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Analysing and modelling finance within 
nonextensive statistical mechanics formalism

abstract: In this article we revisit results about financial quantities, namely return and traded 
volume, which have been obtained within the non-extensive statistical mechanics based on 

entropy  . 
These results have been derived from both numerical (empirical) and analytical considerations. 
Concerning, the former, properties such as multi-fractality, self-correlation, and degree of 
dependence, have permitted not only the establishment of a basis for the application of non-
extensive statistical mechanics on the treatment of financial variables, but also the achievement 
of relations between typical statistical properties and entropic indices q . Pertaining to the latter, 
dynamical scenarios of differential stochastic equations have taken into account. In these cases, 
dynamical interpretations for index q have been presented. 

PACS: 05.45.Tp — Time series analysis; 89.65.Gh — Economics, econophysics, financial markets, 
business and management; 05.40.-a — Fluctuation phenomena, random processes, noise and 
Brownian motion.  
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1. introduction

The word physics has its root in the 
Greek word physike which means “of 
Nature”. For that reason, if Nature is 
defined as the set of everything that forms 
Universe, interactions between its elements, 
and phenomena produced within it, then, 
we could study everything inside physical 
science. This comprises phenomena 
which occur at so different scales such 
as interactions between the most basic 
elements of matter, and dynamics of 
Galaxies. Between these two poles apart, we 
certainly find phenomena at human scale, 
specifically, interaction between humans, 
or organisations controlled by them. In 
this minute sub-set of Universe we can 
place financial markets, which are ruled, 
at least, by decisions of buying/selling 
given amounts of financial instruments at 
some price. 

To a physicist, two ingredients are 
highly appealing in a financial market: the 
complexity of this type of system, and the 
time series profile of large part of financial 
quantities, very similar to Einstein’s Brownian 
motion. Regarding that, simple questions can 
be asked about financial markets: What is 
the distribution for the price fluctuations of 
some financial instrument? Which dynamical 
mechanisms originate that distribution? How 
these mechanisms evolve in time? Questions 
like these have actually been raised up by 
physicists, particularly, by those working 
on Statistical Physics which is based on 
concept of probability, and it has as goal the 
description of natural complex behaviour 
[1–4].  This description is done from simple 
laws which depend on parameters that define 
systems. 

Statistical Physics, specifically, statistical 
mechanics, is strongly attached to the 
concept of entropy originally introduced 
by RudolF Julius EmmanuEl Clausius in 
1865  and its relation to the number of 
allowed microscopic states introduced by 
ludwig Boltzmann around 1877  when he 
was studying the approach to equilibrium 
of an ideal gas [5]. This connection can be 
expressed as 

  (1)

where k  is a positive constant, and W  
is the number of microstates compatible 
with the macroscopic state of an isolated 
system. This equation, known as Boltzmann 
principle, is one of the cornerstones of 
standard statistical mechanics. 

When the system is not isolated, but 
instead in contact to some large reservoir, 
it is possible to extend Eq. (1), under some 
assumptions, and obtain the Boltzmann-
Gibbs entropy 

  (2)

where p
i
 is the probability of the 

microscopic configuration i [6]. The 
Boltzmann principle should be derivable 
from microscopic dynamics, since it 
refers to microscopic states, but the 
implementation of such calculation has 
not been yet achieved. So, Boltzmann-
Gibbs (BG) statistical mechanics is still 
based on hypothesis such as the molecular 
chaos [5] (Stosszahlansatz) and ergodicity 
[7]. In spite of the lack of an actual 
fundamental derivation, BG statistics 
has been undoubtedly successful in the 
treatment of systems in which short spatio/
temporal interactions dominate1. For such 
cases, ergodicity and (quasi-) independence 
are favoured and Khinchin’s approach to S

BG
  

is valid [7]. Therefore, it is entirely feasible 
that other physical entropies, in addition 
to the BG one, can be defined in order to 
properly treat anomalous systems, for which 
the simplifying hypothesis of ergodicity 
and/or independence are not fulfilled. 
Examples are: metastable states in long-
range interacting Hamiltonian dynamics, 
metaequilibrium states in small systems 
(i.e., systems whose number of particles is 
much smaller than Avogrado’s number), 
glassy systems, some types of dissipative 
dynamics, and other systems that, in 
some way, violate ergodicity. This includes 
systems with non-Markovian memory 
(i.e., long-range memory) like it seems to 
be the case of financial ones. Generically 
speaking, systems that might have a multi-
fractal, scale-free or hierarchical structure 
in the occupancy of their phase space. 

Inspired by this kind of systems, 
specifically multi-fractals, it was proposed 
in 1988  the entropy [9] 

1 To give the reader an idea of the 
difficulty of the problem, it is worth 
to say that it took around one century 
so that the ergodic hypothesis could be 
verified for the simplest of the systems, 
the ideal gas [8].
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 (3)

which generalises S
BG

 ( ), 
as the basis of a possible generalisation 
of BG statistical mechanics [10,11]. The 
fundamental ideas was to introduce a bias 
amid the set of probabilities by raising 
probability to some power q. In other 
words, since 0<p

i
<1, q<1 benefits less 

probable events,  because while q >1 
enhances most probable events inasmuch 
as  . The value of the entropic index 
q for a specific system is to be determined 
a priori from microscopic dynamics. 
Just like S

BG
 , S

q
 is nonnegative, concave, 

experimentally robust (or Lesche-stable 
[12]) (∀q>0), and leads to a finite entropy 
production per unit time [13]. Moreover, it 
has been recently shown [14] that it is also 
extensive, i.e., 

 
 (4)

for special kinds of correlated systems, 
more precisely when the phase-space 
is occupied in a scale-invariant form. 
By being extensive, for an appropriate 
value of q, S

q
 complies with Clausius’ 

concept on macroscopic entropy, and with 
thermodynamics. 

Since its proposal, entropy (3) has 
been the source of several results in both 
fundamental and applied physics, as well 
as in other scientific areas such as biology, 
chemistry, economics, geophysics and 
medicine [15]. Herein, we review some 
new results concerning applications to 
the dynamics and empirical analysis of 
financial markets observables, namely the 
price fluctuations and traded volumes. 
Specifically, we introduce stochastic 
dynamical mechanisms which are able to 
reproduce some features of quantities such as 
the probability density functions (PDFs) and 
the Kramer-Moyal moments. Moreover, we 
present some results concerning the return 
multi-fractal structure, and its relation to 
sensitivity to initial conditions. 

Our dynamical proposals are faced 
against empirical analysis of 1 minute returns 
and traded volumes of the 30 companies 
that were used to compose the Dow Jones 

Industrial Average (DJ30) between the 1st  
July and the 31st December 2004. In order 
to eliminate specious behaviours we have 
removed the well-known intra-day pattern 
following a standard procedure [16]. After 
that, the return values have been subtracted 
from its average value and expressed in 
standard deviation units, whereas the traded 
volumes are expressed in mean traded 
volume units. 

2. Generating probability density 
function from S

q
 

Before dealing with specific financial 
problems, let us analyse the probability 
density function which emerges when the 
variational principle is applied to S

q
  [11]. 

Let us consider its continuous version, 
i.e., 

  (5)

The natura l  constra ints  in  the 
maximisation of (5) are 

   (6)

corresponding to normalisation, and 

 
 (7)

 

(8)

corresponding to the generalised mean 
and variance of x, respectively [11]. The 

notation P
q
 (x)  equal  and it is 

known in the literature as escort probability. 
It is worth mention that averages weighted 
with a function of the escort probability 
allow to mimic the way individuals 
behave when they face to risky choices. 
The prospect theory of D. Kahneman and 
A. Tversky to analysing decision-making 
under risk is founded on the concept of 
decision weights that can be modelled 
analogous functional forms [17]. 

From the variational problem using (5) 
under the above constraints, we obtain 

 (9)
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where, 

  (10)

and 

 (11)

Standard and generalised variances,   
and   respectively, are related by

 (12)

Defining the q -exponential function 
as 

  (13)

(  if 1+(1- q) x ≤ 0) we can rewrite 
PDF (9) as 

 (14)

hereafter referred to as q -Gaussian. 

For , the q -Gaussian form 
recovers the Student’s t -distribution with  
m degrees of freedom (m = 1, 2, 3,...) with 
finite moment up to order  mth. So, for q>1,  
PDF (14) presents an asymptotic power-law 
behaviour. On the other hand, if 
with n = 3, 4, 5,... , p(x) recovers the r 
-distribution with n degrees of freedom. 
Consistently, for q<1, p(x),  has a compact 
support which is defined by the condition 

. 

Many other entropic forms have been 
introduced in the literature for various 
interesting purposes. One of the advantages 
of entropy (3) is that it yields power-law 
tails, which play a particularly relevant role, 
as well known. 

Let us recall succinctly the two basic 
central limit theorems: (1) A convoluted 
distribution with a finite second moment 
approaches, in the limit of  

convolutions, a Gaussian attractor; (2) A 
convoluted distribution with a divergent 
second moment, approaches, in the same 
limit, a Lévy distribution Lγ(x) (with 
0<γ<2 ) [18]. However, through dynamics 
different from the convolution one, for 
instance with some sort of memory across 
successive steps (i.e., non-independence 
of the successive distributions), different 
ubiquitous distributions might arise (see 
also [14]). In this specific case the recent 
introduction of a correlation mechanism, 
by imposing Liebnitz rule to a set of 
probabilities based on the q-product, which 
has allowed the establishment of a new 
attractor in probability space different 
from Lévy and Gauss [19]. This work has 
turned out to be the first non-extensive 
generalisation of Central Limit Theorem 
which embraces a q generalisation of 
symmetric Lévy distributions [20]. The 
relation between Liebnitz rule and q 
-Gaussian distributions has also been 
verified in binomial processes for option 
pricing [21]. 

3. Defining consistent testing from 
non-extensive statistical mechanics

Discrimination between two hypothesis, 
consistent testing, is ubiquitous in science. 
Examples are the stationary/non-stationary 
character of time series or the dependence 
degree between its elements. Concerning 
the latter, the most widely applied measure 
of “dependence” between variables is 
the correlation function mathematically 
defined as, 

Since the correlation function is basically 
a normalised covariance (or the second 
cumulant of the stochastic process), it will 
only be a suitable statistical procedure for 
linear correlations or correlations that can be 
written in a linear way. In other words, the 
correlation function is not able to determine 
conveniently non-linearities in a given group 
of data. Aiming to consistently test the 
dependence or independence of stochastic 
variables within non-extensive statistical 
mechanics framework, and using as starting 
point the Kullback-Leibler information 
measure [22],
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   (15)

which is customarily applied in finance 
[23], it was defined in Ref. [24] a non-
extensive generalised mutual information 
measure, 

  (16)

where  ( ). 
For q'=1, Eq. (16) is equivalent to the Eq. 
(15), i.e., KL=I

1
. 

Consider that y is a two-dimensional 
random variable y=(x,z)In this situation, 
the quantification of the degree dependence 
between x and z can be made by computing I

q
 

for p(x, z) and , where 
p

...
(...) represents the marginal probability. 

In the analysis of two-dimensional random 
variables,  presents both a lower bound 
and an upper bound. The former, 
, corresponds to total independence between 
x and z, i.e., p(x,z)= p'(x,z). The latter, , 
represents a one-to-one dependence between 
variables and is given by, 

Existence of these two extreme values 
has allowed the definition of a normalised 
measure, 

 (17)

which has an optimal index, qop (where the 
prime was suppressed for clarity). 

This index is optimal in the sense that the 
gradient of the measure R is most sensitive 
and hence most capable of determine 
variations in the dependence among the 
variables. Moreover, it is optimal because 
its two extreme values are associated to full 
dependence and full independence between 
x and z. Analytically, qop is determined as 
the inflection point of  vs q' curves. For 
one-to-one dependence we have qop=0, and 
qop=∞ for total independence (see reference 
[25] for a detailed discussion). 

4. Basic stochastic processes

The Gaussian distribution, recovered 
in the limit q→1 of expression (14), can be 
derived on a variety of grounds. For instance, 
it has been derived, through arguments based 
on the dynamics, by L. Bachelier in his 1900 
work on price changes in Paris stock market, 
and also by A. Einstein in his 1905 article on 
Brownian motion. In particular, starting from 
a Langevin dynamics, we are able to write the 
corresponding Fokker-Planck equation and, 
from it, to obtain, as solution, the Gaussian 
distribution. Analogously, it is also possible, 
from certain classes of stochastic differential 
equations and their associated Fokker-
Planck equations, to obtain the distribution 
given by (14). 

In the remaining of this section it is our 
objective to discuss dynamical mechanisms 
which lead to probability functions with 
asymptotic power-law behaviour of q-
Gaussian form. 

A.  Stochastic differential processes

Stochastic differential  dynamics 
containing multiplicative noise might be 
encountered in many dynamical processes 
and, due to its significance, it has been 
subject of several studies over the last 
decades. A special and very peculiar kind 
of stochastic differential process with 
multiplicative noise was in introduced in 
[28] by L. Borland,

  (18)

which, when q equal 1 becomes the 
traditional Einstein equation for Brownian 
motion (W

t
 is a regular Wiener process). 

Specifically, for this case, the diffusion 
coefficient, or volatility in financial jargon, 
is proportional to the probability of having 
a certain value, x, for the stochastic variable 
at time t. 

Stochastic dynamics (18) has as 
associated Fokker-Planck equation, 

  (19)

which corresponds to a well-kown 
Nonlinear Fokker-Planck Equation whose 
solution is

  (20)
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where 

 (21)
and

  (22)

From eq. (20), we verify that the 
distribution presents always the same 
asymptotic power law exponent,  , and 
that variance (squared volatility), which is 
proportional to β(t)-1, evolves as , in the 
limit t→∞. This power-law dependence has 
recently been tested for price fluctuations in 
São Paulo financial market and has proved 
to be rather appropriate [29]. 

Taking into account that empirical 
returns where found to follow a q -Gaussian 
distribution (see fig. 1), Eqs. (18) and (19) 
provide a simple mechanism to model the 
dynamics of prices. Along similar lines it has 
been worked out an option-pricing model 
which is more realistic than the celebrated 
Black-Scholes one (recovered as the q=1

 
 

particular case) [30][31].

Figure 1 Probability density function of 
returns, P(r), versus return, r. the symbols 
represent P(r) for the Dow Jones industrial 
daily return index from 1900 until 2003. 
the solid line represents the best q-Gaussian 
numerical adjust with q=1.54 and   
(as obtained in [32]) and the dashed line a 
Gaussian fit.

B. Stochastic processes with varying 
intensive parameters

Intricate dynamical behaviour is a 
common feature of many systems, which 
can be also characterized by power-law 
probability density functions. Inside this class 
we have systems whose dynamical behaviour 
shows spatio/temporal fluctuations of some 
intensive quantity. This quantity might be, 
in traditional physical systems, the inverse 
temperature, the energy dissipation, whereas 
in financial models, it could be the width of 
some white noise, as assumed in the famous 

Heston model [33]. The connection between 
this type of dynamics and non-extensive 
entropy was made for the first time by g. wilk 
and z. włodaRCzyk [34] and later extended 
by C. BECk and E.g.d. CohEn[35], who 
called it superstatistics. In this “statistics of 
statistics”, BECk and CohEn aimed to treat non-
equilibrium systems from the point of view 
of long-living stationary states characterised 
by a temporally or spatially fluctuating 
intensive parameter. Such a condition can be 
mathematically expressed by 

  (23)

where B[E(z)] is a kind of effective Boltzmann 
factor, E(z) a function of some relevant 
variable z, and f(β) the probability density 
function of the inverse temperature β. 
Superstatistics is intimately connected with 
non-extensive statistical mechanics. More 
precisely, it is possible to derive a generalised 
Boltzmann factor which is exactly B[E], 
when f(β) is the Gamma distribution, i.e., 

where the q-exponential functional form 
of the effective Boltzmann factor turns out 
clearly visible its asymptotic power-law 
behaviour. It is noteworthy that the above 
effective Boltzmann factor is also a good 
approximation for other f(β) probability 
density functions [35]. 

5 .  Appl i ca t ions  to  f inanc ia l 
observables

A. ARCH (1) and GARCH (1,1) processes 
from a non-extensive perspective

The fluctuating character of volatility 
in financial markets has been considered, 
since a few decades ago, as a key factor for 
price changes dynamics [36]. In fact, the 
intermittent character of return time series 
is usually associated to localised bursts in 
volatility and thus called volatility clustering 
[37]. The temporal evolution of the second-
order moment, known as heteroskedasticity 
[38], has proven to be of extreme importance 
in order to define enhancing option-price 
models [33,39,40]. 

The first proposal aiming to modelise and 
analyse economical time series with time-
varying volatility was made by R.F. Engle [38], 
who defined the autoregressive conditional 
heteroskedasticity (ARCH) process. In his 
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seminal article, Engle defined a heteroskedastic 
observable z (e.g., the return) as

z
t
= σ

t 
ω

t
,   (24)

where ω
t
 represents an independent and 

identically distributed stochastic process 
with null mean and unitary variance (〈ω

t
〉

 
=0, 

〈ω
t
2〉

 
=1) associated to a probability density 

function P
n
(ω), and σ

t
 the volatility. In the 

same work, Engle also suggested a simple 
dynamics for volatilities, a linear dependence 
of σ

t
2 on the n previous values of z

t
2, 

 (25)

later named as ARCH(n) linear process [41]. 
The ARCH(n) process is uncorrelated, and for 
n=1, it presents an exponentially decaying 
self-correlation function for volatility with a 
characteristic time of order  [42]. 

In order to give a more flexible 
structure to the functional form of σ

t
2, T. 

Bollerslev generalised Eq. (25) defining the 
GARCH(n,m) process[43] 

 (26)

which reduces to ARCH(n) process, when process, when 
c

i
=0,∀

i
. 

For the GARCH(1,1) (b
1
=b and c

1
≡c), 

we can straightforwardly determine the 
kth moment of the stationary probability 
density function P(z), particularly its 
second moment 

and the fourth moment, which equal 
kurtosis  , 

for processes with unitary variance, i.e., 
. The self-correlation function for 

volatilities generated from a GARCH(1,1) 
process is also of exponential kind 
with a decaying characteristic time of 

. 

Despite, ARCH-like processes fail to 
reproduce the power-law-like volatility self-
correlation function decay [44], they are still 
considered a cornerstone in econometrics 

due to their simplicity and satisfactory 
efficiency in financial time series mimicry. 

Having a glance at Eq. (24), we can verify 
that the distribution P(z) of the stochastic 
variable z has, at each time step t, the same 
functional form of the noise distribution, 
P(ω), but with a standard deviation (or 
volatility) σ

t
. This property allows one to 

look at process {z} as a process similar to 
those occurring in some non-equilibrium 
systems with a long-lasting stationary state. 
Specifically, this principle has allowed to 
establish, firstly for ARCH(1) [45] and then [45] and then 
for GARCH(1,1) [46], a connection between [46], a connection between 
b and c, P(z) and, P

n
(ω), the latter assumed 

to be of the following q
n
-Gaussian form 

  (27)

By making the ansatz P(z)  p(z), where 
p(z) is the q-Gaussian probability density 
function which maximises S

q
 (Eq. (3)), 

and by imposing the matching of second 
( ) and fourth order moments, it is 
possible to establish, for GARCH(1,1), a, a 
relation containing the dynamical parameters 
b and c and entropic indexes q and q

n
: 

 
(28)

For c = 0, Eq. (28) reduces to the one 
corresponding to ARCH(1),, 

  (29)

which we depict in fig. 3. for b = c = 0, one 
has q = q

n
. The validity of Eqs. (28) and 

(29) is depicted in fig. 2. The discrepancy 
between p(z) and P(z) can be evaluated 
by computing the sixth-order moment 
percentual difference, which is never greater 
than 3% [45,46]. In fig. 4 we illustrate eq. 
(28) for typical values of q

n
.  

Since ω
t
=z

t
/σ

t
 and 〈ω

t 
σ

t
 〉

 
=0, for q

n
=1 

we can write 

as the conditional probability density 
function of z given σ

2
. Considering that, 

and P(z)  p(z), we obtain the stationary 
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probability density function for squared 
volatility[46], 

Figure 2 typical runs and GARCH(1,1) with . For each plot the symbols represent the 

relative frequency, F(z), and the line the corresponding probability function, . 

Upper panels (q
n
=1): (0.1;0.88), q=1.287 (x2=4.59×10–10) (left);(0.4; 0.4), q = 1.38 (x2 = 3.22 

× 10–7) (right). Lower panels (qn = 1.2): (0.1; 0.5), q = 1.221 (x2 = 6.01 × 10–10) (left); (0.3; 

0.45), q = 1.35 (x2 = 7.36 × 10–9) (right); .

where 

Figure 3 Diagram (q, qn, b) for ARCH (1) 
processes with 〈z2〉 = 0. When b = 0 we obtain 
the straigth line q = q

n
. 

Figure 4 Diagrams (q, b, c) of GARCH (1, 1) 
processes with z2_= 1 and qn = 1 (Left panel), qn = 
1.2 (Right panel). No ́ ultimo caso o valor m´aximo 
poss´ıvel para b (com c = 0) ´e b = 1 p4.2’ 0.488

Figure 5 the symbols in black represent 

the inverse cumulative frequency, C (σ2), 
numerically obtained for a Gaussian noise with 

b=c=0.4 and the gray line the respective inverse 

cumulative distribution,  with 

( ) = (0.444,2.125,1) for .

As one can observe in figure 5, the ansatz 
gives a quite satisfactory description for σ2 
probability density function, suggesting 
a connection between the ARCH class 
of processes and non-extensive entropy. 
These explicit formulas can be helpful in 
applications related, among others, to option 
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(b,c), which results in a certain q for the 

stationary probability density function, we 

obtain the same qop and, consequently, the 

time series will present the same degree of 

dependence [46]. Furthermore, the relation 

between q and qop does not depend on the 

correlation function. Expressly, although 

pairs (b=0.2, c=0.2) and (b=0.4, c=0) 
present the same characteristic time for z

t
2 

correlation function, they do not present 
the same dependence degree. In point of 
fact, we verify that pair (b=0.4, c=0), which 
presents a greater value for q, it also has a 
greater dependence degree (smaller value 
for qop). The same comparison can be made 
with pairs (b=0.3; c=0) and (b=0.1, c=0.2)  
pointed at fig. 7. This shows that R

q
 is not a 

measure of linear correlations. 

prices, where volatility forecasting plays a 
particularly important role. 

Albeit uncorrelated, stochastic variables 
{z

t
} are not independent. In other words, 

they present correlations which cannot be 
written in a purely linear fashion. Applying 
the q-generalised Kullback-Leibler relative 
entropy [24,25] to stationary joint probability 
density function p

1
(z

t
,z

t-1
) and 

it is possible to quantify the degree of 
dependence between successive returns, 
through an optimal entropic index, qop. In 
Ref. [46], it has been verified the existence 
of a direct relation between dependence, 
qop, the non-Gaussianity, q, and the nature 
of the noise, q

n
. An interesting property has 

emerged, namely that, whatever the pair 

Figure 6 Plot of qop versus q for typical (b, c, q
n
) triplets. the arrow points two examples which 

were obtained from different triplets and nevertheless coincide in what concerns the resulting 
point (q,qop).

Figure 7 Representation of qop vs. q for (q
n
,b,c) 

values exhibited in fig. 2. One of the pairs 
indicates an example of different triplets, 
(1,0.4,0) e (1,0.2,0.6888) which, although they 

have different characteristic times for z2 self-
correlation function, present the same value for 

(q, qop) (discrepancy beyond third decimal digit). 
the other two triplets (in addition to the pair 
cited in the text) present the same characteristic 

times for z2 self-correlation function. the fact 

that (q, qop) does not coincide it is a proof that 

covariance and qop are different quantities.

Figure 8 Representation of qop vs. b (ARCH 
(1) process) for returns delayed of T=1,2,4,8. 
Dashed lines are presented as mere indication.

It has also been verified (see fig. 8) for 

ARCH (1) that the degree of dependence 

varies visibly with b (or q given eq. (29))and 

with the lag T between returns. In fig. 8 we 

observe that returns z
t
 and z

t+8 
 from an ARCH 

(1)  with b=0.1 present basically the same 

degree of dependence as immediate returns, 
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This term also assures that, for large values of 
return, propensity to buy decreases strongly 
due to risk- aversion. For practical matters, α

2
 

aims to reproduce the effects of a stop order. 

• The volati l i ty,  σ ,  which can be 
written proportional to r2. It is an 
decreasing(increasing) function of 
demand(supply); 

• Deviation between current, S(t), and 
estimated worth, which is generally 
specified by risk agencies . 

Combining all these factors, the stochastic 
equation for imbalance is written as,

 (31)

where −γ′∆ϖ corresponds to effects caused 
by the absorption of orders, and η to a 
noise which reproduces random causes that 
affect market. Using instantaneous return 
definition, eq. (30), and the fact that “fair” 
price might include delta ∆ϖ

0
, we obtain,

 (32)

with,

When risk-aversion is not taken into 
account, β=α

2
=0

 
, eq. (31) becomes,

   (33)

Considering case in which η only 
depends on time, we can appraise price 
evolution by

where

 
And C

1,2
 are constants obtained from initial 

conditions S(t)
0
 and . For k > 0 case, 

market presents stationarity. This implies 
 and it is equivalent to say that either 

the absorption rate is greater than the rate 
for which new orders are introduced or it is 
necessary a huge traded volume in order that 
a relevant price movement appears. Both of 

z
t
 and z

t+1
, generated from an ARCH (1) with 

b=0.005, for which q is very close to 1.  

B. Stochastic differential model for high-
frequency returns

The introduction of stochastic differential 
equations for the description of price 
fluctuation dynamics can be assigned to 
louis BaChEliER. This approach is nowadays 
used in both academic and commercial 
applications. The first differential picture based 
on phenomenological aspects to be published 
was made by J.P. BouChaud and R. Cont [48]. 
It uses the simple and plausible points: 

• Instantaneous price changes, , defined 
as instantaneous revenue, r(t), are 
directly proportional to the imbalance 
between supplied volume and demanded 
volume, ∆ϖ,

  (30)

• where δ is the market depth, i.e., the 
number of shares needed to make price 
moves in one unit. This hypothesis 
describes the traditional relation between 
price behaviour and imbalance between 
demand and supply. 

• The volume on the book depends on 
the superposition of satisfied orders 
and the introduction of new orders. The 

imbalance rate, by introduction of new 

orders  ((i) stands for incoming), 

depends itself on several factors: 

- A value which reflects de mean 
evolution, r

0
, for a financial market, 

that is estimated around 0.01% per 
day; 

- The value of instantaneous revenue 
(or return), r(t). Price rise induces 
a general augment of demand and 
the opposite for supply. Given that 
humans are mainly risk-averse, this 
rate is naturally larger for drop cases. 
Hence, the contribution for  
can be written as:

However, we would like to stress that, 
the expansion of  must go beyond first 
order, so that price rises always persuades 
reduction in offer ( ). 
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the features are present in liquid markets like 
NYSE and NASDAQ. It is easy to show that the 
second term only has a significant influence 
when big differences  appear. This 
usually corresponds to long time variation. 
Therefore, for small time scale, on liquid 
markets, −ϖ( )  can be neglected.

Making use of ϖ=1 approximation we have

 

Hence,

 

and

 

In other words, k+K, corresponds to a fast 
relaxation with a characteristic time around 
τ

1
=K and k–K corresponds to a second time 

scale, , within which ϖ contribution 
can be disregarded. During the period of our 
high—frequency time series, DJIA went from 
10334.14 to 10783.01, i.e., a difference of 
4.8%. In view of the fact that, usually, price 
fluctuations above 10% around fair price are 
used by risk agencies to launch their alerts 
[49], we can say a price/index fluctuation of 
that order corresponds to a time horizon of 
about one year, much greater than the scale 
of minute that we are going to treat. 

1. Stable market

a. Without aversion. In this case, 
ω=β=α2=0, and because of that, the equation 
for price is easily transformed into an 
equation for return. Bearing in mind that 

, eq.(33) can be written as,

 

Let us discuss stochastic term, η. The 
simplest solution is to consider it as Gaussian 
noise with a width D [48]. However, such an 
assumption leads to a Gaussian distribution 
for price fluctuation, which has proved 
inadequate. Usually, in the physical analysis 
of systems with a large number of degrees of 
freedom, the stochastic term intents to simulate 
microscopic response to a set of factors [53]. 
This response, specifically its magnitude, is 
influenced in a natural way by return. Large 
(small) values of r , induce, in general, large 
(small) values of η . As large values of r are 
the lesser frequent values, it can be said that η 
is inversely proportional to return probability 
[32][50]. Thus, η can be written as 

 (34)

where θ is a constant value, named volatility 
constant, and ξ a white noise associated 
to a Gaussian of unitary variance. For this 
case, 1 minute price fluctuation dynamics2 
is given by,

  (35)

Probability density function, p(r,t), is 
obtained from the following non-linear 
Fokker-Planck equation [28] 

 (36)

whose solution is [51] 

 (37)

with 

 
 

and

The relaxation of normalisation constant, 
Z

q
, occurs with the characteristic time τ

 

Which is of the order of 1/k, since 0<q<3, 
so that p(r,t) is normalisable. All correlations 
for this process are due to the drift term, and 
because of that, correlations are fast decaying. 
The form of eq. (35) corresponds to an equation 
in which variance is not constant. The time 
dependence of variance leads to the emergence 
of an asymptotic power-law behaviour for 
probability density function [52]. 

When k is positive, like it is for liquid 
and stable markets with k(t–t

0
)  1, p(r,t)  

is infinitesimally distant from the stationary 
solution of eq. (36),

 (38)

where
2 Return for larger horizons are obtained 

by the addition of r(t) . This sum leads 
to the well-known approach towards 
Gaussian distribution.
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Besides it  provides an adequate 
description for price fluctuation PDF, it can 
be verified that dynamics (35) describes very 
well Kramers-Moyal moments,   
analytically defined as [53] 

 (39)

particularly for case n=2 which is important to 
evaluate the accuracy of a possible dynamics. 
Explicitly, moment M

2
 is proportional to the 

square of the coefficient of the stochastic 
term in standard stochastic differential 
equations [53]. Considering a stationary 
regime, t

0
=–∞  –k–1 0, and regarding 

eq. (39) we have

 (40)
which is a second order polynomial. 

Still other differential dynamical 
equations can reproduce the same 
distribution only processes like eq. (35) are 
also capable of reproducing Kramers-Moyal 
moments. Furthermore, this form emerges 
as a consequence of the dynamics, imposed 
a priori, and not as the outcome of a fitting 
procedure without some grounding as it 
occurs for other approaches [54-56]. 

It is worth remember that, although 
the matching of KM moments reduces the 
infinite set of dynamics compatible to a 
certain probability distribution, there is a 
large set of valid proposes yet. As an example, 
and for statistical purposes, we can unfold 
multiplicative noise in eq. (34), as the sum 
of uncorrelated additive and multiplicative 
noises in such a way that equation

  (41)

where

presents the same Fokker-Planck equation, 
and hence the same distribution [53] 
[57]. If eq. (35) permits an immediate 
relation between q and the response of 
the system to its own dynamics, eq. (41) 
allows a direct relation between q and the 
magnitude of multiplicative noise so that, 
for q =1, Ornstein-Uhlembeck process [52] is 
recovered as well as Gaussian distribution. 

In order to determine values for 
parameters q, θ, and k, it has been used 
a numerical adjust for both the average 
distribution of DJIA components, with 
eq. (37), and KM second order with eq. 
(40), see fig. 9. The values for 1 minute 
returns are q=1.31±0.02, σ=0.930±0.08, 
and k=2.40±0.04. From equality between 
distributions (38) and (37) we obtain

 (42)
for volatility constant. Parameter k=2.40±0.04 
corresponds to a relaxation time of about 20 
seconds, which is compatible with efficient 
market hypothesis. In fig. 9 we depict an 
excerpt of a numerical simulation of eq. 
(35). From eq. (42) the value for volatility 
constant is θ =2.67. 

Figure 9  Upper panels: Symbols represent distribution vs. r for the set of companies 
which constitute DJiA, and line represents the returns distribution for the time series 
generated from eq. (35) that is depicted in right panel Lower panel: Second order moment 

 which allows the determination of k. Parameters values: 
τ=1min, k=2.40±0.04, σ=0.930±0.08 e q=1.31±0.02.
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Analysing persistence for both simulation 
and real time series, by DFA-1 method, we 
verify a reasonable concordance between 
them (see fig. 10). Specifically, we have a 
Hurst exponent of 0.54±0.02 and 0.52±0.02 
up to 20 minutes. Beyond this time scale the 
exponent is 0.513±0.004. These results are 
in agreement with the well-known absence 
of meaningful persistence for return time 
series. In fig. 11 we can verify that, although 
correlations are fast decaying, the model 
captures the famous volatility clustering. 

Figure 10 Function F obtained using DFA-1 vs. 
window size T for the generated time series 
(circles) and data (squar es). Slopes correspond 
to Hurst exponent. For T20 minutes we have 
H=0.54±0.02 for replica e H=0.52±0.02 for 
data. After this scale the exponent decays to 
0.513±0.004 for both of the curves.

Figure 11 r2 (a possible measure for volatility) 
vs. t for the excerpt presented in fig. 9.

b. With aversion. In spite of the fact that the 
last propose provides a satisfactory description 
for return, the point is that, even at normal 
regime, stable markets present left skewed 
distributions. Hence, for a reliable description 
we must consider β ≠ 0 and α

2
 ≠ 0. In a previous 

work [48], in which Gaussian noise and were 
considered, the confining potential is

 

which presents a maximum for . 
This potential implies that, after passing this 
barrier, return is able to reach r=−∞ within 
a finite interval of time. The introduction of 

α
2
 ≠ 0, to reproduce stop orders, guarantees, to reproduce stop orders, guarantees 

that market is going to take an infinite time 
to experience an infinity drop. For this case, 
price fluctuation is given by

 (43)

Its associated Fokker-Plack equation

 (44)

has as stationary distribution 

 (45)

Using eq. (45), we can estimate values for 
parameters of “confining potential”

 (46)

Figure 12 Symbols represent second order 
Kramers-Moyal moments for data, and line 
the fit considering stationary case eq. (45). 
Parameter used: τ=1min, θ≈2.67, q≈1.3, k=5.5, 

β=0.12 e α
2
=0.02

Given the quality of the adjust of both 
PDF and second order KM, β and α

2
 should 

be small and compatible to small corrections. 
Considering values of θ≈2.67  and q≈1.3 we 
obtain k≈5.5, β≈0.12, α

2
≈0.02. With these. With these 

values, we verify that V(r) does not present 
a local maximum. As a matter of fact, 
the existence of such a maximum would 
introduce a signature in the market that it 
could make possible an estimate of crashes 
from first passage times. Consequently, the 
scenario that we have presented is consistent 
with the hypothesis that large drops are 
related to circumstances which cannot be 
explained within the same dynamics that rules 
normal regimes. 

c. Illiquidity state. So far we have 
analysed cases in which k is positive, typical 
of a liquid market. However, it might occur 
pression on the market in such a form 
that the rate of introduction of new orders 
becomes greater than the rate of order 
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absorption, i.e., .This inequality 
implies loose of market stability. When k<0, 
r=0 becomes a local maximum instead of 
being a local minimum as it is for k<0. The 
other two extremes are local minimum,

and absolute minimum

This case is equivalent to a speculative 
time or economic bubble, in which a market 
presents a mean return r+. However, this 
situation is unstable, because there is a strong 
tendency of fall. In other words, the time 
between successive rises (dynamics around 
r¯) and falls (dynamics around r¯) can be 
estimated by computing the mean passage 
time from r+ to 0. 

When market is near stationarity, 
 0, this time can be easily obtained 

from expressions (5.2.160), (5.2.157) and 
(5.2.144) of reference [52],

with

This conjecture takes place effectively in 
markets and corresponds to cases in which 
it happen a set of consecutive rises after that 
agents try to profit. 

Let us conclude this section by saying 
that, although these models do not capture 
the empirically observed long-lasting r2 self-
correlations, this property can be introduced 
when we combine our dynamical proposes 
with the superstatistics approach [2][55]. 
Hence, instead constant in time, θ can 
be a quantity which slowly varies in time 
and it presents long-lasting correlations. 
Furthermore, theta is associated to some 
distribution P(θ). Possible candidates 
for P(θ) are: the log-normal distribution, 
x2 -distribution and the F-distribution. 
In this approach, volatility fluctuations 
are, alongside with q, responsible for the 
non-Gaussian form of price fluctuation 
distribution. We must emphasise that 

the contribution from volatilities cannot 
imply a transformation of q≠1 into q=1. 
This transformation would lead to an 
independence on price fluctuation of 
Kramers-Moyal second order moment 
which is not compatible with measures 
made until now. 

C. Dynamical approach to high-frequency 
traded volume

A price fluctuation of certain equity, 
and subsequently of an index, is intimately 
related to transaction of that equity. For 
this reason, traded volume is a crucial 
quantity in financial markets dynamics. 
Its importance can be checked in the old 
Wall Street saying “It takes volume to make 
prices move”. 

Several studies related to traded volume 
have been recently presented. The first 
thorough study on the statistical properties 
of traded volume (or just volume for short) 
was performed by members of Center for 
Polymer Studies (Boston University) who 
obtained the following results [58]: 

• Probability distribution for volume 
presents an asymptotic power-law 
regime; 

• The dynamics for volume is characterised 
by long-lasting correlations with Hurst 
exponents around 0.8. 

Concerning the analysis of probability 
distribution the study made in was later 
extended for whole range of v [59]. In this 
case it was shown that the traded volume 
PDF is very well described by the following 
ansatz distribution 

      (47)

where v represents the traded volume 

expressed in its mean value unit 〈V〉, i.e., 

v=V/〈V〉, ρ and φ are parameters, and 

. 

The probability density function (1) has 
recently been obtained from a mesoscopic 
dynamical scenario [60,61] based in the 
following multiplicative noise stochastic 
differential equation 

     (48)



21

R. Bras. Eco. de Emp.  2008; 8(2): 7-29

Sílvio M. Duarte Queirós

where W
t
 is a regular Wiener process 

following a normal distribution, and v≥0. The 

right-hand side terms of eq. (48) represent 

inherent mechanisms of the system in order 

to keep v close to some “normal” value, ω/α, 
and to mimic microscopic effects on the 
evolution of v, like a multiplicative noise 
commonly used in intermittent processes. 
This dynamics, and the corresponding 
Fokker-Planck equation [53], leads to 
the following inverted Gamma stationary 
distribution: 

 (49)

Consider now, that instead of being a 
constant, ω is a time dependent quantity 
which evolves on a time scale T much larger 
than the time scale of order γ−1 required for 
eq. (48) to reach stationarity [35,60]. This 
time dependence is, in the present model, 
associated to changes in the volume of 
activity (number of traders that performed 
transactions) and empirically justified by 
the analysis of the self-correlation function 
for volume. In fig. 13 we have verified 
that the correlation function is very well 
described by 

 (50)

with . In other words, 
there is, in a first phase, a fast decay 
of ,  related to local 
equilibrium, and then a much slower 
decay for larger τ. This constitutes a 
necessary condition for the application of a 
superstatistical model [35]. 

Figure 13 Symbols represent the average 
correlation function for the 30 time series 
analysed and the line represents a double 
exponential fit with characteristic times of 
T

1
=27 and T

1
=844 yielding a ratio about 32 

between the two time scales Eq. (4) (R2=0.981, 
χ2=2×10−2, and time is expressed in minutes). 

If we assume that ω follows a Gamma PDF, 
i.e., 

 (51)

then, the long-term distribution of v is given 
by . This yields 

 (52)

where λ=θ(q−1), . Bearing in 
mind that, for q>1,

 (53)

we can redefine our parameters and obtain 
the q -Gamma PDF (47). 

In fig. 14 we compare traded volume 
time series of Pfizer stocks with a replica 
of that time series obtained using this 
dynamical proposal. As it can be easily 
verified, the agreement is remarkable.  

Figure 14 Upper panel: Excerpt of the time 
series generated by our dynamical mechanism 
(simulation) to replicate 1 min traded volume of 
Citigroup stocks at NYSE (data). Lower panel: 1 
min traded volume of Citigroup stocks probability 
density function vs. traded volume. Symbols are 
for data, and solid line for the replica. Parameter 
values: θ=0.212±0.003, ρ=1.35±0.02, and 
q=1.15±0.02 (χ2=3.6×10−4, R2=0.994).

Two key parameters for this superstatistical 
approach are the local relaxation, γ–1, and the 
time scale at which ω is updated, T. If the 
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former can be easily related to the first 
relaxation scale for self-correlation function, 
the fact is that, up to now, and to the best of 
our knowledge, there has not been presented 
an effective procedure to evaluate the latter 
scale T. Along these lines, we have opted for 
the simplest approximation, i.e., we match 
large relaxation scale, T

2
, with T. In fig. 15 

we present the self-correlation function for 
Pfizer. In fig. 14 we compare probability 
distributions from real and simulated time 
series. For a better judgement of our proposal 
we also present our worst result which has 
been obtained for Du Pont. 

FIG. 15: Symbols represent self-correlation 
function for Pfizer (PFE) traded volume, and line 
the numerical adjust with eq. (50): C

1
=0.24, T

1
=25, 

C
2
=0.32, T

2
=825. χ2=1.4×10−4 e R2=0.9789.

With an estimated value for T, we can outline the time evolution for omega by 
performing averages of v within non-overlapping windows of length T. The time series 
for is depicted in fig. 16. 

Figure 16 Left panel: the full line corresponds to PFE traded volume time series and the 
dashed line corresponds to the time evolution of local mean traded volume (multiplied by four 
for better visibility) which is calculated using windows of length T*=T

2
=825. Right panel: the 

full line corresponds to 1 minute traded volume fluctuations (in modulus), and the dashed 
line is the same as for left panel.

In simulations presented herein, 
stochastic differential processes have been 
used to generate ω. Albeit this procedure has 
shown to be, so far, useful, other mechanisms 
to obtain ω are certainly plausible. For 
instance, ω might be obtained by the sum

where X represents a set of n independent 
variables which are associated to a Gaussian. 
In this case, X

i
2 could be interpreted as the 

mean volume traded by an agent i over time 
interval T. Moreover, for each agent i the 
value of Xi would be strongly correlated. 
The distribution for omega is, as wanted, 
the Gamma distribution. 

6. Empirical analysis within Non-
Extensive formalism

Since long time it has been used in 
finance distributions related to Sq, namely, 
q-Gaussians under the designation of t-
Student distributions. Apparently, the first 
application of eq. (9) is due to F.m. Ramos et 

al. [62] in the context of the analogy between 
price fluctuations and velocity differences 
made by s. ghashghaiE et al. [63]. After this, 
many works have been published [64]. The 
choice for a non-extensive approach, instead 
of a Lévy truncated, is related to the fact that, 
for the former, there is no need of any a priori 
cut-off on distribution domain to obtain 
accordance between theoretical distribution 
and tail exponent of the distribution. 

A. Distribution for price fluctuations of 
liquid markets

Let us first analyse price fluctuation 
distribution for different time horizons. To 
that, we use a daily close value time series of 
NYSE index between the 2nd May 1966 and 
the 14th  August 2003. From this time series 
we have computed daily return,

 (54)
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From these daily return time series 
we have determined aggregated return for 
several time horizons using,

    (55)

For each time horizon, T, we have 
removed the normal bias, and we have 
also normalised returns in standard 
deviation units. From these time series 
have constructed a set of histograms, p

d
(r

T
) 

(d stands for data) and we have adjusted each 
one for q-Gaussians

   (56)

To that, we have used the following 
procedure: 

Compute partial second-order moment, 

       (57)

And partial fourth-order moment, 

       (58)

Where r
T

+(−) represents the maximum 
(minimum) value of the interval considered 
This truncation occurs to avoid the of error 
because of bad statistics. 

Compute partial second-order moment,

 (59)

And the partial fourth-order moment,

 (60)

where δ=5×10−3 and p(r'
T
) for is given by 

eq. (56); 

Set  and . 
Solving numerically these equations, we 
have obtained values for q and σ

q
2 which 

characterise distribution (56). The results are 
shown in Table I and depicted in fig. 17. As 
it can be verified, there is a slow convergence 
to Gaussian distribution.  

table i: Results obtained from the fitting 
procedure for NYSE returns.

t (dias)  q   

1  −4.12;4.22  1.488  0.455  1.33×10−6

5  −3.89;3.77  1.419  0.535  2.02×10−6

10  −3.85;3.41  1.369  0.595  3.60×10−6

20  −3.49;3.21  1.287  0.657  4.52×10−6

30  −3.43;3.21  1.233  0.705  7.14×10−6

40  −3.37;3.27  1.192  0.710  1.77×10−5

50  −3.08;3.13  1.175  0.664  3.66×10−5

60  −3.03;3.08  1.151  0.646  4.13×10−5

70  −3.03;3.05  1.135  0.694  5.56×10−5

80  −3.02;3.04  1.114  0.735  6.95×10−5

90  −3.01;3.03  1.085  0.752  7.87×10−5

100 −3.02; 3.04  1.073  0.772  9.26×10−5

Figure 17 Symbols represent histograms 
made from NYSE returns time series and lines 
represent the corresponding adjusts tab. i. the 
curves are shifted along the ordinate by a factor 
of  3 better them for clarity.

Aiming to quantify this slow convergence, 
we remind that returns at horizon T can be 
obtained by

 (61)

distribution p(r
T
) can be obtained from,

 (62)

where P(S(t), S(t–T)) represents the joint 
probability of having a value S(t), at time t, 
and a value S(t–T) , at time t–T. As S(t) and 
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S(t–T) are elements of the same time series, 
P(S(t),S(t–T)) is obviously related to the 
same dependence degree between the values 
of NYSE index at different times. Since p(r

T
) 

depends functionally on P(S(t),S(t–T)), it is 
plausible to say that entropic index q, which 
defines the p(r

T
) fitting, therefore the kurtosis, 

is related to the degree of dependence between 
S(t) and S(t–T) which explicitly defines the 
form of P(S(t),S(t–T)). 

To assess dependence between prices 
we have used the normalised q-generalised 
form of Kullback-Leibler, eq. (17), between, between 
P(S(t),S(t–T)) and 

as indicated previously. In fig. 18 we exhibit 
several curves of R

q
 vs. q, and in Table II the 

values for inflection points, qop. When we 
plot 1−qop vs. T, we verify that points adjust 
for the following power law,

 1−1−qop ~T–v 

,
with v=0.417±0.006 (see fig. 19).  

table ii: Representation of qop vs. T where 
qop is the inflexion point os R

q 
 curves for 

NYSE index.

 T(dias) qop

1 0.730±10−3

2 0.795±10−3

5 0.866±10−3

10 0.898±10−3

15 0.916±10−3

20 0.930±10−3

22 0.932±10−3

27 0.939±10−3

32 0.945±10−3

37 0.945±10−3

50 0.950±10−3

80 0.957±10−3

100 0.961±10−3

Figure 18 Representation of R
q
 vs. q for indice 

NYSE and for several time horizons.

The same analysis was also performed for 
DJIA time series and it was obtained a similar 
value for the exponent, v=0.393±0.003. It is 
noteworthy that exponents obtained by this 
method are very close to kurtosis relaxation 
exponents obtained by different procedures 
for SP500 index [55], German interest rate 
fluctuations and German Mark and US Dollar 
exchange rate fluctuations [2]. Although all 
these studies are conceptually different, 
both of them are in some way related to the 
decrease of non-Gaussianity. In this way, 
we might consider these results as a sign of 
the existence of universal behaviour down 
to the number of methods and consistency 
of exponents. 

The kurtosis decrease is intimately 
related to the convergence towards Gaussian 
distribution, and, consequently, it is related 
to the famous Central Limit Theorem. For 
short, and omitting some details connected 
to the rigour of mathematical formalism, we 
can state that Lévy-Gnedenko Central Limit 
Theorem establishes that: 

Figure 19 Representation, in log−log of 1−qop  
vs. t for index NYSE according with the values 
in tab. ii. the full line represents the best fit 

with slope –0.417±0.006.

When a set of N random independent 
and identically distributed variables, 
related to a distribution P

1
(x), are summed, 

the distribution for the new variable 
, P

N
(X). Distribution P

N
(X), 

is given by the convolution of N P
1
(x) 

distributions. The stable distributions for 
the addition of random variables depend 
on the finiteness of P

1
(x) variance, σ2. If σ2 

is finite, then the stable distribution P
N
(X) 

is a Gaussian, whereas for infinite variance 
the stable distribution is of Lévy form. As 
verified, and since price fluctuations are 
uncorrelated beyond a scale of few minutes, 
the sum of daily returns leads into the 
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emergence of a Gaussian. This happens 

because q
1
<5/3. To compare evolution of q 

in NYSE returns to the evolution for Central 

Limit Theorem we apply Bérry-Esséen 

Theorem [65]. According to this theorem, 

the distance between distributions P
T
(X), 

which results from the sum of T independent 

variables (with ), and a Gaussian, 

G(X) goes as 

An equivalent approach is to consider 
the behaviour of error χ2 function, when we 

fit P
T
(r) for a Gaussian. It is simple to verify 

that χ2  is nothing more than an average of 
[∆P

T
]2, hence,

From figure 20 it is straightforward to 
see that χ2  does not follow a linear relation 

with T–1.  

Figure 20 Representation of   vs. T–1  
(symbols). Line represents , 

where χ2  is the error when one fits P(r
T
)  for 

a Gaussian. this error should tend to zero on a 

linear way with T–1  when T →∞. the fact that 
the approximation to the limit is slower is an 
indication of dependence among variables

.

Besides the extent of linear correlations 
between returns is insufficient to provide 
a stable non-Gaussian distribution, such 
extension is not able to explain the slow 
convergence to Gaussian either. Based on 
that, we have applied R

q
 again, but this 

time to quantify the degree of dependence 
between daily returns delayed by a time 
interval T. In fig. 21 it is possible to 
verify that qop, which is a measure of the 
dependence, remains almost constant. This 
result can be understood if we take, for 

comparison, ARCH(1)-like processes results. 
In that kind of processes return depends on 
volatility which, by its turn, depends on the 
past price fluctuations. Since the dependence 
of volatility on return is of short kind, we 
have an exponential decay for volatility self-
correlation function, and as a consequence, 
the dependence degree is fast decaying 
too. As we increase the interval of past 
prices used to compute volatility, we both 
augment return dependence on past values, 
and increase the characteristic time for the 
volatility self-correlation function which 
becomes asymptotically a power-law when 
an infinite interval is considered. Hence, 
we can say that the existence of a long-
lasting correlation function for volatilities 
(introduced by its long dependence on past 
prices) is the main responsible for the slow 
approach of price fluctuations distribution 
to the Gaussian.  

Figure 21 Representation of R
q 
 vs. q for NYSE 

index fluctuations. the in-set shows the 
derivative of R

q
 in order to q.

B. Illiquid markets: Lisbon Stock Market 
case

Up to now, we have been dealing with 
index/price fluctuations, at several horizons, 
of markets with high liquidity and which 
are considered as stable, in the sense of low 
volatile. However, it is easy to understand 
that by far all markets can be classified as 
liquid and/or stable. The performance of 
a financial market is mandatory related to 
the vigour of the economy to which it is 
linked, and it is also associated to factors 
like socio-political maturity that affects in 
strong manner volatility. This combination 
of factors turn out markets as the Americans, 
the German, the English, the French, and the 
Japanese present very similar features. 
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On the other way, countries like Brazil, 
that despite their industrial power, have 
debilities in their socio-political system, 
which make financial quantities present 
properties that are usually different from the 
observed in liquid markets. 

Outside liquid pattern, we can also refer 
Indian case for which it has been verified 
that price fluctuations (at Mumbai stock 
market) follow an exponential distribution 
[66]. Another different class can be found for 
price fluctuations in Portuguese stock market 
[67]. Although Portugal presents both 
development indices within Western Europe 
standards and a stable political situation, it 
has a small economy, in large part because 
of population (around 10 million), but also 
because of the Latin influence of a familiar 
economy and a small/medium corporation 
culture. Thereinafter we are going to analyse 
intra-day PSI-20 index fluctuations of Lisbon 
Stock Market, presently Euronext-Lisbon, 
between February 1996 and June 2002 in a 
total of 4 million points (approximately) (see 
fig. 22). This number of points corresponds 
to an index update every 10 seconds 
(roughly).  

Figure 22 Evolution of index PSi-20 between 
February 1996 and June 2002.

Analysing numerically the distribution 
for PSI-20 index fluctuations we have verified 
that none of the distributions currently used 
to describe index/price fluctuations fits for 
this particular case. To find an appropriate 
distribution we have used an analogy 
between differential equations and non-
extensive formalism. 

Exponential and Gaussian distribution, 
related to optimisation of SBG entropy, are 
also obtainable from,

        (63)

Where p is the probability and z some 
functional of x. When z=|x|, the distribution 
is exponential, while for z=x2 the distribution 
is Gaussian. 

The previous equation can be generalised 
yielding,

      (64)

whose solutions are the q-exponential

and the q-Gaussian

whether we use z=|x| and z=x2 . Equation 
(64) contains (63) as a particular case. In 
the spirit of works on protein folding [68], 
energy distribution in cosmic rays [69], we 
consider a more general form for Eq. (64), 
namely,

 (65)

Considering only positive values for 
z=|x|, i.e., z=x, the solution for eq. (65) is 

 

   
(66)

where and 
F is the hipergeometric function. For 1<q'<q 
and , three different regions can be 
observed. The first, in which q dominates, 
for 0≤x x* where 

           (67)

An intermediate part influenced by both 
q and q'  for 

   (68)

and finally a region in which q'  prevails, 
x  x**. 

Solving numerically eq. (65) we have 
found a solution which adjusts nicely for data 
distribution. The best values describing PSI-
20 index fluctuations are q'=1.076, q=1.534 
for entropic indices, and  
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 (see fig. 23). 

Figure 23 Probability density function (PDF) for 
PSi-20 index tick by tick return. the full line 
represents the solution of Eq. (3) and it is clearly 
best approach to PDF from data (circles) when 
compared with the best Gaussian, q-Gausssian 
(q =2.51), exponential and q-exponential, (q 
=1.59) fits that are also plotted.

The result we have just presented is very 
interesting indeed, because it represents the 
emergence of a new kind of distribution 
for price/index fluctuations in financial 
markets. Moreover, this distribution implies 
that Heston model is inadequate for the 
mimicry of this class of markets. For the 
Heston model, the functional form of r(t) 
distributions goes from an exponential, 
for short-to-medium times (e.g. 1 day), to 
a Gaussian for long times. Besides, it does 
not capture multiplicative noise character 
verified in return time series. 

7. Final remarks

In this article we have presented a set 
of results from the analysis of financial 
quantities, namely, price fluctuations 
and traded volume within non-extensive 
statistical mechanics formalism based on 
entropy Sq. The basis for the application 
of this formalism is due to the analysis of 
statistical features in which it is possible to 
verify the existence of asymptotic power-law 
behaviour, long-lasting correlations, and 
multi-fractal structure. These properties 
are considered as paradigmatic in order 

to classify a system as non-extensive. 
In this context we have shown that the 
time evolution of high-frequency price 
fluctuations can be made considering a 
generalised version of Ornstein-Uhlembeck 
stochastic differential equation in which 
the stochastic term depends on a quantity 
inversely proportional to the probability 
density function. With that, we have been 
able to provide a dynamical meaning to 
entropic index q: it reflects the effects of price 
fluctuations on the microscopic behaviour 
of the system which is mimicked by the 
stochastic term. In view if that, when q equal 
1, the system is microscopically insensitive 
to price fluctuations, which corresponds 
to the regular Ornstein-Uhlembeck is 
obtained as well as the Gaussian distribution. 
For the case of traded volume we have 
been able to characterise it by stochastic 
differential equations enclosed in Feller class 
of processes. Together, we have assumed 
that the mean local value varies on a large 
time scale. These fluctuations have been 
associated with variations in the volume of 
activity which is a variable with long-lasting 
correlations. In this form, it has been possible 
to obtain the F-distribution (or q-Gamma) for 
which q represents a measure of fluctuations 
in activity volume, in such a way that q=1 
indicates steady traded volume leading to 
a Gamma distribution. Furthermore, and 
along superstatistical concept also applied 
for traded volume, we have been able to 
obtain, for paradigmatic heteroskedastic 
processes, an expression which relates 
dynamical parameters, noise nature, and 
the entropic index that characterises the 
nature of stationary distribution. Besides, 
the analysis of liquid markets, we have also 
shown that non-extensive formalism can be 
useful in the study of illiquid markets. Let us 
conclude by emphasising that the discussions 
presented in this review have been done at a 
mesoscopic scale. The determination, from 
more microscopic models, of the parameters 
used at the mesoscopic scale is certainly 
welcome. 
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