQ + δW . From
this we have constructed a Carnot cycle, and we have shown
its efficiency to be η = 1 − (θ2/θ1), where θ1 and θ2 represent
the effective temperatures associated with two isothermal
transformations, with θ1 > θ2. In addition to this, we have also
studied an additional cycle, the Otto cycle, which presented an
efficiency depending on z, illustrating the special character of
the Carnot cycle.

We have consolidated the first-law proposal by applying
Legendre transformations for distinct pairs of variables, ob-
taining different potentials, such as internal energy, Helmholtz
free energy, Gibbs free energy, and enthalpy. From these

potentials, we have derived the equation of state, Maxwell
relations, and response functions analogous to those of
standard thermodynamics, such as specific heat, the coefficient
of thermal expansion, and isothermal compressibility. All
results obtained were shown to be consistent with usual
thermodynamic concepts for any z > 1.

The present results reinforce the idea that a system of
interacting vortices, commonly used for modeling type-II
superconductors, represents an important physical application
for nonextensive statistical mechanics. Herein, we have shown
the robustness of the whole thermodynamic framework,
suggesting that a similar scheme should hold for a general
confining potential φ(x), thus increasing significantly the
potentiality of experimental observations.
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APPENDIX

In this appendix, we will show important results for the
response functions, including relations between them. We will
consider standard calculations (see, e.g., Ref. [57]) in order
to introduce these response functions for this system. In the
equation of state [Eq. (3.3)] one has σ = σ (θ,α), so that

dσ =
(

∂σ

∂θ

)
α

dθ +
(

∂σ

∂α

)
θ

dα, (A1)

or, rewriting the equation of state as α = α(θ,σ ), one gets

dα =
(

∂α

∂θ

)
σ

dθ +
(

∂α

∂σ

)
θ

dσ. (A2)

Let us then define quantities, corresponding, respectively,
to the coefficient of expansion and isothermal compressibility
of standard thermodynamics,

γ = 1

α

(
∂α

∂θ

)
σ

, κ = − 1

α

(
∂α

∂σ

)
θ

, (A3)

which measure changes in α with respect to variations in θ

(σ fixed) and σ (θ fixed). Considering the pair of independent
variables (θ,σ ), one has

θds2 = θ

[(
∂s2

∂θ

)
σ

dθ +
(

∂s2

∂σ

)
θ

dσ

]
= θ

(
∂s2

∂σ

)
θ

dσ, (A4)

where we have used cσ = 0 [cf. Eq. (5.17)] in the last equality.
Substituting Eq. (A1) for α constant in the above equation, the
quantity cα in Eq. (5.16) may be written as

cα = θ

(
∂s2

∂σ

)
θ

(
∂σ

∂θ

)
α

. (A5)

Now, using Eq. (A1) for α constant and the definitions of
Eq. (A3), one obtains (

∂σ

∂θ

)
α

= γ

κ
. (A6)

022120-8



REPULSIVE PARTICLES UNDER A GENERAL EXTERNAL . . . PHYSICAL REVIEW E 94, 022120 (2016)

The above equation, together with the Maxwell relation of
Eq. (5.11), allows us to write Eq. (A5) as

cα = αθ
γ 2

κ
, (A7)

and since the variables θ and α are positive, cα and κ should
present the same sign.

Considering the equation of state, one may calculate the
quantities of Eq. (A3),

γ = 1

θ
, κ = z + 1

zσ
, (A8)

corresponding to the results in Eqs. (5.18) and (5.19), respec-
tively. These equations, together with Eq. (A7), show that γ ,
κ , and cα are all positive for the present system.
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