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The resistive internal kink modes in a differentially rotating cylindrical plasma column are studied.
It is shown that the Velikhov effect, which causes the magnetorotational instability in astrophysics,
contributes to the magnetic hill/well and thereby enhances or suppresses these modes, depending on
the character of radial profile of the rotation frequency. It is pointed out that, in the case of
unfavorable rotation frequency profile, such a rotation-induced magnetic hill can exceed the hill
effect due to the plasma pressure gradient. Under this condition, there appears a new variety of
resistive-interchange modes, which are referred to as rotational modes. On the other hand, for a
favorable rotation frequency profile, the Velikhov effect suppresses the resistive-interchange modes.
These results concern the m�1 modes, where m is the poloidal mode number. In the case of
perturbations with m=1, the favorable rotation frequency profile leads to decreasing the growth rate
of the reconnecting mode. © 2007 American Institute of Physics. �DOI: 10.1063/1.2804700�

I. INTRODUCTION

The ideal internal kink modes in differentially rotating
cylindrical plasmas were investigated in Ref. 1, which is
hereinafter referred to as paper I. The main contribution of I
was to incorporate the Velikhov effect2 into the standard
theory of these modes, as summarized in Ref. 3, stimulated
by its astrophysical applications introduced in the classical
work of Balbus and Hawley.4 These authors have shown that
the Velikhov effect can drive the magnetorotational instabil-
ity, which can be the underlying physical mechanism respon-
sible for anomalous viscosity in accretion disks.5

The excitation of this instability depends on the sign of
the plasma rotation frequency profile. In fact, for instability,
it is required that d�2 /d ln r�0, where �=��r� is the rota-
tion frequency and r is the radial coordinate, whereas in the
opposite case, when d�2 /d ln r�0, the Velikhov effect leads
to stabilization. It was explained in I that the Velikhov effect
can be treated as a magnetic hill/well effect, depending on
the sign of the value d�2 /d ln r. The essence of I was to
study the role of this effect for ideal modes; the Suydam

modes, i.e., the modes with m�1, and the internal kink
mode with m=1 were analyzed, where m is the poloidal
mode number. Nonetheless, in addition to the ideal modes,
the stability theory of magnetic confinement systems in-
volves also a family of resistive internal kink modes,6–8,3

making it of interest to extend the study of the Velikhov
effect to these modes. This is the goal of the present paper.
We restrict ourselves to the simplest case of cylindrically
symmetric magnetic confinement configurations, having in
sight the generalization of the results to toroidal geometry. A
recipe for such a generalization can be found in Ref. 3.

Although the investigation of resistive modes in cylin-
drical plasma column with rotation has been continued in
Ref. 9, the well/hill effect was neglected in this work. Re-
cently resistive modes in cylindrical geometry and in the
presence of plasma flows were considered in Refs. 10 and
11. However, it was assumed in both these references that the
flow is directed along the equilibrium magnetic field and,
under such an assumption and in the cylindrical approxima-
tion, the Velikhov effect cannot be properly investigated.

We note that the well/hill effect can be caused also by
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the plasma pressure gradient. In general, the resistive modes
are studied using a singular perturbation mathematical pro-
cedure; the relevant equations are solved inside the singular
layer, where higher order derivatives associated with small
resistive diffusion are taken into account, and the solutions
matched to those in the outside ideal region, where they are
neglected. Such a procedure was initially performed in Ref.
6, where the resistive-interchange modes generated by the
hill effect, and the tearing modes, driven by the unfavorable
current profile, have been discovered. We remark that the
so-called “constant-psi” approximation in the singular layer
used in this reference is valid only for a sufficiently small
plasma pressure gradient, as explained in Ref. 3.

As for the physical aspects of the problem of resistive-
interchange modes considered in Ref. 6, it has been pointed
out that, in addition to the ideal interchange modes revealed
as the Suydam modes, there is their resistive analog in the
case of a not too large magnetic hill. More detailed discus-
sion of inter-relation between the interchange and resistive-
interchange modes will be given below.

The hill/well in the singular layer was first explicitly
accounted for in Ref. 12, in which it is elaborated a math-
ematical procedure to find the solution of the resistive mag-
netohydrodynamic equations in this layer and to match it to
that in the ideal region, obtained in the approximation
m�1. Thereby, a general dispersion relation for resistive
modes with m�1 has been derived in Ref. 12. The proce-
dure of that reference was generalized in Refs. 13 and 14 to
the case of tokamak geometry with due allowance for the
effects of neoclassical viscosity.

References 7 and 8, which initially studied the m=1 in-
ternal resistive and reconnecting modes, also neglected the
well/hill effect in the singular layer. The role of this effect for
m=1 was initially analyzed in Refs. 15 and 16. A further
improvement of the procedure of Refs. 15 and 16 can be
found in Ref. 3, in which the hill/well in the ideal region has
been properly taken into account. The fact is that they dealt
with the parameter �H entering also the problem of the ideal
m=1 mode. This parameter depends not only the current
profile but also on the plasma pressure gradient. The latter
can be associated with the hill/well effect. Therefore, the
modes studied in Refs. 7 and 8 are also interesting for our
topic.

Another family of internal modes subjected to the hill/
well effect is that of the internal modes with finite m�1.
Since these modes are nonlocal, their analytical theory for
arbitrary profiles of current, plasma pressure, and rotation
frequency seems to be problematic. Nevertheless, there is a
particular case of this theory for a nonrotating plasma col-
umn assuming the current and plasma pressure to have para-
bolic radial profiles.15,16 This subtrend of resistive internal
modes goes back to Ref. 17 addressed to the study of these
modes for vanishing plasma pressure gradient.

In Sec. II the basic equations are given and the essence
of our approach is explained. The procedure for obtaining the
solution of plasmadynamical equations in the singular layer
is presented in Sec. III. In Sec. IV the resistive-interchange
modes with m�1 are studied. These modes are local in the
ideal region and are characterized by the ideal asymptotic

solutions obtained in I. In contrast to this, the modes with
finite m are nonlocal in the ideal region. The solution of
plasmadynamical equations for such modes, in the ideal re-
gion in the approximation of parabolic profiles of the current
and plasma pressure gradient and constant d�2 /d ln r, are
found in the Appendix. The results of the Appendix are used
in Sec. V for derivation of dispersion relation for the modes
with finite m. The investigation of the resistive-interchange
modes for finite m�1 is performed in Sec. VI. The modes
with m=1 are analyzed in Sec. VII. Discussions of the re-
sults are given in Sec. VIII.

II. BASIC EQUATIONS AND THE ESSENCE
OF THE APPROACH

A. Basic equations

The main difference between the problem formulated
here and that investigated in I is the inclusion of finite resis-
tivity in the generalized Ohm’s law:

E +
1

c
�V � B� =

j

�
. �1�

Here, � is the plasma conductivity, E and B are the electric
and magnetic fields, respectively, V is the plasma velocity,
and c is the velocity of light. Using Maxwell’s equation

�B/�t = − c � � E �2�

and Ampere’s law

j = c � � B/�4�� �3�

leads to the magnetic diffusion equation in the form

�B

�t
− � � �V � B� +

c2

4��
� � � � B = 0. �4�

Our remaining basic equations are the same as in I; i.e.,
the plasma equation of motion

	dV/dt = − �p + �j � B�/c , �5�

the continuity equation

d	/dt + 	 � · V = 0, �6�

the adiabatic equation

d�p	−
�/dt = 0, �7�

and the Maxwell equation

� · B = 0. �8�

Here, 	 is the plasma mass density, 
 is the adiabatic expo-
nent, and p is the plasma pressure, and

d/dt = dt + V · � . �9�

The equilibrium state considered is the same as in I. The
confinement equilibrium is assumed to have cylindrical sym-
metry characterized by the coordinates r, �, and z �the radial,
poloidal, and longitudinal coordinates, respectively�. The
plasma column rotates in the poloidal direction with the an-
gular frequency � and there is an equilibrium magnetic field
B0= �0,B0� ,B0z�. As a result of plasma rotation, there ap-
pears an equilibrium electric field E0= �E0 ,0 ,0�, where
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E0=−�rB0z /c. The plasma has the equilibrium mass density
	0 and pressure p0. The functions �, 	0, p0, B0�, and B0z are
assumed to be dependent on r. They are related by the pres-
sure balance equation

p0� = 	0r�2 −
1

4�
�B0z

�B0z

�r
+

B0�

r

�

�r
�rB0��� , �10�

where the prime denotes the radial derivative. In addition,
there are poloidal and longitudinal equilibrium currents �j0�

and j0z, respectively�, given by

�j0�, j0z� =
c

4�
�−

�B0z

�r
,
1

r

�

�r
�rB0��� . �11�

B. Perturbations

The perturbed quantities are assumed to be dependent on
t, �, and z as exp�−i�t+ im�+ ikzz�, where � is the mode
frequency, m is the poloidal mode number, and kz is the
longitudinal projection of the wave vector. In addition to m,
we use the poloidal projection of the wave vector ky =m /r.

The perturbed magnetic field B̃ is characterized by the com-

ponents B̃r, B̃�, and B̃z. The perturbed velocity Ṽ is expressed
is terms of the perturbed plasma displacement � defined by

�= iṼ / �̃, where �̃	�−m� is the Doppler-shifted mode fre-
quency. Using Eqs. �6� and �7�, the perturbed plasma pres-
sure p̃ is expressed in terms of � by

p̃ = − Xp0� − 
p0 � · � , �12�

where X	r.

1. Perturbations far from the singular layer

We assume that, far from the singular layer, the resistiv-
ity is unimportant. Similar to I, we then have

B̃r = i�kzB0z +
m

r
B0��X , �13�

B̃� = ikŶ −
�

�r
�XB0�� , �14�

B̃z = −
im

r
ikŶ −

1

r

�

�r
�rB0zX� . �15�

Here,

Ŷ = Y + iX
B0z

�̃

d�

d ln r
, �16�

Y = �B0z − zB0�. �17�

In addition, as in I, the term with � ·� in Eq. �12� is assumed
to be unimportant, so that

p̃ = − Xp0�. �18�

Starting with the linearized version of Eq. �5�, we then obtain

two equations for X and Ŷ. We solve the equation for Ŷ in the
large aspect ratio approximation, implying m�kzr, and

B0� /B0z
kzr /m. As a result, we arrive at the following equa-
tion for X derived in I:

1

r

d

dr
�r3	0�vA

2 k�
2 − �̃2�

dX

dr
� − UVX = 0. �19�

Here, k� = �kzB0z+mB0� /r� /B0 means physically the projec-
tion of the wave vector on the direction of equilibrium mag-
netic field,

UV = U�0� + U�r�, �20�

where

U�0� =
1

r2 �m2 − 1 + kz
2r2��mB0� + rkzB0z�2 + 8�kz

2rp0�

+
2kz

2

m2 �r2kz
2B0z

2 − m2B0�
2 � , �21�

U�r� = 4�	0�kz
2r2 + h�

2�d�2/d ln r , �22�

h�=B0� /B0. The superscript “V” of U denotes the first letter
of the name of the author of Ref. 2. The superscripts “�0�”
and “�r�” designate the nonrotational and rotational parts of
the function UV, respectively.

2. Perturbations in the singular layer

Allowing for resistivity in the vicinity of the point
r=r0, where k��r0�=0, we assume the radial derivatives of
the perturbed quantities to be large compared with their de-
rivatives over � and z, � /�r� �r−1� /�� ,� /�z�. Equation �4�
then reduces to

D̂B̃ = � � � � B0. �23�

Here the operator D̂ means

D̂ = 1 −
c2

4���

�2

�x2 , �24�

�=Im �, x=r−r0. Instead of Eqs. �13�–�15�, one has from
Eq. �23�

B̃r = D̂−1�B0�

r

�

��
+ B0z

�

�z
�X , �25�

B̃� = D̂−1� �Ŷ

�z
−

�

�r
�B0�X�� , �26�

B̃z = − D̂−1� 1

r
� �Ŷ

��
+

�

�r
�rB0zX�� , �27�

where D̂−1 is the operator inverse to D̂.

In accordance with Ref. 3, for calculating the function Ŷ,
we use the following consequence of Eqs. �5�:

i�m

r
B̃z − kzB̃�� =

j0z

B0z
B̃r +

imp0�

rB0z
X . �28�

We then find that
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Ŷ = Ŷ�0� + Ŷ���, �29�

where Ŷ�0� is the ideal part of Ŷ represented in I, while the

expression for Ŷ��� has the form

Ŷ��� =
imr

B0z�m2 + kz
2r2�

�D̂ − 1�X . �30�

By means of Eqs. �29� and �30�, we arrive at the following
equation for the function X in the singular layer �for further
details, see Ref. 3�:

xD̂−1�xX�� − U0
VX +

r0
4�2

S2kz
2vA

2 X� = 0. �31�

Here, vA
2 =B0 / �4�	0�1/2 is the Alfvén velocity, S is the mag-

netic shear at r=r0 defined by

S = �rq�/q�r=r0
, �32�

where q is the safety factor defined by q=rB0z / �RB0��,
R=L / �2��, L is the cylinder length, and

U0
V =

8�

S2 �8�rp0� + 	0r2 d�2

d ln r
�

r=r0

. �33�

III. THE SOLUTION IN THE SINGULAR LAYER

In solving Eq. �31�, we use the Fourier representation
taking X�x� in the form

X�x� =� exp�ikxx�X�kx�dkx. �34�

Thereby, we will deal with the function X�kx� and the vari-
able kx. Instead of kx, we introduce the dimensionless vari-
able t defined by

t = kx/ky . �35�

Equation �31� then reduces to

d

dt
� t2

1 + z2

dX

dt
� − �s�s + 1� + �2t2�X = 0. �36�

Here the variable z means

z = kxc/�4����1/2 	 t��R/��1/2, �37�

where �R is the characteristic resistive decay rate defined by

�R = c2ky
2/�4��� . �38�

The parameter s is introduced by

s = −
1

2
+ �1

4
+ U0

V�1/2

. �39�

The parameter � is the dimensionless growth rate defined by

� = �/�A, �40�

where �A=SvA� /r0 is the characteristic Alfvén frequency,
vA�= �B� /B0�vA.

Turning to Eqs. �39� and �20�–�22�, one can see that the
Velikhov effect is manifested in terms of the parameter s.

Equation �36� was originally solved in Ref. 12 and then
in Refs. 13 and 14. The function X was represented in these
references in the form

X � zs exp�− Mz2/2�X̂��� , �41�

where

� = Mz2, �42�

M = Q3/2, �43�

Q = ��2�/�R�1/3 	 �/��A
2 �R�1/3. �44�

Equation �36� then reduces to

�X̂� + � 1

1 + �/M
+ � − ��X̂� − �p +

M − M1

2M�1 + �/M��X̂ = 0.

�45�

Here the prime indicates the derivative with respect to �,

p = �M − M1��M − M2�/4M , �46�

� = s + 1/2, �47�

M1 = − s , �48�

M2 = − �s + 1� . �49�

The solution of Eq. �45� is the function

X̂ = U��p,�,�� −
M − M2

2M
U�p,�,�� , �50�

where U the confluent hypergeometrical function18 satisfying
the equation

�U� + �� − ��U� − pU = 0. �51�

Using Eq. �50� and the asymptotic formulae for the con-
fluent hypergeometrical functions, we find that for ��1 and
s�1/2, the function �41� is of the form

X � ts�1 + t−�2s+1��R� . �52�

Here,

�R = f�s���/�R�1/2+sh�M� , �53�

where

h�M� =
1

M1/2+s

M − M1

M + M2


�p + 1/2 − s�

�p + 1�

, �54�

f�s� =

�s + 1/2�


�− s − 1/2�
, �55�

where 
 is the gamma function. Note that Eq. �6.16� of Ref.
3 contains a misprint: in the denominator of the right-hand
side of this equation, one should substitute M −M2 by
M +M2.

In order to derive a dispersion relation, the asymptotic
given by Eq. �52� should be matched with that of the solution
in the ideal region. Such a solution proves to be dependent
on the value of the poloidal mode number m.
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IV. RESISTIVE-INTERCHANGE MODES WITH mš1

A. Dispersion relation

For m�1, Eq. �19� describing the perturbations in the
ideal region reduces to �cf. I�

�x2X��� − U0
VX = 0, �56�

where the prime is the derivative with respect to x.
By means of Eq. �34�, we introduce the Fourier compo-

nent X�kx� and turn to the variable t defined by Eq. �35�.
Equation �56� then yields

d

dt
��t2 + 1�

dX

dt
� − s�s + 1�X = 0. �57�

The general solution of Eq. �57� finite at t→0 is of the form

X�t� = AX+�t� + BX−�t� . �58�

Here, A and B are arbitrary constants, and the functions X+

and X− are given by

X+ = F�−
s

2
,
1 + s

2
;
1

2
,− 2� , �59�

X− = F�−
1 − s

2
,1 +

s

2
;
3

2
,− 2� , �60�

where F is the hypergeometrical function.19 The function X+

corresponds to the even solutions, and X− to the odd
solutions.

The asymptotic of X± at t�1 is of the form

X± � ts�1 + t−�2s+1��±� . �61�

Here,

�+ =
1

f�s�

2��1 + s�/2�


2�− s/2�
, �62�

�− =
1

f�s�

2�1 + s/2�


2��1 − s�/2�
. �63�

Matching Eq. �61� with Eq. �52�, we arrive at the dispersion
relation

�R = �±. �64�

It can be seen that really we have two dispersion relations
corresponding to even and odd modes, respectively. Using
Eq. �53�, Eq. �64� reduces to

��/�R�1/2+sh�M� = �±/f�s� , �65�

where h�M� is given by Eq. �54�.
We are interested in the perturbations with ���R. In this

case, in accordance with Eq. �54�, the dispersion relation �65�
contains the small parameter ��R /��1/2+s. Therefore, it is ap-
proximately satisfied if

h�M� = 0. �66�

Equation �66� is the dispersion relation for resistive-
interchange modes with m�1.

B. General analysis of dispersion relation

According to Eq. �54�, Eq. �65� has the solutions

M = M1, �67�

and

p = − l , �68�

where l=1,2 ,3 , . . . is an integer. It was explained in Ref. 3
that the solution �67� corresponds to the perturbations of the
ground �the lowest� energy level, while the solution �68� to
the lth level. According to Eqs. �43�, �44�, �48�, and �67�, the
perturbations of the ground level are unstable if

s � 0. �69�

It follows from Eq. �68� that the growth rate of the instability
considered is given by

� = �− s�2/3��A
2 �R�1/3. �70�

According to Eq. �68�, the perturbations with l�0 are
characterized by the dispersion relation

M2 + M�2s + 1 + 4l� + s�s + 1� = 0. �71�

It can be seen that, in the condition �69�, one of the roots of
Eq. �71� is positive �M �0�. This means that, as in the case
l=0, the perturbations with l�0 are also unstable. For
l�1, the growth rate of the perturbations is given by

� = �−
s�s + 1�

4l
�2/3

��A
2 �R�1/3. �72�

It can be seen that this growth rate is small compared with
Eq. �70� as l−2/3.

In finding Eq. �72�, we have not assumed the parameter
s to be small. Let us note that for small s �s�1�, Eq. �71� for
unstable modes reduces to

M = − s/�4l� . �73�

Instead of Eq. �72�, we then arrive at

� = �− s/�4l��2/3��A
2 �R�1/3. �74�

C. The standard resistive-interchange instability
and its inter-relation with the ideal
interchange instability

Turning to Eq. �39�, one can see that in neglecting the
Velikhov effect, the condition �69� means

p0� � 0, �75�

which is nothing but the condition of the standard decreasing
profile of plasma pressure. Equations �70�–�72� describe the
standard resistive-interchange instability. This instability is
essentially weaker than the Suydam instability driven for s
�−1/2, i.e., for �see I for further details�

S2

4
+

8�r0p0�

B0
2 � 0. �76�

At the same time, comparing Eqs. �75� and �76�, one can see
that the condition of driving the resistive-interchange modes
is essentially weaker than that of ideal interchange modes: in
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the former case the stabilizing effect by the magnetic shear
proves to be “switched off.”

D. Rotational resistive-interchange instability

If the Velikhov effect exceeds the plasma pressure gra-
dient effect, i.e.,

� d�2

d ln r
� �

�p0��
r0	0

, �77�

Eqs. �70�–�72� can describe a new variety of resistive insta-
bilities that can be called the rotational resistive-interchange
instability. The condition of this instability is

d�2/d ln r � 0. �78�

The ideal analog of this instability is the ideal rotational
interchange instability, pointed out in I, driven for the con-
dition �cf. Eq. �76��

S2

4
+

2r0
2

vA
2

d�2

d ln r
� 0. �79�

E. Suppression of the resistive-interchange instability
by the Velikhov effect

For positive gradient of the plasma rotation frequency,

d�2/d ln r � 0, �80�

the Velikhov effect suppresses the standard resistive-
interchange instability. It follows from Eq. �39� that the con-
dition of such a suppression is

d�2

d ln r
� −

p0�

r0	0
. �81�

V. DISPERSION RELATION FOR NONLOCAL
RESISTIVE MODES

To derive the dispersion relation for nonlocal resistive
modes, we should match the asymptotic ideal solution given
by Eq. �A16� with the corresponding one at the resistive
layer. The last is given by the function X�t� of the form Eq.
�52� in the Fourier representation. Therefore, we should pre-
liminarily construct the function X�x̂� in the usual space cor-
responding to the Fourier transform X�t�. We then use the
formulae20

�
0

�

ts cos�tx̂�dt = ��1/2
��1 + s�/2�/2
�− s/2��� x̂

2
�−�s+1�

,

�82�

�
0

�

ts sin�tx̂�dt = ��1/2
�1 + s/2�/
�1/2 − s/2��� x̂

2
�−�s+1�

.

�83�

As a result, we find the resistive asymptotic of the form

X± � x̂−�s+1��1 + �R
�±�x̂2s+1� . �84�

Here,

�R
�±� = �±�s��R, �85�

�±�s� = �/�±. �86�

Note that, allowing for the formula for convolution of 

functions, Eq. �86� for �±�s� can be represented in the form

�±�s� =
�

2
2�1 + s��1/sin2��s/2� ,

1/cos2��s/2�. �87�

The matching explained leads to the dispersion relation

�p�c − 1
2 ��R

�+� + �R
�−����p + �c� + �R

�+��R
�−� = 0. �88�

We note that, if m�1, Eq. �88� reduces to the double
dispersion relations for the even and odd modes. In contrast
to this, at finite m the perturbed displacement of the resistive
modes is a combination of even and odd parts.

VI. RESISTIVE-INTERCHANGE MODES
WITH FINITE m>1

The dispersion relation �66� for the resistive-interchange
modes is valid for m�1. In order to elucidate behavior of
these modes for finite m�1 we turn to general dispersion
relation �88�. For simplicity, we assume s�1; then

�R
�+� = �R/��s2� , �89�

�R
�−� = ��R/2, �90�

�c = − �p = − 2/�sm� . �91�

As a result, Eq. �88� reduces to

�R
2 = 4/m2. �92�

It follows that

�R = ± 2/m , �93�

i.e., allowing for Eq. �53�,

h�M� = � 4��R/��1/2/m . �94�

The signs � in the right-hand side of Eq. �94� can be inter-
preted as consequences of different parity of the modes con-
sidered. It is evident that for m→�, Eq. �94� transits to Eq.
�66�. The effect of finite 1 /m modifies both the roots given
by Eqs. �67� and �68�. We restrict ourselves to the case of the
root �68�. The idea of our analysis of the finite 1 /m effect is
based on the method of successive approximations. We rep-
resent the growth rate � in the form

� = ��0� + ��1�, �95�

where ��0� is given by Eq. �74�, while ��1� is the part of the
growth rate of the order of 1 /m.

In the scope of this idea, the function h�M�, introduced
by Eq. �54�, reduces to

h�M� = �4l − 1�
�1/2 − l�p�1�. �96�

Here,

p�1� = −
4l + 1

4s
M�1�, �97�
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M�1� = ���1��3/2/��A
2 �R�1/2. �98�

Substituting Eq. �96� into Eq. �94� and allowing for Eq. �74�,
we arrive at

��1�

��0� = ��
4

ml�4l + 1�
�1/2 − l��− 1�l−1�l − 1�!�2/3

��−
s

4l + 1
�−2/9� �R

�A
�2/9

. �99�

The ratio �R /�A is the main small parameter of the problem
of the resistive modes. Thereby, Eq. �99� evidences that, as a
result of finite 1 /m, the growth rate of resistive-interchange
modes differs from that of the modes with m�1 on a small
value. Thus, we have shown that the theory of the m�1
resistive-interchange modes is valid also for finite m�1.

VII. THE MODES WITH m=1

A. Dispersion relation

Considering the modes with m=1, we restrict ourselves
to the case s�1. Moreover, the parameter s is assumed to be
so small that the inequality

�s ln �x̂� � 1 �100�

is satisfied, where �x̂ is the characteristic length of the sin-
gular layer.

1. The approximation of parabolic profiles

Let us appeal to the particular case of parabolic profiles
studied in the Appendix and turn to the ideal asymptotic
given by Eq. �A16�. We note that for not large m, this
asymptotic is true only for negative s, s�0. In the contrary
case, instead of Eq. �A16�, from Eqs. �A9� and �A14� we find
the asymptotic of the form for such m

X � �x̂�−�1+s��1 + ��c

�p
��x̂�2s+1�

−
�x̂�−s

m
� AB/s + m + 1

B�B − C + 1�/s + m + 1
� . �101�

It can be seen that for finite m and s�0, terms of order �x̂�−s

appear on the right-hand side of Eq. �101�. Similar terms in
the resistive asymptotic Eq. �52� are absent. As a result of
this, matching the asymptotic Eq. �101� with Eq. �52� proves
to be problematic.

The additional terms in Eq. �101� contain the part pro-
portional to 1/s. Therefore, one can suggest that it is impos-
sible to perform in Eq. �101� the limiting transition to the
case s→0. However, according to Eqs. �A17� and �A18�, for
s→0 the values �c and �p are given by approximate
expressions

�c → − 2/�sm� , �102�

�p → 2/�sm� . �103�

In addition, turning to Eqs. �A10�–�A12�, we obtain that for
s→0,

AB/s → − 2/s , �104�

B�B − C + 1�/s → 2/s . �105�

Equation �101� then takes the form �for further details, see
Ref. 3�

X � �x̂−1��1 + ��̃c

�̃p

��x̂� �
2

sm
��x̂�s − �x̂�−s�� , �106�

where �̃c and �̃p are quantities defined by the relations

�̃c = �c + 2/�sm� + 1/m , �107�

�̃p = �p − 2/�sm� − 1/m . �108�

According to Ref. 3, the explicit forms of �̃c and �̃p are the
following:

�̃c = 4/s , �109�

�̃p = 2�1 − 2��1�� , �110�

where ��x�=
��x� /
�x� is the psi function.
On the other hand, it was explained in Ref. 3 that in the

case of parabolic profiles considered,

s = − 4�H/� , �111�

where �H is the dimensionless growth rate of the m=1 ideal
kink modes given by �for further details, see Ref. 1�

�H = − �s/4. �112�

Allowing for Eq. �111�, the dispersion relation �88� for the
m=1 resistive kink modes reduces to

�R = − 1/�H, �113�

where �R is given by Eq. �53� for s�1.

2. General profiles of plasma pressure
and rotation frequency

Following Ref. 3, one can show that Eq. �113� is valid
for arbitrary profiles of plasma pressure and rotation fre-
quency if, instead of Eq. �112�, one takes

�H = −
�

S2B�
2n
�

0

r0

rUVdr , �114�

where S and B� are calculated for r=r0. In the explicit form,
Eq. �114� means

�H = �H
�0� + �H

�r�, �115�

where

�H
�0� = −

�kz
2

S2B�
2n
�

0

r0

r�8�rp0� − B0�
2 �1 − nq��1 + 3nq��dr ,

�116�

�H
�r� = −

4�2

S2B�
2n
�

0

r0

r�kz
2r2 + h�

2�
d�2

d ln r
dr . �117�
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B. Rotational reconnecting modes

Let us consider Eq. �113� in the case M 
s. It then fol-
lows from Eq. �53� that

�R =
1

2
� �

�RM
�1/2

�M + s�

�3/4 + s/�4M��

�5/4 + s�4M��

. �118�

For s�M, Eq. �118� reduces to

�R =
1

2
��M

�R
�1/2
�3/4�


�5/4�
. �119�

In the case �H�0 and ��H���R
1/3, where �R=�R /�A, it fol-

lows from Eqs. �113� and �116� that

� 
 �A�R
1/3��H�−4/3. �120�

Neglecting the Velikhov effect, this solution characterizes the
so-called reconnecting mode,7,8 which is an analog of the
tearing mode.6 In the contrary case, when the Velikhov effect
is overwhelming, so that �H=�H

�r�, Eq. �120� yields

� 
 �A�A
1/3��H

�r��−4/3. �121�

The unstable mode described by this dispersion relation can
be called the rotational reconnecting mode.

VIII. DISCUSSION

The recent stability theory of magnetic confinement sys-
tems, dealing with the magnetic well/hill effect, has an evi-
dent drawback, on that, in studying the problems of differ-
entially rotating plasma, it does not allow for the Velikhov
effect revealed as a rotation-induced magnetic well/hill. The
first step to eliminate this drawback has been made in Ref.
21 initially incorporating the Velikhov effect into the theory
of the Suydam modes �the ideal interchange modes� in the
cylindrical plasma�. The incorporation has been continued in
the paper I considering both the Suydam modes and the m
=1 ideal internal kink mode. Nonetheless, there is a family
of internal resistive kink modes also sensitive to the hill/well
effect, which are the subject of the present paper. In agree-
ment with the paper I, we have explained that the Velikhov
effect is revealed as the magnetic hill effect in the case of
decreasing rotation frequency profile, d�2 /d ln r�0. Such a
profile is treated as unfavorable. It enhances the resistive
modes. In the opposite case of increasing rotation frequency
profile, i.e., d�2 /d ln r�0, the Velikhov effect leads to the
magnetic well effect suppressing these modes.

Based on the idea that the Velikhov effect is revealed as
a contribution into the magnetic hill/well, we have analyzed
the internal resistive modes sensitive to the hill/well. We
have pointed out a family of such modes in a rotating plasma
driven by the Velikhov effect. They are the rotational resis-
tive interchange modes with m�1 �see Sec. IV D� and with
the finite m�1 �see Sec. VI� as well as the rotational recon-
necting modes �see Eq. �121��.
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APPENDIX: NONLOCAL IDEAL SOLUTION
FOR PARABOLIC PROFILE OF CURRENT
AND CONSTANT MAGNETIC HILL/WELL

Let us take the equilibrium longitudinal current j0z to be
parabolically distributed along the cylinder radius,

j0z = �1 − �Jr
2/r�

2�j�0�. �A1�

Here, j�0� is a constant, �J is one more constant assuming to
be a small parameter, i.e., �J�1, and r� is the casing �the
wall� coordinate. In this case,

1

q
−

n

m
=

n

m

S�r0�
2

�1 −
r2

r0
2� , �A2�

where n=−kzR is an integer called the toroidal mode number,
the parameter S�r0� is given by

S�r0� = �Jr0
2/r�

2. �A3�

The equilibrium plasma pressure p0�r� is taken to be para-
bolic and given by

p0�r� = �1 − r2/r�
2�p�0�, �A4�

where p�0� is a constant. The rotation frequency profile ��r�
is approximated by

	0�kz
2 +

h�
2

r2 � d�2

d ln r
= const. �A5�

The value U0
V introduced by Eq. �33� can then be approxi-

mated by a constant,

U0
V = const. �A6�

As a result, Eq. �19� with �̃2→0 reduces to

d

dz
�z2�1 − z�2dX

dz
� − �m2 − 1

4
�1 − z�2 + U0

Vz�X = 0, �A7�

where

z = r2/r0
2. �A8�

Equation �A7� has a precise solution expressed in terms
of the hypergeometrical functions. In the central region, i.e.,
r�r0, the solution finite at r=0 is of the form

X = z�m−1�/2�1 − z�−�s+1�F�A,B;C;z� . �A9�

Here,

A = �m − 2s − m̄�/2, �A10�

B = �m − 2s + m̄�/2, �A11�

C = m + 1, �A12�
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m̄ = �m2 + 8�1/2, �A13�

and the parameter s is given by Eq. �39�. In the peripheral
region, r0�r�r�, the solution of Eq. �A7� vanishing in the
casing, i.e., at r=r�, is of the form

X = z−�m̄+3�/2�1 − 1/z�−�s+1��F�B,B − C + 1;B − A + 1;1/z�

+ Dzm̄F�A,A − C + 1;A − B + 1;1/z�� , �A14�

where

D = − � r0

r�

�2m̄F�B,B − C + 1;B − A + 1;r0
2/r�

2�
F�A,A − C + 1;A − B + 1;r0

2/r�
2�

. �A15�

In accordance with Ref. 3, using Eqs. �A9� and �A14�,
the asymptotic of X near the singular layer in the approxima-
tion r0 /r��1 is given by

X � �x̂�−�1+s��1 + ��c

�p
��x̂�2s+1� . �A16�

Here, x̂=m�r−r0� /r0,

�c = � 2

m
�2s+1
�− 1 − 2s�


�1 + 2s�

�1 + 2s + B�
�1 + 2s + A�


�A�
�B�
,

�A17�

�p = � 2

m
�2s+1
�− 1 − 2s�


�1 + 2s�

�1 − A�
�1 + 2s + B�


�B�
�− A − 2s�
. �A18�
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