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Abstract

The study of a two-species dynamics population model, whichincludes intraspecific competition to the Lotka-Volterra equation, is
presented. Despite being simple, this model presents a veryrich behavior, spanning on several ecological regimes. Theecological
regimes are assigned according to the interaction parameter values (ǫ1, ǫ2) and they are neutralism, amensalism, comensalism,
mutualism, predation, and competition. From the stabilityof the steady state solutions, two phases are obtained,namely extinction
of one species or their coexistence. On one hand, extinctionof one species occurs forǫ1 < −1 and/or ǫ2 < −1; i. e., in predation,
amensalism, or competition regimes. Ifǫ1 < 0 andǫ2 < 0 so thatǫ1ǫ2 > 1, one has an extinction phase where the solutions depend
on the initial conditions. On the other hand, coexistence may occur for all the considered regimes as far asǫ1ǫ2 < −1. If ǫ1 > 0 and
ǫ2 > 0 so thatǫ1ǫ2 > 1, one has a forbidden regime with no biological reality. Full analytical solutions have been obtained for all
ecological the regimes mentioned above.
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1. Introduction

The ecosystem is composed by a complex interaction net-
work from which the removal of a single species may cause dra-
matic changes throughout the system. The interactions between
species only became better known in population dynamics in
the 1920s, with the Lotka-Volterra equation [1]. This is a sim-
ple mathematical model that explains the oscillatory behavior in
a chemical concentration (Lotka) and in fish catches (Volterra),
which observed in such systems has been interpreted as a con-
sequence of predation. The introduction of Lotka-Volterra-like
models for the cells of the immune system and the viral load (in
immunology) may be considered one of the main contributions
of population dynamics in the twentieth century [3].

Besides the Lotka-Volterra interaction, there are many other
different kinds of interaction taking place between biological
species. For instance, if only one of these species is indepen-
dent of the other, one has two possible situations:amensal-
ism, if the considered species has anegativeeffect on the other;
andcommensalism, if such effect is positive. As an example
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of amensalism consider that, in order to survive, an organism
exudes a chemical compound as part of its normal metabolism,
but this compound is detrimental to the other organism. An ex-
ample of commensalism is the remoras that eat leftover food
from the shark. If species favor each other, one hasmutual-
ism or symbiosis, which is the case of clear fish As example
clear fish and pollination/ seed dispersion by insects. If species
unfavor each other, there iscompetition. This happens, for in-
stance, when two species occupy the same ecological niche and
use the same resources. If one species is benefited from the in-
teraction while the other is in harm, one haspredationwhich
is a biological system where one species captures the biomass
from the other. A typical example of predation is the hare-lynx
interaction, which can be described by a Lotka-Volterra sys-
tem. The interaction between parasite and the host, also called
parasitism, also belongs to this class, although it is not exactly
“predation” in the strict sense. Finally, when species do not
interact at all there is the so-calledneutralism. In fact, “true”
neutralism is very rare or even nonexistent in the real world.

Here an analytical solution to a simple model for the descrip-
tion of the full dynamics of two interacting populations occupy-
ing limited environmental resources is presented. The solution
exhibits all the abovementioned two-species interactionsin the
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parameter space diagram. Although the particular situations of
the considered model have been addressed in basic dynamics
population textbooks, we show here that this model presents
aspects that have not yet been sufficiently explored.

The text is organized as follows. In Sec. 2, interspecific com-
petition to the Lotka-Volterra equations is presented, thedo-
main of the interaction parameter between two species is ex-
tended, and analytical solutions are obtained. The steady state
solutions of the model are also achieved analytically. These
solutions correspond to the stable ecological regimes in the pa-
rameter space diagram. In Sec. 3, the full analytical solutions
for the trivial case neutralism and the non-trivial ones amensal-
ism and comensalism are depicted. In Sec. 4, the results for
mutualism, predation, and competition are presented. Our con-
clusions are described in Sec. 5.

2. A Simple Two-Species Population Dynamics Model

A reasonable simple two-species population model, inspired
in textbooks models [1, 2], is

dN1

dt
= κ1N1

(

1−
N1

K1
+ α1

N2

K1

)

(1)

dN2

dt
= κ2N2

(

1−
N2

K2
+ α2

N1

K2

)

. (2)

This model incorporates limit environmental resources, logis-
tic growth of one species in the absence of the other, and in-
terspecific interaction. In Eqs. (1) and (2),Ni ≥ 0, κi and
Ki > 0 are the number of individuals (size), natality rate, and
the carrying capacity of speciesi (= 1, 2), respectively. In
Eq. (1),−κ1N2

1/K1 can be understood as a competition between
individuals of the same species (intraspecific competition), and
−κ1N1N2/K1 represents the interaction between individuals of
different species(interspecific interaction). The same is valid
for Eq. (2). The carrying capacity represents the fact that the
two species are not isolated from the rest of the world. In fact,
K1 represents the feeding resource that comes from any kind
of external factors, but that does not have to do with species2.
The same is valid forK2.

Forα1 < 0 andα2 > 0 (or vice-versa), Eqs. (1) and (2) lead
to a class of models calledcompetitive Lotka-Volterra models.
In this case, species 2 (predator) acts negatively on species 1
and species 1 (prey) acts positively on species 2. In a more spe-
cific case, when the prey (N1) grows exponentially in the ab-
sence of the predator (N2); i.e., K1 → ∞; and the predator dies
in the absence of the prey, givingN2 ≫ K2, one retrieves the
simple Lotka-Volterra model. Thesimple Lotka-Volterra model
presents two steady-state solutions, namely (N∗1,N

∗

2) = (0, 0)
and (N∗1,N

∗

2) = (κ2/α2, κ1/α1). The stability analysis shows
that the trivial solution (0, 0) is unstable (saddle point); i.e., if
the prey population is slightly greater than zero and the preda-
tor population vanishes, the prey population diverges. How-
ever, if the predator population is slightly greater than zero and
there is no prey, predators become extinct. The non-trivialsolu-
tion (κ2/α2, κ1/α1)) leads to a limit cycle; i.e., both populations

oscillate with a fixed amplitude. For the competitive Lotka-
Volterra model, the non-trivial solution is still unstable; how-
ever, it is not a saddle point. For the non-trivial solution,one
has a damped oscillation for the transient cycle while limitcycle
vanishes, giving rise to non-periodic stable solutions.

The novelty of the present work is a new interpretation of
Eqs. (1) and (2), since we consider that the interaction param-
eterαi , is not restricted, as is usually done in other studies. In
fact, this absence of restriction to the interaction parameters al-
lows retrieval of many different ecological regimes, like com-
petition, predation, and mutualism; by the same unified mathe-
matical approach. Note that, for instance, ifα1 < 0, species 2
is unfavourable to species 1; ifα1 = 0, it is indifferent; and if
α1 > 0, it is favourable. The parameterα2 behaves similarly.
The model is fully analytically soluble.

To use non-dimensional quantities, we writepi = Ni/Ki ≥

0, for i = 1, 2. Time is measured with respect to the natality
rate of species 1,τ = κ1t ≥ 0. Here, we restrict ourselves to
the caseκi > 0. The scaled time is positive since we take the
initial condition ast0 = 0. Moreover, the two natality rates
form a single parameterρ = κ2/κ1 > 0, because we shall deal
with positive natality rates. The non-dimensional population
interaction parameters are given byǫ1 = α1K2/K1 and ǫ2 =
α2K1/K2, which are not restricted and represent the different
ecological interactions. With these quantities, Eqs. (1) and (2)
become:

dp1

dτ
= p1[1 − p1 + ǫ1p2] = f (p1, p2) (3)

dp2

dτ
= ρp2[1 − p2 + ǫ2p1] = g(p1, p2) . (4)

Observe thatρ fixes a second time scale to the system:τ′ ≡
ρτ = κ2t. Therefore, the interaction between two species is
represented by the pair of parameters (ǫ1, ǫ2). The diagram of
Figure (1) depicts the several ecological interactions accord-
ing to (ǫ1, ǫ2) values. Contrary toρ, which has no major rele-
vance to this model (since we consider onlyρ > 0), the product
ǫ1ǫ2 plays an important role, so thatǫ1ǫ2 < 0 means predation;
ǫ1ǫ2 = 0 means commensalism, amensalism, or neutralism; and
ǫ1ǫ2 > 0 means either mutualism or competition.

2.1. Stability of Steady State Solutions

To obtain the steady state solutionp∗1 = p1(τ→ ∞) andp∗2 =
p2(τ → ∞) of Eqs. (3) and (4), we have to imposedp1/dτ =
dp2/dτ = 0, which impliesf (p∗1, p

∗

2) = g(p∗1, p
∗

2) = 0 and leads
to

p∗1(1− p∗1 + ǫ1p∗2) = 0 (5)

and

p∗2(1− p∗2 + ǫ2p∗1) = 0. (6)

One has the following trivial (“t”), semi-trivial (“st”), and
non-trivial (“nt”) solutions:

p∗1,t = 0 and p∗2,t = 0; (7)

p∗1,st = 1 and p∗2,st = 0; (8)
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Figure 1: Diagram of ecological interaction between two species according to
the interaction parameters (ǫ1, ǫ2). In this diagram, each quadrant represents
one kind of interaction: I:mutualism; II and IV: predation ;III: competition.
The abscissa and ordinate represent either amensalism or commensalism. The
origin represents neutralism.

p∗1,st = 0 and p∗2,st = 1; (9)

p∗1,nt =
1+ ǫ1

1− ǫ1ǫ2
and p∗2,nt =

1+ ǫ2
1− ǫ1ǫ2

. (10)

These asymptotic solutions characterize the system accord-
ing to their stability. The stability matrix, also calledcommunity
matrix, is:

A(p∗1, p
∗

2) =

(

∂p1 f ∂p2 f
∂p1g ∂p2g

)

p∗1,p
∗

2

=

(

1− 2p∗1 + ǫ1p∗2 ǫ1p∗1
ρǫ2p∗2 ρ(1− 2p∗2 + ǫ2p∗1)

)

. (11)

The steady state solutionsp∗1 andp∗2 are stable if the trace and
the determinant of the community matrix are negative and pos-
itive, respectively. Considering Eq. (11), one has:

Tr[A(p∗1, p
∗

2)] = 1+ ρ + (ρǫ2 − 2)p∗1 + (ǫ1 − 2ρ)p∗2 (12)

Det[A(p∗1, p
∗

2)] = ρ
{

1+ p∗1
[

ǫ2 − 2(1+ ǫ2p∗1)
]

+

p∗2
[

ǫ1 − 2(1+ ǫ1p∗2)
]

+ 4p∗1p∗2
}

(13)

One must analyze the possible four instances (7-10).

2.2. Trivial Solutions

Let us start with the stability analysis of the trivial solutions
of Eqs. (7), which means extinction of both species (synnecro-
sis). One has:

Tr[A(0, 0)] = 1+ ρ (14)

Det[A(0, 0)] = ρ . (15)

Sinceρ > 0 , Det[A(0, 0)] > 0 but Tr[A(0, 0)] > 1. The pair of
trivial solution is not stable anywhere in the parameter space,
so synnecrosis never occurs in our model.

2.3. Semi-Trivial Solutions

The semi-trivial solutions are given by Eqs. (8) or (9) and
they mean that one of the species is extinguished. Considering
the steady state solution Eq. (8) (species 1 extinction), one has:

Tr[A(0, 1)] = 1+ ǫ1 − ρ (16)

Det[A(0, 1)] = −ρ(1+ ǫ1) . (17)

For these solutions to be stable, it is necessary thatǫ1 < −1, re-
gardless of theρ value. A similar analysis leads us to conclude
that the steady state Eq. (9) (species 2 extinction) is stable only
for ǫ2 < −1.

2.4. Non-Trivial Solutions

The non-trivial solution Eq. (10) lead to:

Tr[A(p∗1,nt, p
∗

2,nt)] =
1+ ǫ1 + ρ(1+ ǫ2)
ǫ1ǫ2 − 1

(18)

Det[A(p∗1,nt, p
∗

2,nt)] = −
(1+ ǫ1) (1+ ǫ2) ρ
ǫ1ǫ2 − 1

. (19)

On one hand, ifǫ1ǫ2 < 1, the denominator is positive and the
numerator ofp1,nt andp2,nt must vanish or be positive. From the
conditionp∗1,nt ≥ 0, this solution is only stable ifǫ1 ≥ ǫ

(1)
c = −1;

otherwise,p∗1,t = 0 is the stable solution. This produces a tran-
sition from the regime where species 1 coexists with species2
to the regime where species 1 is extinguished. The same transi-
tion occurs for the parameterǫ2. On the other hand, ifǫ1ǫ2 > 1,
the denominator is positive and the numerator ofp1,nt andp2,nt

must vanish or be positive. From the condition,p∗1,nt ≥ 0, this

solution is only stable ifǫ1 < ǫ
(1)
c = −1; otherwise,p∗1,t = 0 is

the stable solution. This produces a transition from the regime
where species 1 coexists with species 2 to the regime where
species 1 is extinguished. The same transition occurs forǫ2.

From the stability criteria, we conclude that species can co-
exist only if ǫ1 > −1 andǫ2 > −1. According to the values of
ǫ1 andǫ2, the various ecological regimes may present a stable
non-trivial solution, as shown below.

2.5. Stable Steady State Solutions in the Parameter Space:
Phase Diagram

In Fig. 2, the stable steady state solutions Eqs. (8), (9), and
(10) of Eqs. (3) and (4) are represented. It is a more detailed
figure than the one shown in of Fig. 1, which only accounts
for ecological regimes. The diagram summarizes our findings:
the coexistence phase and one species extinction phase can be
seen. These phases span on different ecological regimes, which
means that different ecological interactions may lead to the
same phase.

It is important to stress that the non-trivial solutions
[Eqs. (10)] are stable in all quadrants, whereǫ1 > −1, ǫ2 > −1
andǫ1ǫ2 < 1. In this region, the populations coexist, regardless
of the kind of ecological interaction. Modifying the valuesof
the pair (ǫ1, ǫ2), but restricting ourselves to this region (ǫ1 > −1,
ǫ2 > −1, andǫ1ǫ2 < 1), one can change the regime of inter-
action (for instance, from competition to mutualism), but one
can say that the system continues in the same phase. It is in
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Figure 2: Diagram of ecological interaction between two species according to
the pair (ǫ1, ǫ2). In this diagram, each quadrant represents one kind of inter-
action: I:mutualism; II and IV: predation ; III: competition. The abscissa and
ordinate represent either ammensalism or commensalism. The origin represents
neutralism. The non-trivial solutions (ǫ1 > −1, ǫ2 > −1, andǫ1ǫ2 < 1) corre-
spond to the coexistence phase. In this phase mutalism, comensalism, amen-
salism, predation, competition, and neutralism can occur,for instance, around
and inside the dashed circe. The complementary region is characterized by an
extinction phase and a forbidden region. The extinction phase (ǫ1 < −1 and/or
ǫ2 < −1) reveals a region forǫ1 < 0 andǫ2 < 0 where, contrary to the other
cases, the steady state solutions depend on the initial condition. Forǫ1 > 1 and
ǫ2 > 0 andǫ2 > 1/ǫ1, there exists a forbidden region with non biological reality
(negative number of individuals).

the same phase because the population size, regardless of the
change in regime, continues being governed by the same steady
state solution (10). To exemplify this situation, considerthat we
change the values of the pair (ǫ1, ǫ2) of the system describing a
path around the origin of the parameter spaceǫ1 × ǫ2, as repre-
sented in Fig. 2 by the dashed line. One sees that, in this path,
the system passes throught all possible regimes; nevertheless, it
remains in the same phase; In other words, the population size
remains governed by the nontrivial solution Eq. (10).

In the first quadrant of the diagram of Fig. 2, asǫ1ǫ2 → 1−,
pi,nt ∼ (1− ǫ1ǫ2)−β diverges with the exponentβ = 1 (see
Fig. 3). In this case, the mutual cooperation conducts to un-
bounded growth of both populations. The regionǫ2 > 1/ǫ1 is
forbidden; sincep∗i,nt < 0, it does not have ecological reality.

The plot of Fig. (3) shows the stable steady solutions for both
populations as a function ofǫ1, for a fixed value ofǫ2. One
sees that both solutions diverge asǫ1 → 1/ǫ2; in the second
quandrant (predation), species 1 is extinguished forǫ1 < −1.

The other regions of this diagram are characterized by the
semi-trivial solutions [Eqs. (8) and (9)]. Differently from all
the other regions in the phase diagram, in the case of the spe-
cific region in the third quadrant, withǫ1 < −1 andǫ2 < −1, the
steady state solutions depend on the initial condition. In this re-
gion, there is a separatrix for the initial conditions [1]. Another
interesting characteristic of this phase diagram is the reflexion
symmetry aboutǫ2 = ǫ1.

Figure 3: Plot of steady steady solutions [Eqs. (9) and (10)]of the model
[Eqs. (3) and (4)] as a function ofǫ1, keepingǫ2 = 1 fixed. In this plot one
sees two phase transitions. The first is the extinction-coexistence (predation)
transition which occurs atǫ1 = −1. The second is the transition from coexis-
tence (mutualism) to a forbidden region (with no ecologicalreality).

3. ǫ1ǫ2 = 0

This section is restricted to the particular caseǫ1ǫ2 = 0,
where only one or both parameters vanish. This corresponds
to parameter space axisǫ2 × ǫ1 [see Fig. 2]. Thus, three ecolog-
ical regimes are allowed in this specific situation:

• amensalism:ǫ1 = 0 andǫ2 < 0 (species 2 extinction, if
ǫ2 ≤ −1 and species coexistence otherwise) orǫ2 = 0 and
ǫ1 < 0 (species 1 extinction, ifǫ1 ≤ −1 and species coex-
istence otherwise);

• neutralism:ǫ1 = ǫ2 = 0; and

• comensalism:ǫ1 > 0 andǫ2 = 0 or ǫ1 = 0 andǫ2 > 0.

In these cases, one can obtain full analytical solutions of
Eqs. (3) and (4). Below we address each case in more detail.

3.1. Neutralism
Neutralism is a special case where each population grows

independent of the other (no interaction between the species),
so the species coexist. This ecological regime is represented
by Eqs. (3) and (4), withǫ1 = ǫ2 = 0, leading to independent
equations:

dp1

dτ
= p1[1 − p1] (20)

dp2

ρdτ
= p2[1 − p2] , (21)

which are the Verhulst equations for isolated species. The
solutions, with different time scales and parameters, for each
species are:

p1(τ) =
1

1+ (p−1
1,0 − 1)e−τ

(22)
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p2(τ) =
1

1+ (p−1
2,0 − 1)e−ρτ

, (23)

wherepi,0 = pi(0) is the initial condition for speciesi = 1, 2.
Eqs. (22) and (23) are driven by different characteristic times
τ = κ1t and τ′ = ρτ = κ2t, respectively. Forτ ≫ 1, so
that ρτ ≫ 1, the asymptotic behaviorsp∗1 = p1(∞) = 1 and
p∗2 = p2(∞) = 1 are obtained, so that species end exploring
all the available environmental resources. Fig. 4 shows thedy-
namics of the population given by Eqs. (22) and (23). In this
figure the effect of the parameterρ on the system is also com-
pared. For the same initial conditions, there are no differences
between species evolution forρ = 1. Forκ2 > κ1; i.e., ρ > 1,
species 2 grows more rapidly than species 1, given the same
initial condition. Forκ2 < κ1; i.e.,ρ < 1, the inverse occurs.

0 5 10 15

τ
0

0,2

0,4

0,6

0,8

1

p
2
(τ)

ρ=1

ρ>1

ρ<1

Figure 4: Plots of the evolution ofp2(τ) by Eq. (23) for differentρ values.
Whenρ = 1, the evolution of both populations (p1(τ) and p2(τ)) is the same.
The plots have qualitatively the same shape, and the effect ofρ is to retard or
advance one solution with respect to the other. The asymptotic values are the
unit. The initial conditions wasp1(0) = 1/100.

3.2. Comensalism and Amensalism

Consider that two species interact asymmetrically. For in-
stance, consider that individuals of species 1 are unaffected by
species 2, although, individuals of species 2 are adverselyaf-
fected by species 1. This is the amensalism regime. The com-
mensalism regime has the same structure as amensalism, except
that one species is favorably affected by the other. These inter-
actions can be mathematically represented by Eqs. (3) and (4):

dp1

dτ
= p1(τ)

[

1− p1(τ)
]

(24)

dp2

ρdτ
= p2(τ)

[

1− p2(τ) + ǫ2p1(τ)
]

, (25)

whereǫ2 is negative for amensalism and positive for commen-
salism.

In this kind of interaction, species 1, described by Eq. (24),
follows the Verhulst model, whose solution is given by

Eq. (22). The dynamics of species 2 follows the time-dependent
Verhulst-Schaefer model [9, 10, 11] [Eq. (25)], whose solution
is:

p2(τ) =















1
1+ ǫ2p1(τ)

+
e−ρτ[1+ǫ2p1(τ)] (

1− p2,0 + ǫ2p1,0
)

p2,0 + ǫ2p1,0p2,0















−1

(26)

where the mean relative size of species 1 up toτ is:

p1(τ) =
1
τ

∫ τ

0
dτ′p1(τ′) =

∫ τ

0

dτ′

1+ (p−1
1,0 − 1)e−τ′

= ln[1 + p1,0(e
τ
− 1)] , (27)

with p1(τ) given by Eq. (22).
Using Eqs. (22) and (27) in Eq. (26), one obtains:

p2(τ) =















e−τ
[

1+ (−1+ eτ) p1,0
]2

p1,0
{

1+ [−1+ eτ (1+ ǫ2)] p1,0
}+ (28)

e−ρτ
[

1+ (−1+ eτ) p1,0
]−ǫ2ρτ

(

1+ ǫ2p1,0 − p2,0
)

p2,0 + ǫ2p1,0p2,0

}−1

(29)

The plots ofp2(τ) for severalǫ2 values are depicted in Fig. 5.

Figure 5: Plots of the solution of Eq. (25), given by Eq. (29),for different values
of interaction parameterǫ2 andρ = 1. The comensalism regime is obtained
for ǫ2 > 0, where the asymptotic value, due to the other species, is greater
than unity. The neutralism regime is retrived forǫ2 = 0 (see Fig. 4). The
amensalism regime is obtained forǫ2 < 0, where the asymptotic value does
not vanish (meaning species coexistence) forǫ2 > −1 and vanishes (meaning
species extinction) forǫ2 ≤ −1.

The steady state solutions of Eqs. (24) and (25) are, respec-
tively

p∗1 = p1(∞) = 1 (30)

p∗2 = p2(∞) =

{

1+ ǫ2 if ǫ2 > −1
0 otherwise.

(31)

One sees thatǫ(c)
2 = −1 is a critical value that separates two

distinct phases:ǫ2 ≤ −1, where species 2 is extinguished; and
ǫ2 > −1, where species 2 coexists with species 1. The former
case occurs in the amensalism regime, while in the latter oneit
may occur in the amensalism (ǫ2 < 0), neutralism (ǫ2 = 0), or

5



Figure 6: The plot of the steady state solution of Eq. (25), given by Eq. (31), as a
function of the interaction parameterǫ2. Forǫ2 ≤ −1, species 2 is extinguished,
while for ǫ2 > −1 it coexists with species 1. This coexistence can occur in an
amensalism regime, ifǫ2 < 0, or comensalism, ifǫ2 > 1. Sinceǫ1 = 0, there is
no forbidden region. The nontrivial solution grows linearly as a function ofǫ2.

in the comensalism (ǫ2 > 0) regimes. The plotp∗2(ǫ2) is shown
in Fig. 6.

The same conclusions are valid forǫ2 = 0 andǫ1 , 0. One
finds the same behaviors and a critical pointǫ(c)

1 = −1, so that
similarly for ǫ1 < ǫc1 species 1 is extinguished.

4. ǫ1ǫ2 , 0

In the following, we deal with the caseǫ1ǫ2 , 0, which ad-
dresses mutualism, competition, and predation. Ifǫ1ǫ2 > 0,
each species has the same kind of influence on the other. This
corresponds to either the competition or the mutualism regime.
The following regimes occur:

• ǫ1 > 0 andǫ2 > 0, mutualism, which corresponds to the
first quadrant of the space parameter phase space, restrict
to the regionǫ2 < 1/ǫ1;

• ǫ1 < 0 andǫ2 < 0, competition, which corresponds to the
third quadrant of the space parameter phase space.

If ǫ1ǫ2 < 0, the predation regime occurs, which belongs to
the second and fourth quadrants of the parameter space (see
Fig. 2). Forǫ2 > 0 andǫ1 < 0, there is species coexistence for
ǫ1 > ǫ

(c)
1 = −1 and species 1 extinction forǫ1 ≤ −1.

These ecological regimes are special cases of Eqs. (3)
and (4), whose solutions can be worked out to have the form:

p1(τ) =















1
1+ ǫ1p2(τ)

+
e−τ[1+ǫ1p2(τ)] (1− p1,0 + ǫ1p2,0

)

p1,0 + ǫ1p1,0p2,0















−1

(32)

where p2(τ) is given by Eq. 26, and the relative populations
sizes mean values up to instantτ are

p1(τ) =
1
τ

∫ τ

0
dτ′p1(τ′) (33)

p2(τ) =
1
τ

∫ τ

0
dτ′p2(τ′) . (34)

Using Eq. (26) in (32), we obtain a quadratic equation for
p1(τ), eliminating its dependence onp2(τ). In fact, we can write
p1(τ) as dependent only on the initial condition andp2(τ). The
population sizep2(τ) behaves analogously. Thus, the coupling
between the two population sizes is given only by the mean val-
ues (33) and (34). The solutions Eqs. 32 and (26) are presented
in Fig. (7) for the three regimes whereǫ1ǫ2 , 0. Asτ→ ∞, the
steady state solutions of Eqs. (10) are reached.

Notice that consideringǫ1 = 0 in Eqs. (32) and (26), one re-
trieves Eqs. (22), (26), and (27), which correspond to the amen-
salism, neutralism, and comensalism regimes. In this way, these
evolution equations can be seen as a general solution that is
valid for all kinds of interaction regime.

Figure 7: Plots of the evolution equations Eqs. (32) and (26), which are so-
lutions of Eqs. (3) and (4). The initial condition isp1,0 = p2,0 = 1/100 and
ρ = 1. The species interaction parametersǫ1ǫ2 , 0 so that for competition:
ǫ1 = −1/2 andǫ2 = −1/10; mutualism: ǫ1 = −1/2 andǫ2 = −1/10; and
predation:ǫ1 = 1/2 andǫ2 = −1/2.

5. Conclusion

The simple model we addressed here illustrates that one can
interpret the interaction of two species at several levels.From
the interaction parametersǫ1 andǫ2, which act at the individual
level of species, one is able to tell about the different ecological
regimes, classified in a higher level according to the product of
the interaction parameterǫ1ǫ2. If it vanishes, one or two species
are independent from each other. Ifǫ1ǫ2 > 0, one has either
mutualism (both positive) or competition (both negative).For
ǫ1ǫ2 < 0, one has predation. A collective level is obtained from
the stability of the steady state solution, from where one obtains
three phases: extinction of one species (ǫi < −1) (synnecrosis
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is not a stable phase in our model), species coexistence, anda
forbidden phase (ǫ2 > 1/ǫ1). Although the studied model has
been considered in several isolated instances, our study reveals
the very general aspect of a simple mathematical set of equa-
tions, which represents very rich ecological scenarios that can
be described analytically.
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