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O Abstract

The study of a two-species dynamics population model, winicludes intraspecific competition to the Lotka-Voltercmation, is
—Ipresented. Despite being simple, this model presents ariedripehavior, spanning on several ecological regimes.etioéogical
regimes are assigned according to the interaction paramaliges €, ;) and they are neutralism, amensalism, comensalism,
al mutualism, predation, and competition. From the stabilitthe steady state solutions, two phases are obtainediyarimction
, of one species or their coexistence. On one hand, extinofione species occurs fer < —1 andor e, < —1; i. e., in predation,

*— ‘amensalism, or competition regimese{f< 0 ande, < 0 so thats e, > 1, one has an extinction phase where the solutions depend
.~ on the initial conditions. On the other hand, coexistencg ataur for all the considered regimes as faegas < 1. If 1 > 0 and

O e > 0 so thate;e; > 1, one has a forbidden regime with no biological reality.| Emlalytical solutions have been obtained for all
“—ecological the regimes mentioned above.
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8?) 1. Introduction of amensalism consider that, in order to survive, an org@anis
. ) . . exudes a chemical compound as part of its normal metabolism,
© . The ecosystem is composed by a complex interaction nefs; this compound is detrimental to the other organism. An ex

«— work from which the removal of a single species may cause dragmple of commensalism is the remoras that eat leftover food
() matlc_: changes throughoutthe systerr_L The mte_ractlonsdmtw from the shark. If species favor each other, one imasual-
~— species only became better known in population dynamics ifym, o symbiosiswhich is the case of clear fish As example
the 1920s, with the Lotka-Volterra equation [1]. This is@si  ¢jeqr fish and pollinationseed dispersion by insects. If species
'~ Ple mathematical model that explains the oscillatory b&Tan cayor each other, there éompetition This happens, for in-
> achemical concentration (Lotka) and in fish catches (Maller  gance, when two species occupy the same ecological niche an
(g Which observed in such systems has been interpreted as a cqfyg the same resources. If one species is benefited from-the in
sequence of predation. The introduction of Lotka-Voltéik&  eraction while the other is in harm, one haedationwhich
models for the cells of the immune system and the viral load (i i5 5 piplogical system where one species captures the biomas
immunology) may be considered one of the main contributiongrom the other. A typical example of predation is the hanexly
of population dynamics in the twentieth centuty [3]. interaction, which can be described by a Lotka-\olterra sys
_Besides the Lotka-Volterra interaction, there are mangoth o The interaction between parasite and the host, altrcal
different kinds of interaction taking place between biologicaly,asitism also belongs to this class, although it is not exactly
species. For instance, if only one of these species is imdepe«y aqation” in the strict sense. Finally, when species do no
dent of the other, one has two possible S|tuat|oamensal-. interact at all there is the so-calleéutralism In fact, “true”
ism, if the considered species hasegativesffect on the other; e ralism is very rare or even nonexistent in the real world
and commensalisinif such dfect is positive. As an example
Here an analytical solution to a simple model for the descrip
Email addressesflribeiro@dex.ufla.br (Fabiano Ribeiro), Fion _Of Fhe full d_ynamics of two interac_ting populations Op@l—
brenno@usp. br (Brenno Caetano Troca Cabellajmartinez@usp. br Ing !'m'ted environmental resources Is pre_seqted. TP]etlmiu
(Alexandre Souto Martinez) exhibits all the abovementioned two-species interactiorise
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parameter space diagram. Although the particular sitnatid ~ oscillate with a fixed amplitude. For the competitive Lotka-
the considered model have been addressed in basic dynambgsiterra model, the non-trivial solution is still unstapkeow-
population textbooks, we show here that this model presen®ver, it is not a saddle point. For the non-trivial solutiong

aspects that have not yet beefffigiently explored. has a damped oscillation for the transient cycle while loyile
The text is organized as follows. In SEE. 2, interspecific.comvanishes, giving rise to non-periodic stable solutions.
petition to the Lotka-Volterra equations is presented, dbe The novelty of the present work is a new interpretation of

main of the interaction parameter between two species is eXqgs. [1) and[{2), since we consider that the interactionmpara
tended, and analytical solutions are obtained. The steatly s eterq;, is not restricted, as is usually done in other studies. In
solutions of the model are also achieved analytically. €hesfact, this absence of restriction to the interaction patensel-
solutions correspond to the stable ecological regimesdapt:  lows retrieval of many dierent ecological regimes, like com-
rameter space diagram. In SEt. 3, the full analytical smhsti petition, predation, and mutualism; by the same unified eyath
for the trivial case neutralism and the non-trivial ones asad-  matical approach. Note that, for instancegif < 0, species 2
ism and comensalism are depicted. In $éc. 4, the results fag unfavourable to species 1;df = 0, it is indifferent; and if
mutualism, predation, and competition are presented. @wr ¢ a1 > 0, it is favourable. The parametes behaves similarly.
clusions are described in Sgt. 5. The modelis fully analytically soluble.
To use non-dimensional quantities, we wrie= N;/K; >

0, fori = 1,2. Time is measured with respect to the natality
2. A Simple Two-Species Population Dynamics M odel rate of species 1z = kit > 0. Here, we restrict ourselves to

the case; > 0. The scaled time is positive since we take the

A reasonable simple two-species population model, indpireinitial condition asty = 0. Moreover, the two natality rates

in textbooks models [1, 2], is form a single parameter = x»/x; > 0, because we shall deal
with positive natality rates. The non-dimensional popolat

ﬂ = N (1_ ﬁ + 01&) 1) interaction parameters are given by = a1K;/K; ande;, =
dt Ky K1 @2K1/Kz, which are not restricted and represent th@edent
dN, N, N; ecological interactions. With these quantities, Egs. (i) &)
ot = ke (1_ K ZK_Z) : @ pecome:

This model incorporates limit environmental resourcegijso (:j—pl = p[l-pr+ep]=f(pw,p2) )

tic growth of one species in the absence of the other, and in(—j T

terspecific interaction. In Eqsld(1) and (2Y, > O, « and e _ op2[l - p2+ ep1] = 9(p1, P2) - 4
Ki > 0 are the number of individuals (size), natality rate, and dr

the carrying capacity of species(= 1,2), respectively. In Observe thap fixes a second time scale to the systerh:=
Eq. CIl),—Kle/Kl can be understood as a competition betweemt = kot. Therefore, the interaction between two species is
individuals of the same species (intraspecific compeljtiand  represented by the pair of parametesis4). The diagram of
—-k1N1N>/K1 represents the interaction between individuals ofFigure [1) depicts the several ecological interactionoetc
different species(interspecific interaction). The same iglvaliing to (e, e2) values. Contrary t@, which has no major rele-
for Eq. (2). The carrying capacity represents the fact that t vance to this model (since we consider oply 0), the product
two species are not isolated from the rest of the world. I, fac €1, plays an important role, so thate, < 0 means predation;
K1 represents the feeding resource that comes from any kinde; = 0 means commensalism, amensalism, or neutralism; and
of external factors, but that does not have to do with speties e1e; > 0 means either mutualism or competition.
The same is valid foK,.

Fora; < 0 anda, > O (or vice-versa), Eqsl]1) and (2) lead 2.1. Stability of Steady State Solutions
to a plass of mode_ls callembmpetitive Lotka—Vqlterra modelg To obtain the steady state solutiph= pi(r — o) andp; =
In this case, species 2 (pred_a_tor) acts neg_atlvely on spécie po(t — oo) of Egs. [3) and[{¥), we have to impode,/dr =
a_n_d species 1 (prey) acts positively on species 2. I_n amere Py p,/dr = 0, which impliesf (ps, ps) = g(p, p;) = 0 and leads
cific case, when the preyNg) grows exponentially in the ab- ¢,
sence of the predatog); i.e., K; — oo; and the predator dies
in the absence of the prey, givilg > K, one retrieves the pj(1-p;+ep;) =0 (5)
simple Lotka-Volterra modeThesimple Lotka-Volterra model
presents two steady-state solutions, namblj, N) = (0, 0)
and (i, N;) = (kz/a2,«1/a1). The stability analysis shows .., - _
that thé tri%/ial solution (00) is unstable (saddle point); i.e., if Po(1 = pa + e2py) = 0. ©
the prey population is slightly greater than zero and thélare One has the following trivial (“t”), semi-trivial (“st”), ad
tor population vanishes, the prey population diverges. Hownon-trivial (“nt”) solutions:
ever, if the predator population is slightly greater tharoznd
there is no prey, predators become extinct. The non-tiswitai- P =0 and P2 =0; ()
tion (k2/ a2, k1/a1)) leads to a limit cycle; i.e., both populations Prst=1 and P2st =0 (8)
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3 2.3. Semi-Trivial Solutions

I1 _ . :
E I The semi-trivial solutions are given by EgEl (8) bf (9) and
2 E they mean that one of the species is extinguished. Consgleri
&, Predation 2 Mutualism the steady state solution Efy] (8) (species 1 extinctiors has:
=
! S TrA0,1)] = 14+e-p (16)
0 Amensalism Commensalism DetlA0.1)] = —p(1+e). 17
. For these solutions to be stable, it is necessaryethat-1, re-
g/ (0,0) Neutralism gardless of the value. A similar analysis leads us to conclude
-1 —; that the steady state E@l (9) (species 2 extinction) isestatlly
Competition ) Predation fore <-1.
) < - .
- 2.4. Non-Trivial Solutions
11 IV The non-trivial solution Eq[{10) lead to:
-3
3 2 1 0 2 3 . l+e+p(l+e)
&y TA(PLe Po)] = —————— (18)
€162 — 1
A (1+ea)(l+e)p
_ _ . _ _ _ DetlA(Ppnp Pond] = ——F— - (19)
Figure 1: Diagram of ecological interaction between twocggeaccording to eae-1

the interaction parameters;(ez). In this diagram, each quadrant represents . . . .
one kind of interaction: I:mutualism; Il and IV: predatiorlt: competition. On one hand, ik, < 1, the denominator is positive and the

The abscissa and ordinate represent either amensalisnrmoneasalism. The  numerator 0Py n andpz , must vanish or be positive. From the
origin represents neutralism. conditionp; ,, > 0, this solution is only stable & > e = -1;
otherwise,p;, = 0O is the stable solution. This produces a tran-
sition from the regime where species 1 coexists with speties

ist = Z,St =4 . . h . . .
p 0 and p 1 9)
14 14 to the regime where species 1 is extinguished. The same-trans
i = 1—61 and P5 ot = 1—62 (10)  tion occurs for the parametes. On the other hand, e, > 1,
? — €162 ’

T ae the denominator is positive and the numeratopgf; and pa.nt
These asymptotic solutions characterize the system accorehust vanish or be positive. From the conditiqg,,, > 0, this
ing to their stability. The stability matrix, also calledmmunity  gqjution is only stable it; < € = —1; otherwisep;, = 0 is

matrix, is: the stable solution. This produces a transition from thénmeg
. Op, f 0p, where species 1 coexists with species 2 to the regime where
Alpy. P3) = ( 90,0 9p,0 ) species 1 is extinguished. The same transition occurs for
P1P;

From the stability criteria, we conclude that species can co
( 1-2p; +ep; €1P; ) . (1) existonlyife > ~1ande > 1. According to the values of
pepP, p(1-2p; + e2p7) e ande, the various ecological regimes may present a stable
The steady state solutioq and p; are stable if the trace and non-trivial solution, as shown below.
the determinant of the community matrix are negative and pos

itive, respectively. Considering Eq_{11), one has: 2.5. Stable Steady State Solutions in the Parameter Space:
Phase Diagram
Tr[A(pi, pf)] = l+p+ 5'062 —2)pp + (61*_ )0, (12) In Fig.[d, the stable steady state solutions Hgs. [8), (9, an
DetfA(p1, Po)l = p{l1+pile-2(1+ epy)]+ (I0) of Egs.[(B) and{4) are represented. It is a more detailed
P [e1 — 2(1+ e1p5)] + 4pip5) (13) figure than the one shown in of Figl 1, which only accounts

for ecological regimes. The diagram summarizes our findings
the coexistence phase and one species extinction phasecan b
seen. These phases span dfedént ecological regimes, which
means that dierent ecological interactions may lead to the
same phase.
It is important to stress that the non-trivial solutions
[Egs. [10)] are stable in all quadrants, where> -1, e, > -1
THA@0,0)] = 1+p (14) andee < 1. Inthis region, the populations coexist, regardless
Det[A(0, 0)] of the kind of ecological interaction. Modifying the valuet
, 0. (15) . - ) )
the pair €, €2), but restricting ourselves to this regicn & -1,
Sincep > 0, Det[A(0,0)] > 0 but Tr[A(0,0)] > 1. The pairof e > -1, andge; < 1), one can change the regime of inter-
trivial solution is not stable anywhere in the parametercepa action (for instance, from competition to mutualism), buto
SO Synnecrosis never occurs in our model. can say that the system continues in the same phase. Itis in

One must analyze the possible four instancés (7-10).

2.2. Trivial Solutions

Let us start with the stability analysis of the trivial sadurts
of Egs. [T), which means extinction of both species (syrmecr
sis). One has:
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Figure 2: Diagram of ecological interaction between twocggaccording to
the pair €1, €). In this diagram, each quadrant represents one kind of-inte
action: I:mutualism; Il and IV: predation ; Ill: competitio The abscissa and
ordinate represent either ammensalism or commensalisenofTdin represents
neutralism. The non-trivial solutiongy(> -1, e, > —1, andeie; < 1) corre-
spond to the coexistence phase. In this phase mutalism,nsati@m, amen-
salism, predation, competition, and neutralism can odouiinstance, around
and inside the dashed circe. The complementary region racteaized by an
extinction phase and a forbidden region. The extinctiorsph@a < —1 andor

e, < —1) reveals a region fof; < 0 ande; < O where, contrary to the other 3. @& =0

cases, the steady state solutions depend on the initialtmmnd-ore; > 1 and . . . . .
& > 0ande, > 1/, there exists a forbidden region with non biological realit This section is restricted to the partlgular c&lgez = 0,
(negative number of individuals). where only one or both parameters vanish. This corresponds

to parameter space axisx € [see Fig[2]. Thus, three ecolog-
ical regimes are allowed in this specific situation:

the same phase because the population size, regardless of th 4 amensalisme, = 0 ande, < 0 (species 2 extinction, if

change in regime, continues being governed by the sameystead ¢, < —1 and species coexistence otherwise}ox 0 and

State SOIUtiOﬂO). To exemplify this Situation, consithet we € < 0 (species 1 extinction, Hl < -1 and Species coex-
change the values of the paé (e) of the system describing a istence otherwise);

path around the origin of the parameter space e, as repre-

sented in Fig2 by the dashed line. One sees that, in this path ® neutralism: = e = 0; and
the system passes throught all possible regimes; nevest)é
remains in the same phase; In other words, the populatien siz

remains governed by the nontrivial solution Eq(10). In these cases, one can obtain full analytical solutions of
Egs. [3) and(4). Below we address each case in more detail.

Figure 3: Plot of steady steady solutions [EqS. (9) (b0)jhe model
[Egs. [3) and[(4)] as a function ef, keepinge, = 1 fixed. In this plot one
sees two phase transitions. The first is the extinctionistence (predation)
transition which occurs at; = —1. The second is the transition from coexis-
tence (mutualism) to a forbidden region (with no ecologrezllity).

e comensalisme > 0 ande; = 0 ore; = 0 ande; > 0.

In the first quadrant of the diagram of Fig. 2,a8, — 1-,
Pint ~ (1-e€2)? diverges with the exponemt = 1 (see 3.1. Neutralism

E:)gljr%)é dlnrg]\;\?thci?%ottﬂe ?UJIL:;iIozosop'l?lzitlr(:an ;?er/c;sitso UN" Neutralism is a special case where each population grows
forbidden'gsincep* <0 itpd(?es not hz;lve ecolggical reaiity independent of the other (no interaction between the spgcie
’ it = " so the species coexist. This ecological regime is repredent
The plot of Fig. [(B) shows the stable steady solutions fonbot by Egs. [B) and{4), witks = & = 0, leading to independent
populations as a function af, for a fixed value ofe,. One  equations:
sees that both solutions diverge@s— 1/e; in the second dpr
quandrant (predation), species 1 is extinguishedfer —1. — = pi[l-pd] (20)

-
The other regions of this diagram are characterized by thejp,

semi-trivial solutions [Eqs[{8) and(9)]. Berently fromall g~ = P2[1 - p2] (21)

the other regions in the phase diagram, in the case of the spe-h. h he Verhul . for isolated . Th

cific region in the third quadrant, with < —1 ande, < -1, the w IICt' are t_tﬁ dﬂ?r u itt_equatlorrs or G"SO ate ?pecn;:s. :

steady state solutions depend on the initial conditionhisrie- solutions, V\{' erent ime scales and parameters, for eac

gion, there is a separatrix for the initial conditions [1Jndther Species are-

interesting characteristic of this phase diagram is thexifh pi(7) = 1 22)

symmetry about; = €. ! 1+ (pp—1er



. (23) Eq. (22). The dynamics of species 2 follows the time-depenhde
1+(pyp— Derr Verhulst-Schaefer model [9,/10,/11] [EG.125)], whose sohut
is:

P2(7) =

wherep; o = pi(0) is the initial condition for specids= 1, 2. »
Egs. [22) and(23) are driven byfffirent characteristic times 1 err[rem)] (1 - pz2o+ &P1o)
T =Ktandt = pr = Kg_t, respeptively. Forr > 1, so Pa(r) = 1+ e2pa(7) ’ P20 + €2P10P20 o)
thatpr > 1, the asymptotic behaviorg, = pi(e0) = 1 and
p; = po(c0) = 1 are obtained, so that species end exploringvhere the mean relative size of species 1 upim
all the available environmental resources. Elg. 4 showslyhe 1 T dr’
T [ ene- [

namics of the population given by EqE.122) ahd| (23). In thispy(7) Tol e
figure the &ect of the parametegr on the system is also com- +(Pro—1)e

pared. For the same initial conditions, there are rteténces In[1 + pro(e” - 1)], (27)
between species evolution fpr= 1. Fork; > «1; i.e.,p > 1, with p1(z) given by Eq.[22).

species 2 grows more rapidly than species 1, given the same, . : oo
initial condition. Forx; < «1; i.e.,p < 1, the inverse occurs. Using Eqgs.[2P) and.(27) in EQ.{26), one obtains:
e [1+(-1+€) prof’
Pa(r) = {

1

P1o {1 + [—1 + € (1 + 62)] pl,o} (28)

] €77 [1+ (=1+€) pro] ™ (1 + €P1o— P20) %é)
P20 + €2P1,0P20

0,8

The plots ofpy(7) for severak; values are depicted in Figl 5.
0,6

2 —
pz(T) “g,=1
0,4 i J
€205
15 [ =
o
/7
02 4 / / g
// €,=0
pZ(T) - // #
0 15 ) i
05 —_— £=03
Figure 4: Plots of the evolution gf,(7) by Eq. [23) for diferentp values. | N Nf*‘ o
Whenp = 1, the evolution of both populationp{(r) and pz(7)) is the same. ‘ T e ‘
The plots have qualitatively the same shape, and fif@eteof o is to retard or % 10 15
advance one solution with respect to the other. The asyioptalues are the T

unit. The initial conditions wag; (0) = 1/100.

Figure 5: Plots of the solution of EQ._{25), given by EqgJ](26) different values
3.2. Comensalism and Amensalism of interaction paramete, andp = 1. The comensalism regime is obtained
for e, > 0, where the asymptotic value, due to the other species,estar
Consider that two species interact asymmetrically. For inthan unity. The neutralism regime is retrived fer = 0 (see Figll). The
stance, consider that individuals of species 1 aréfanged by  amensalism regime is obtained far < 0, where the asymptotic value does

species 2 although individuals of species 2 are adveafely not vanish (meaning species coexistence)efor —1 and vanishes (meaning
' . . . ) species extinction) foe, < 1.
fected by species 1. This is the amensalism regime. The com-

mensalism regime has the same structure as amensalisrpt exce |4 steady state solutions of EdS.](24) 4nd (25) are, respec-
that one species is favorablffected by the other. These inter- ’

tivel
actions can be mathematically represented by Egs. (3[@nd (4 y
dpy pi=pi(e) = 1 (30)
— = p@[1-p7)] (24) 1+e if -1
dr * _ €2 € >
dps P2 = Pe(e0) = { 0 otherwise (31)
4 = PO[1-pAn) + epa(7)] (25)
p One sees thaetéc) = -1 is a critical value that separates two
wheree; is negative for amensalism and positive for commen-distinct phasese, < -1, where species 2 is extinguished; and
salism. e > —1, where species 2 coexists with species 1. The former

In this kind of interaction, species 1, described by Eq] (24) case occurs in the amensalism regime, while in the latteitone
follows the Verhulst model, whose solution is given by may occur in the amensalisrg (< 0), neutralism & = 0), or

5
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pO = 1 [ arp) (33)

Amensalism Commensalism

|
o
A
e
N
—~
~
-

B = - (34)

0

Using Eq. [26) in[(3R), we obtain a quadratic equation for
p1(7), eliminating its dependence @a(r). In fact, we can write
p1(r) as dependent only on the initial condition apg{r). The
population sizepy(r) behaves analogously. Thus, the coupling
between the two population sizes is given only by the mean val
L ues [3B) and (34). The solutions Egs| 32 dnd (26) are prasente
i / | in Fig. (@) for the three regimes whegg, # 0. Ast — oo, the

L D steady state solutions of Egs. 110) are reached.

.
2 -1 0 1 2 3 4

Notice that considering; = 0 in Egs. [32) and (26), one re-
trieves Eqs[(22)[(26), and(27), which correspond to theram
salism, neutralism, and comensalism regimes. In this waga
Figure 6: The plot of the steady state solution of Eq] (25)egby Eq.[3lL), as a eV(?lUt'On equations can be. seen as a general solution that is
function of the interaction parameter. Fore; < -1, species 2 is extinguished, valid for all kinds of interaction regime.
while for e, > —1 it coexists with species 1. This coexistence can occur in an

amensalism regime, & < 0, or comensalism, i§&; > 1. Sincee; = 0, there is 5
no forbidden region. The nontrivial solution grows lingaals a function ot;.

€y

T T T .
S < Competition

1.5— —
in the comensalismeg > 0) regimes. The plops(e2) is shown i S Y
in Fig.[8. osf = 1 "
The same conclusions are valid fer= 0 ande; # 0. One e . -
finds the same behaviors and a critical p@ﬁt = -1, so that H | ‘ 1 Mutualism
similarly for e; < € species 1 is extinguished. o e 1 g-05
0sk ,// - &0
ok " ! ]
4. e #0 50 T 1‘0 15 ,
15 r N Predation
In the following, we deal with the casge, # 0, which ad- it :‘;04.?
dresses mutualism, competition, and predatione; é§ > O, 051~ e
each species has the same kind of influence on the other. Tk % = 5 ‘ m ‘ 15
corresponds to either the competition or the mutualisnmnegi T

The following regimes occur:

- . Figure 7: Plots of the evolution equations Edsl](32) 4nd, (@éjch are so-
e & > 0 ande, > 0, mutualism, which corresponds to the lutions of Egs.[(B) and{4). The initial condition &0 = p2o = 1/100 and

first quadrant of the space parameter phase space, restrict 1. The species interaction parametere, # 0 so that for competition:
to the regione, < 1/e; e = —-1/2 ande; = —1/10; mutualism:e; = —1/2 ande; = —1/10; and
predation:e; = 1/2 ande; = —1/2.

e e < 0ande; < 0, competition, which corresponds to the
third quadrant of the space parameter phase space.

. . . 5. Conclusion
If a2 < 0, the predation regime occurs, which belongs to

the second and fourth quadrants of the parameter space (seeThe simple model we addressed here illustrates that one can

Fig.lzz. Fore; > 0 ande; < O, there is species coexistence for interpret the interaction of two species at several levetem

€ > elc) = —1 and species 1 extinction fer < —1. the interaction parametegsande,, which act at the individual
These ecological regimes are special cases of Hgs. (vel of species, one is able to tell about thiatient ecological

and [4), whose solutions can be worked out to have the form: regimes, classified in a higher level according to the prodfic

- . the interaction parameteye,. If it vanishes, one or two species

o) = { 1 g [ 1+ePe()] (1- pro+ €1p2o) 2) are independent from each other. elt; > 0, one has either

1+ e pa(7) * PLo + €1P1oP20 mutualism (both positive) or competition (both negativepr
e1e2 < 0, one has predation. A collective level is obtained from
where py(7) is given by Eq.[2B, and the relative populationsthe stability of the steady state solution, from where ortaiok
sizes mean values up to instardre three phases: extinction of one specigs<( —1) (synnecrosis



is not a stable phase in our model), species coexistenceg and
forbidden phaseef > 1/¢). Although the studied model has
been considered in several isolated instances, our studglse

the very general aspect of a simple mathematical set of equa-
tions, which represents very rich ecological scenariostha

be described analytically.
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