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Abstract The two-species population dynamics model is
the simplest paradigm of inter- and intra-species interaction.

Here, we present a generalized Lotka–Volterra model with

intraspecific competition, which retrieves as particular cases,
some well-known models. The generalization parameter is

related to the species habitat dimensionality and their inter-

action range. Contrary to standard models, the species cou-
pling parameters are general, not restricted to non-negative

values. Therefore, they may represent different ecological

regimes, which are derived from the asymptotic solution
stability analysis and are represented in a phase diagram. In

this diagram, we have identified a forbidden region in the

mutualism regime, and a survival/extinction transition with
dependence on initial conditions for the competition regime.

Also, we shed light on two types of predation and competi-

tion: weak, if there are species coexistence, or strong, if at
least one species is extinguished.

Keywords Complex systems ! Population dynamics
(ecology) ! Pattern formation ecological

Introduction

Population growth models are important for understanding
and predicting the time dependent behavior in several

disciplines. As instances of such systems, one has: oscil-

latory behavior in a chemical concentration (Motoike and
Adamatzky 2005); immune system cells growth dynamics

and the viral load (Nowak et al. 1991); tumor cells

growth (Araujo and McElwain 2004); human population
growth (Bettencourt et al. 2007; Strzalka 2009); defectors

and cooperators dynamics in game theory (Pereira et al.

2008; Pereira and Martinez 2010); etc. However, most of
the growth models proposed deal with a specific situation,

or a specific system. For example, the Verhulst

model (Murray 2002) is used to describe a system which
presents a logistic growth curve; the Gompertz

model (Gompertz 1825) is used to describe the human life
span (among others applications); and the Richards’

model (Richards 1959), which unifies the previous models,

was initially introduced to describe plant growth dynamics.
Researchers try to find generalized models to retrieve each

of these specific models as particular cases (Barberis et al.

2011; Cabella et al. 2011; dOnofrio 2009; Mombach et al.
2002a, b; Strzalka and Grabowski 2008). A more general

model could be useful not only to describe a vast spectrum

of systems, but also to help find universal growth
laws (Guiot et al. 2003; West et al. 2001).

Interactions between species are generally formalized

with the Lotka–Volterra equations (Murray 2002), which
explain prey-predator behavior in its original formulation,

but present stability problems. A more realistic approach is
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to consider that species grow in limited environments.

Besides the predatory interaction, there are many other
different kinds of interaction taking place between two

species. If species disfavor each other, when their niches

overlap, there is competition. If species favor each other, as
in pollination/seed dispersion by insects, there is mutualism

or symbiosis. If only one of these species affect the fitness

of the other, there are two possibilities: amensalism, if one
of them has a negative effect on the other; and commen-

salism, otherwise. Finally, when species do not interact at
all there is the so-called neutralism. Part of this ecological

richness is present in the Verhulst–Lotka–Volterra model,

which naturally unveils other ecological regimes and does
not have the stability problem of the standard Lotka–Vol-

terra model.

The aim of this work is to present a generalization of the
Verhulst–Lotka–Volterra model. We present the asymp-

totic solution stability analysis in a non-trivial phase dia-

gram. We show that the generalization parameter is related
to the fractal dimension of species habitat and also to the

range of interactions between con-specifics. This relation

enables us to demonstrate the emergence of population
growth (macroscopic behavior) from the microscopic

behavior, given by the interaction range and dimensionality

of underlying topological structure.
Our presentation is structured as follows. In Sect. 2, we

present a generalized two-species model. This model

describes species interaction by a Richards-like term and
retrieves the Verhulst–Lotka–Volterra equations as a par-

ticular case. The model steady state solutions are obtained

and extinction and coexistence phases are discussed. In
Sect. 3, we describe the ecological regimes that emerge

from the model, that is: amensalism, commensalism, neu-

tralism, mutualism, competition and predation. Finally, we
draw our conclusions in Sect. 4

Generalized two-species model

Before introducing the two-species generalized model, let
us present an one-parameter generalization of the loga-

rithmic and exponential functions and some of their prop-

erties. These functions (Arruda et al. 2008; Martinez et al.
2008, 2009; Tsallis 1988, 1994) allow us to easily formu-

late and write the solutions of the models we present. The
~q-logarithm function is:

ln~qðxÞ ¼ lim
~q0!~q

x~q0 % 1

~q0
¼
Z x

1

dt

t1%~q
; ð1Þ

which is the area under the hyperbola, controlled by ~q. This
is a generalization of the natural logarithm function, which

is retrieved for ~q ¼ 0. For ~q\0, ln~qð1Þ ¼ %1=~q; for

~q [ 0, ln~qð0Þ ¼ %1=~q; for all ~q, ln~qð1Þ ¼ 0;

ln~qðx%1Þ ¼ % ln%~qðxÞ; d ln~qðxÞ=dx ¼ x~q%1. The inverse of

the ~q-logarithm function is the ~q-exponential function:

e~qðxÞ ¼ lim~q0!~qð1þ ~q
0
xÞ

1

~q
0 ; if ~qx [ % 1

0; otherwise

(

; ð2Þ

with e~qð0Þ ¼ 1, for all ~q and e~qðxÞ
! "a¼ e~q=aðaxÞ, where a is

a constant. For a ¼ %1, one has: 1=e~qðxÞ ¼ e%~qð%xÞ.
The interaction among species is fundamentally

addressed in the M. A. Savageau seminal paper (Savageau
1979). In general lines, the scope of the mass-action law for

k species is enlarged by means of the product of the spe-

cies-density Xi' 0 raised to the powers gi;j and hi;j, as

expressed in its Eq. 13; (Savageau 1979). In this equation,

the variation of Xi, with respect to time t, depends on non-
negative factors ai and bi, which takes into account the

growth and shrinkage of species i, respectively:

dXi

dt
¼ ai

Yk

j¼1

X
gi;j

j % bi

Yk

j¼1

X
hi;j

j ; ð3Þ

with i ¼ 1; 2; . . .; k. To compare models addressed by the

Savageau’s equations (S-system), we consider one- and two-

species models in terms of the generalized logarithm
function.

Calling the variable p ¼ ða1=b1Þ
1=~qX1 and the parameters:

~q ¼ g1;1 % h1;1 and j ¼ %b1ða1=b1Þ
~q ~q, the one species

model (k ¼ 1) dX1=dt ¼ a1X
g1;1

1 % b1X
h1;1

1 can be written as:

d lnðpÞ
dðjtÞ

¼ %ph1;1%1 ln~qðpÞ; ð4Þ

which is a particular instance of the Tsoularis-Wallace

model (Tsoularis and Wallace 2002): d lnðpÞ=dðjtÞ ¼
ph1;1%1½% ln~qðpÞ)c, with c ¼ 1 (Cabella et al. 2011). In

particular, if h1;1 ¼ 1, one retrieves the Richards’

model (Richards 1959). Notice that with this mapping

between notations, one is able to give an empirical inter-
pretation to ~q-logarithm parameter in terms of the species-

density powers.

Calling pi ¼ ðai=biÞ
1=~qi Xi, ~qi ¼ gi;i % hi;i and

ji ¼ %bi ~qiðai=biÞ
~q%i=ðhi;iÞ%1, the Savageau two-species

model (k ¼ 2) is written as:

d lnðp1Þ=dt ¼ %j1p
h1;1%1
1 X

g1;2

2 ln~q1
ðp1Þ ð5Þ

d lnðp2Þ=dt ¼ %j2p
h2;2%1
2 X

g2;1

1 ln~q2
ðp2Þ ð6Þ

These equations have the the Lotka–Volterra model

(among others) as a particular limit. Although the Sava-

geau’s model is very general, it does not retrieve the
stable version of the Lotka–Volterra model, i.e. the Ver-

hulst-like.
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Here, we are also concerned with a formalism which

includes the stable version of Lotka–Volterra model as a
particular case. Consider now a Richards-like two-species

population dynamic model, which describes species

growing in a limited environment:

dN1

dt
¼ %j1N1 ln~q1

N1

K1

# $
% !1

N2

K2

% &
ð7Þ

dN2

dt
¼ %j2N2 ln~q2

N2

K2

# $
% !2

N1

K1

% &
; ð8Þ

where Ni' 0, ji and Ki [ 0 are the number of individuals

(population size), net reproductive rate, and the carrying

capacity of species i (¼ 1; 2), respectively. In fact, K1

represents the resources restriction considering any kind of

external factors, except the ones relative to species 2,

similarly for K2. The non-dimensional population interac-
tion parameters !1 and !2 can assume positive or negative

values and represent the different ecological interactions.

To compare the species abundance with its own carry
capacity, call pi ¼ Ni=Ki' 0, for i ¼ 1; 2, with Ni' 0. To

use an non-dimensional time measure, for instance, relative

to species 1 net reproductive rate, consider s * j1t' 0.
The two net reproductive rates produce a single parameter

q ¼ j2=j1 [ 0, fixing a second time scale to the system:

s0 * qs ¼ j2t. With these new quantities Eqs. 7 and 8 can
be rewritten as:

dp1

ds
¼ p1½% ln~q1

ðp1Þ þ !1p2) ¼ f ðp1; p2Þ ð9Þ

dp2

ds
¼ qp2½% ln~q2

ðp2Þ þ !2p1) ¼ gðp1; p2Þ; ð10Þ

The term p1 ln~q1
ðp1Þ in Eq. 9 represents the competition

between individuals of the same species (intraspecific

competition), and !1p1p2 represents the interaction between

individuals of different species (interspecific interac-
tion) (Edelstein-Keshet 2005; Murray 2002). Similar ana-

lysis applies to Eq. 10. Contrary to q, which has no major

relevance to this model, the product !1!2 plays an important
role, so that: !1!2\0 means predation; !1!2 ¼ 0 means

commensalism, amensalism or neutralism and !1!2 [ 0

means either mutualism or competition (see diagram of the
Fig. 1).

The dynamic of the model is quite similar to the so-

called theta-logistic model (Sibly 2005), which is a gen-
eralization of the Verhulst model. However, the Richards’

model has as particular cases not only the Verhulst model

but also the Gompertz one. Moreover, the population
dynamics are governed by a Richards’ term, instead of the

Malthus one in the standard Lotka–Volterra equations.

When these interactions are given by the Verhulst equation
(~q1 ¼ ~q2 ¼ 1), one retrieves the Verhulst–Lotka–Volterra

model, which does not belong to the Savageau modeling

category. Here, we analyze the two-specie dynamical sys-

tem obtained through Eqs. 9 and 10, enhancing the scope

of single species growth models (Cabella et al. 2011,
2012).

Generalization parameter interpretation

The generalization parameter ~q links the microscopic

with the macroscopic behavior of population growth.
From the microscopic perspective, it addresses the

interaction range among individuals in fractal media. The

macroscopic consequences of these interactions are sig-
moid growth curves, such as the ones of Gompertz or

Verhulst model.

A microscopic model to describe cell proliferation in D-
dimensional medium, which supports a population with

fractal structure dimension Df was first proposed by

Mombach et al. (2002a). This fractal dimensional hypoth-

esis is consistent with experimental data (Cross 1997;

Guiot et al. 2003; Kozusko et al. 2007). The cell replication
rate is considered to be a balance between its intrinsic

properties of self-replication and the inhibitory factor from

the presence of neighboring cells. This inhibitory factor
IðrÞ depends only on the distance r between two cells, in

the form IðrÞ ¼ 1=jrjc. The analytical solution for this

equation leads to the Richards’ model at the macroscopic
level, which can be rewritten in terms of Eq. 1, with
~q ¼ 1% c=Df (Cabella et al. 2011).

Fig. 1 Diagram of ecological regimes according to the interaction
parameters pair (!1; !2). The origin ð!1; !2Þ ¼ ð0; 0Þ represents neu-
tralism; the axis, amensalism and commensalism and the quadrants I
mutualism; II and IV predation; III competition. Extinction occurs
for !i\% 1=~qi. If !1\% 1=~q1 and !2\% 1=~q2, contrary to comple-
mentary case, extinction depends on the initial conditions. In the
mutualism regime, a forbidden region emerges where the two
populations grow infinitely at the region border
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In population dynamics, the intraspecific per capita

growth rate GintraðpiÞ ¼ %ji ln~qðpiÞ, with i ¼ 1; 2 is the

average number of individuals that each individual generates

at time t. The inhibitory factor is the intraspecific competi-
tion according to Eqs. 9 and 10. Considering a population in

a spatial structure of dimension Df , IðrÞ can be rewritten in

terms of the ~q parameter: IðrÞ ¼ jrjDf ~q%1ð Þ. The fractal

dimension of habitats may reflect its quality (Imre 2004) and
biodiversity level (Tokeshi 2012). For ~q\1, GintraðpiÞ is a

concave function of pi (d2Gintra=dp2
i [ 0). In this case, Gintra

is strongly affected by the increase of population size, even
for low population densities. Insects and some fishes belong

to this case (Saether 2002; Sibly and Hone 2002), where

species have a high intrinsic growth rate (Sibly 2005). For
~q ¼ 1, the interaction strength does not depend on distance

among individuals, i.e. the mean field case. Finally, for

~q [ 1, GintraðpiÞ is a convex function of pi (d2Gintra=dp2
i \0)

and species are particularly unaffected by the increase of pi

until the population size is near the carrying capacity, where
Gintra rapidly decreases. Examples of this case are species

living in a wide plain (Fowler 1981; Sibly 2005). Using

d2N=dt2 ¼ 0, one can show that maximum population

growth rate is NI ¼ K= 1þ ~qð Þ1=~q, where K is the carrying

capacity.

Steady state solutions

In Eqs. 9 and 10, the nullclines are denoted by nullA

f ðp1; p2Þ ¼ 0 and by nullB, for gðp1; p2Þ ¼ 0. There are

trivial nullclines p1 ¼ 0 (nullA0) or p2 ¼ 0 (nullB0) and
nontrivial ones:

p2 ¼
1

!1
ln~q1
ðp1Þ (nullA1) ð11Þ

p2 ¼ e~q2
½!2p1) (nullB1) ð12Þ

The crossing of nullA and nullB in the plane p2 + p1

generates a steady state solution. The trivial solution

(p,1;t ¼ 0 and p,2;t ¼ 0) is the crossing of nullA0 with nullB0

and is restricted to the case ~q1 [ 0 and ~q2 [ 0, to avoid a

division by zero in Eqs. 9 and 10 via definition (1). Semi-

trivial solutions (p,1;st ¼ 0 and p,2;st ¼ 1, restricted to

~q1 [ 0; or p,1;st ¼ 1 and p,2;st ¼ 0, restricted to ~q2 [ 0) are

the crossing of nullA1 with nullB0 or nullA0 with nullB1.

The crossing of nullA1 with nullB1 produces the nontrivial
solutions:

p,1;nt ¼ e~q1
½!1e~q2

ð!2p,1;ntÞ) ð13Þ

p,2;nt ¼ e~q2
½!2e~q1

ð!1p,2;ntÞ); ð14Þ

in which the analytical solution cannot be obtained, since
they are transcendental equations.

For the particular case ~q1 ¼ ~q2 ¼ 1 (Verhulst-like) with

competition interaction (i.e. !1\0 and !2\0), the solutions
are: p,1 ¼ 0 and p,2 ¼ 0 (trivial solution and not stable);

ðp,1; p,2Þ ¼ ð1; 0Þ or (p,1; p
,
2Þ ¼ ð0; 1Þ (semi-trivial

solutions); p,1 ¼ ð1þ !1Þ=ð1% !1!2Þ and p,2 ¼ ð1þ !2Þ=
ð1% !1!2Þ (non-trivial solution).

These steady state solutions (p,1; p
,
2) are stable if

%Tr½Aðp,1; p,2Þ)[ 0 and Det½Aðp,1; p,2Þ)=q[ 0, where

Aðp,1; p,2Þ ¼
op1

f op2
f

op1
g op2

g

# $

p,
1
;p,

2

is the stability matrix

(community matrix).

Equations 13 and 14 are real-valued functions if:
~q1!1e~q2

ð!2p,1;ntÞ[ % 1 and ~q2!2e~q1
ð!1p,2;ntÞ[ % 1

(according to Eq. 2), leading to:

!1 [
%1

~q1e~q2
ð!2p,1;ntÞ

and !2 [
%1

~q2e~q1
ð!1p,2;ntÞ

: ð15Þ

The phase plane !2 + !1 of Fig. 1 presents the diagram of
the ecological regimes accessible to the system according

to the pair (!1; !2), given by the numerical solution of

Eqs. 13 and 14. The forbidden region in this phase diagram
(see Fig. 1), the population sizes has not well defined due

to the second condition in Eq. 2). In fact, the two popula-

tions grow infinitely at the forbidden region border. For
~q1 ¼ ~q2 ¼ 1, this border is simply !2 ¼ 1=!1.

In particular, if ~qi ¼ 1 the nullcline nullA1 and nullB1

are linear functions. We stress that in general, they are
either convex, if !ið~qi % 1Þ[ 0 or concave, if

!ið~qi % 1Þ\0. The nullclines convexity is analyzed in the

following.
The trivial steady states p,1;t ¼ 0 and p,2;t ¼ 0 mean

extinction of both species (synnecrosis), therefore

%Tr½Að0; 0Þ) ¼ %1=~q1 % q=~q2 and Det½Að0; 0Þ) ¼
q=ð~q1 ~q2Þ. Since q [ 0, Det½Að0; 0Þ)[ 0 if, and only if,
~q1 ~q2 [ 0, i.e., ~q1 and ~q2 must have the same signal, either

positive or negative. Since %Tr½Að0; 0Þ)[ 0, ~q1 and ~q2

must be negative. However, when both ~q1 and ~q2 are

negative the trivial solution is undetermined, as discussed

in the beginning of this subsection. When ~q1 and ~q2 are
positive, the synnecrosis is a unstable fixed point, as in the

case for Verhulst–Lotka–Volterra model (~q1 ¼ ~q2 ¼ 1).

Thus, synnecrosis is not an accessible ecological regime.
The semi-trivial solutions are either: ðp,1;st; p

,
2;stÞ ¼ ð0; 1Þ

or ðp,1;st; p
,
2;stÞ ¼ ð1; 0Þ, where one species extinguishes and

the other survives. For instance, considering species 1

extinction, one has: %Tr½Að0; 1Þ) ¼ %!1 % 1=~q1 þ q and

Det½Að0; 1Þ) ¼ %qð!1 þ 1=~q1Þ. The stability condition
%Tr½Að0; 1Þ)[ 0, implies !1\q% 1=~q1 and

Det½Að0; 1Þ)[ 0 implies !1\% 1=~q1, since q [ 0. Thus,

species 1 extinguishes for !1\!ðcÞ1 . Similarly, species 2

extinction is stable only for !2\!ðcÞ2 , where !ðcÞi ¼ %1=~qi
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(i ¼ 1; 2) is the transition critical value. It is interesting to

point out that the Gompertz-like two-species model
(~q1 ¼ ~q2 ¼ 0) does not present the survival/extinction

transition, since !ðcÞi ! %1. For the particular case

(~q1 ¼ ~q2 ¼ 1) this transition occurs at !1 ¼ !c
1 ¼ %1. A

Taylor expansion of the non-trivial solution allows us to

write p,1;nt ¼ ð!1 % !c
1Þ=ð1þ !2Þ þO

'
ð!1 % !c

1Þ
2
(

. There-

fore, near the critical point !c
1 (t), species 1 linearly goes

extinct, i.e. p,1;nt-ð!1 % !c
1Þ, where the critical exponent

related to the order parameter is b ¼ 1. Analogous for

species 2.

The hatched diagram region of Fig. 1 characterizes the
extinction of one species. The doubly hatched region

(!1\% 1=~q1 and !2\% 1=~q2) the steady state solutions

depend on initial conditions.
The non-trivial solutions, Eqs. 13 and 14, correspond to

the coexistence phase and it is represented by the white

region of the diagram (!1 [ % 1=~q1, and !2 [ % 1=~q2).
The coexistence phase can occur in the mutualism, com-

mensalism, amensalism, predation and competition

regimes.
Transient dynamics is an important aspect of the pre-

dators and preys coexistence and also of competi-

tors (Hastings 2004). Studies of outbreaks (insects or
diseases) focus greatly on the transient dynamics (Cavalieri

and Kocak 1995; Gavrilets and Hastings 1995; Harrison

2001; Kaitala 1999; Lai and Winslow 1995; Lai 1995a, b).
In tuberculosis treatment for example, it can reveal

important aspects beyond asymptotic states such as how

drug resistance emerges (Espı́ndola et al. 2011, 2012,

2014). The full solutions of Eqs. 9 and 10 must be dealt
numerically. Differently from the Lotka–Volterra model,

the oscillatory behavior around fixed points (limit cycle) is

not observed in the proposed model. The solutions always
converge to the fixed points. However, in the predation

regime, our model depicts an interesting feature. It may

happen that the species 1 population (prey) is greater than
species 2 (predator) in the beginning of the dynamics, but

the steady state solution is just the opposite, i.e. predator
population is greater than the prey one. The long-term

(steady state) analysis may not provide enough information

about species abundance in the short-term dynamics i.e.
before reaching equilibrium (Hastings 2004), as depicted

in Fig. 2.

Ecological regimes

Now, we address the ecological regimes that emerge from

the proposed model. These regimes are: amensalism,

commensalism, neutralism, mutualism, competition and
predation.

Neutralism, amensalism and commensalism

The situation !1!2 ¼ 0 in Eqs. 9 and 10 leads to an inde-

pendent growth of at least one species. For instance, when
both interaction parameters vanish, the two species evolve

independently. That is the neutralism, so the steady state

Fig. 2 Prey and predator
regime for ~q ¼ %1; 0 and 1.
Although the initial conditions
are the same,
p1ð0Þ ¼ p2ð0Þ ¼ 0:01, in the
beginning of the dynamics the
prey population is greater than
the predator one. However the
steady state solution is just the
opposite, i.e. more predators
than preys
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solutions of both species become unity, that is
ðp,1; p,2Þ ¼ ð1; 1Þ. Another case is to consider that only one

species is unaffected by the other. For instance, considering

!1 ¼ 0 and !2 6¼ 0 in Eqs. 9 and 10, the non-trivial steady
state solutions Eqs. 13 and 14 become: p,1;nt ¼ 1 and

p,2;nt ¼ e~q2
ð!2Þ, which are plotted for !2\0 (amensalism) in

Figs. 3a and for !2 [ 0 (commensalism) in Figs. 3b. In this
case, species 1 optimally uses the environment resources

while species 2 may either coexist with species 1, for
~q2!2 [ % 1; be extinguished or reach the forbidden region.
In brief, the steady state p,2;nt grows (as a function of !2):

logarithmically, for ~q2 [ 1; linearly, for ~q2 ¼ 1 (Verhulst

model); exponentially, for 0. ~q2\1 and hyper-exponen-
tially, for ~q2\0. Following von Foerster et al. (1960)

and Strzalka (2009) studies, in hyper-exponential growth

the population diverges at a finite value of !2, while in
exponential growth the population diverges only when

!2 !1.

Using the context of statistical physics (Yeomans 1992),
one can interpret p,2;nt as an order parameter of a second

order survival/extinction transition, which occurs at

!ðcÞ2 ¼ %1=~q2. This transition is suppressed for ~q2 ! 0þ,

since !ðcÞ2 ! %1. When !2 / 0%, p,2;nt is close to unity,

regardless the value of ~q2. In the commensalism regime,

the population may grow indefinitely for !2 ~q2 ! %1þ, i.e.

p,2 !1. The steady state of the species 2 is undefined in

the region !2 ~q2. % 1: that is the forbidden region. Anal-
ogous results are obtained when species 2 is independent of

species 1, and species 1 is positively affected by species 2.

Mutualism, competition and predation

Now, consider !1!2 6¼ 0, which represents three kinds of

species interaction: mutualism, competition and predation.

-2 -1,5 -1 -0,5 0

ε2

0

0,2

0,4

0,6

0,8

1

p* 2,
nt

q2=-1

q2=0

q2=0.5
q2=1

q2=1.5
q2=2

Gompertz-like

Verhulst-like

(a)

0 1 2 3 4 5
ε 2

0

1

2

3

4

5

p* 2,
nt q2=2  

q2=1

q2=0

(Verhust)

q2=-1

(Gompertz)

(b)

Fig. 3 Plots of p,2;nt ¼ e~q2
ð!2Þ. For amensalism (a) species 1 growth is

independent of species 2 (!1 ¼ 0 and !2\0). When ~q2!2\% 1, then
p,2;nt ¼ 0, meaning extinction of species 2. For ~q. 0 the one species

extinction phase is suppressed and the coexistence phase becomes
stable. For commensalism (b) species 1 grows independently of
species 2 (!1 ¼ 0 and !2 [ 0). For ~q2' 0, the steady state diverges
only at !2 !1. However, for ~q2\0 (see the case ~q2 ¼ %1), the
steady state diverges at !2 ¼ %1=~q2 (vertical dashed line)

Fig. 4 Plot of the nullclines for mutualism between species (!1 [ 0
and !2 [ 0). a For ~q1 [ 1 and ~q2 [ 1, the crossing of the two
nullclines produces a stable solution. b For ~q1\1 and ~q2\1, the two
nullclines never intercept, so that populations grow indefinitely,
which is not a stable ecological regime (forbidden region)
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The case !1!2 [ 0 means that both species have the same

kind of influence on each other. For instance, both species

benefit each other (!1 [ 0 and !2 [ 0): mutualism; or both
species impair each other (!1\0 and !2\0): competition.

The case !1!2\0 means that one species is the predator and

the other is the prey.
In this context, the stable solutions for Eqs. 9) and 10

are p,1 ¼ e~q1
!1p,2
) *

and p,2 ¼ e~q2
!2p,1
) *

, with the following

transcendental equations as solutions:

ln~q1
p,1 ¼ !1e~q2

ð!2p,1Þ and ln~q2
p,2 ¼ !2e~q1

ð!1p,2Þ : ð16Þ

For mutualism (!1 [ 0 and !2 [ 0), the steady state solu-

tions are obtained through the crossing of the nullclines:

Eqs. 11 and 12. On one-hand, when ~q1 [ 1 and ~q2 [ 1 the
nullA1 is a convex function, while the nullB1 is concave.

Thus, as presented in Fig. 4a, the two nullclines cross at the

point in which simultaneously satisfy Eqs. 11 and 12:

ln~q1
ðp,1;ntÞ ¼ !1e~q2

ð!2p,1;ntÞ and p,2;nt ¼ ln~q1
ðp,1;ntÞ=!1. On the

other hand, when ~q1\1 and ~q2\1, nullA1 is convex and

greater than the concave nullB1, therefore they never cross

each other, giving rise to the forbidden region.
When the nullclines intercept, one can find the steady

state solution through the transcendental equation

p,1;nt ¼ ln~q2
½ln~q1
ðp,1;ntÞ=!1)!2. Consequently p,2;nt is calcu-

lated inserting p,1;nt in the Eq. 11 or 12.

In the competition case (!1\0 and !2\0), the dynamics

of the system presents two regimes. In the first, the two
species coexist, that is weak competition. In the second,

there is extinction of one species, that is strong competi-

tion. As in the mutualism case, the non-trivial steady state
is given by the crossing of nullA1 and nullB1 (Eq. 16),

which can be unstable in some cases. If the crossing point

0 1p1

0

1

p2

NullA1
NullB1
p2 = -p1 -1

1/q|ε1|

1/q|ε2|

(a)

0 1p1

0

1

p2

p2 = -p1 -1

Separatrix

(p1nt
*
, p2nt

*
)

(b)

Fig. 5 Plot of the nullclines for the competition regime (!1\0 and
!2\0). The plots depict the particular situation when ~q1 and ~q2 are
positive. a If the two nullclines intercept (the non-trivial steady state)
above the straight line p2 ¼ %p1 % 1, the steady state solution is
stable and represents week competition. b If the non trivial steady
state is below the dotted line, then it is unstable and the semi-trivial
steady state becomes stable, giving rise to the strong competition. The
separatrix divide the two regions of convergence according to the
initial conditions

0
1 p1

0

1

p2
NullA1
NullB1

1/q2|ε2|

(a)

0 1 p1

0

1

p2
NullA1
NullB1

1/q2|ε2|

(b)

Fig. 6 Prey (species 2)/predator (species 1) regime (!1 [ 0 and
!2\0). a The plot depicts the case that ~q2j!2j\1, which implies that
the non-trivial steady state solution (crossing of the nullclines) is
stable. One has coexistence of the two species: weak predation. b
When 1=ð~qej!2jÞ\1, the steady state solution is the semi-trivial one:
(p,1;st; p

,
2;stÞ ¼ ð1; 0Þ, i.e. strong predation
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is above the straight line p2 ¼ %p1 % 1, then the non-trivial

steady state is stable, see Fig. 5a. The equation p2 ¼
%p1 % 1 leads us to the conclusion that if p,1;nt þ p,2;nt\1,

then there is strong competition (extinction of one species);

and when p,1;nt þ p,2;nt [ 1, then there is weak competition

(coexistence of both species).

When p,1;nt þ p,2;nt\1, there is a line which passes

through the origin and the non trivial stead state (an

unstable point in this case). This line, the separatrix,

divides the two regions of convergence according to the
initial conditions (see Fig. 5b). In this case, one species is

extinguished (strong competition).

Consider now that the species 1 is the predator and
species 2 is the prey, thus !1 [ 0 and !2\0. The inter-

ception of the two nullclines describes a stable non-trivial

steady state, representing coexistence of both species: weak
predation, see Fig. 6a. As expected, species 1 takes

advantage from species 2 therefore p,1;nt [ 1 and p,2;nt\1.

For ~q2j!2j[ 1, the stable steady state is the semi-trivial
solution p,1;st; p

,
2;st ¼ ð1; 0Þ. It can happen when: (1) the two

nullclines intercept, see Fig. 6b; or (2) the intercept point

coincides with the semi-trivial solution. In this case, spe-
cies 2 is extinguished: strong predation. Analogous results

occurs for species 2 as the predator.

Conclusion

We have generalized the Verhulst–Lotka–Volterra model

to take into account several ecological regimes in a simple

unified formulation. Based on Martinez et al. (2008), we
showed that our model generalization parameter is related

to the range of interaction between individuals and the

fractal dimension of growth media. The interaction range
parameter generates different concavities in the per capta

growth rate curves. The richness of the proposed model can

be explored through the steady state solutions stability
analysis. We have identified several ecological phases

according to species coexistence and extinction. In the

competition regime, two distinct cases emerge: the weak
competition when both species survive and strong com-

petition when one is extinguished. The latter reveals a non-
trivial survival/extinction transition, where the system is

strongly dependent on the initial conditions when !1\
%1= ~q1 and !2\% 1= ~q2. Similarly, the weak/strong inter-
action also occurs in the predation regime. However, in this

case, the survival/extinction transition does not depend on

the initial conditions. In the mutualism regime, there is a
forbidden region in the parameter space. Because its sim-

plicity compared to the model of Wodarz and Komarova

(2005), and since we have a microscopic basis for our
generalization, we propose to study it as a paradigm for

tumor-selective replicating viruses in cancer therapy. Fur-

ther, the presented model can be easily formulated to
address an arbitrary number of interacting species, pro-

ducing a more realistic ecological system with multiple

trophic interactions.
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