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An exact classical field theory for nonlinear quantum equations is presented herein.
It has been applied recently to a nonlinear Schrödinger equation, and it is shown
herein to hold also for a nonlinear generalization of the Klein-Gordon equation.
These generalizations were carried by introducing nonlinear terms, characterized by
exponents depending on an index q, in such a way that the standard, linear equations,
are recovered in the limit q → 1. The main characteristic of this field theory consists
on the fact that besides the usual �(�x, t), a new field �(�x, t) needs to be introduced in
the Lagrangian, as well. The field �(�x, t), which is defined by means of an additional
equation, becomes �∗(�x, t) only when q → 1. The solutions for the fields �(�x, t)
and �(�x, t) are found herein, being expressed in terms of a q-plane wave; moreover,
both field equations lead to the relation E2 = p2c2 + m2c4, for all values of q.
The fact that such a classical field theory works well for two very distinct nonlinear
quantum equations, namely, the Schrödinger and Klein-Gordon ones, suggests that
this procedure should be appropriate for a wider class nonlinear equations. It is
shown that the standard global gauge invariance is broken as a consequence of the
nonlinearity. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824129]

I. INTRODUCTION

An intense effort has been done lately in the study of deformations of some mathematical
structures1–3 and several physical systems.4 Different approaches were used in considering these de-
formations, going from a noncommutative space-time, motivated by fundamental issues in gravity,5

to phenomenological procedures in nuclear physics.6 Very often, these deformations lead to non-
linear (NL) equations, like the recent generalizations of the main equations of quantum physics,
namely, the Schrödinger, Klein-Gordon, and Dirac equations.7

In the recent years several complex phenomena in nature demanded NL equations for their
description.8–10 As a consequence, one frequently finds difficulties in solving these equations exactly,
so that approximative analytical methods, or numerical procedures have been used and in some
situations new algorithms were developed. In these later cases, many researches benefited from
the recent advances in computer technology, leading to considerable progresses in many areas of
physics that use these types of equations, like nonlinear optics, superconductivity, plasma physics,
and nonequilibrium statistical mechanics.

Many NL equations appear as generalizations of linear ones, so that the later may be recov-
ered as particular cases. Among many possible ways, these generalizations have been carried in
the literature mostly by considering two different procedures: (i) the addition of new NL terms
to a linear equation and (ii) the modification of the exponent of existing linear terms. Many NL
Schrödinger equations were constructed according to the first procedure:10 the introduction of an
extra cubic term in the wave function is responsible for the modulation of the wave function for
some particular type of solution. The second one has been much used in nonextensive statisti-
cal mechanics;11, 12 this theory emerged from the generalization of the Boltzmann-Gibbs entropy,
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by introducing a real index q, such as to recover the former in the limit q → 1.13 A power
(2 − q) in the probability of the diffusion term has led to a NL Fokker-Planck equation14, 15 capable
of explaining many interesting physical phenomena related to anomalous diffusion16 (for which
q �= 1). Moreover, the generalizations of the main equations of quantum physics done in
Ref. 7 followed this second procedure. Apart from those, linear inhomogeneous equations have
been proposed as well, and some were shown to be related to nonextensive statistical mechanics,
like inhomogeneous Fokker-Planck17 and Schrödinger18 equations.

The linear Fokker-Planck equation is usually associated to the Boltzmann-Gibbs entropy either
through the H-theorem, or by comparing its solution with the distribution that comes from an
extremization of this entropy.19, 20 In a similar manner, the above-mentioned generalized nonadditive
entropy is connected to the NL Fokker-Planck equation of Refs. 14 and 15 through the proof of an
H-theorem.21–23 Moreover, the extremization of this entropy leads to the q-Gaussian distribution,
which represents a generalization of the standard Gaussian; this distribution solves the corresponding
NL Fokker-Planck equation and appears also in generalized forms of the Central Limit Theorem.24, 25

The q-Gaussian distribution has been very useful for experiments in real systems;11, 12 among many,
one could highlight: (i) the velocities of cold atoms in dissipative optical lattices;26 (ii) the velocities
of particles in quasi two-dimensional dusty plasma;27 (iii) single ions in radio frequency traps
interacting with a classical buffer gas;28 (iv) the relaxation curves of Ruderman-Kittel-Kasuya-
Yosida (RKKY) spin glasses, like CuMn and AuFe;29 (v) transverse momenta distributions at Large
Hadron Collider (LHC) experiments;30 and (vi) the overdamped motion of interacting vortices in
type II superconductors.31–33

In a recent work,34 a classical field theory for the NL Schrödinger equation (NLSE) introduced
in Ref. 7 was developed. It was shown that besides the usual �(�x, t), a new field �(�x, t) has to be
considered in order to fulfill the equations of motion; curiously, this new field becomes �∗(�x, t)
only when q → 1. In the present work, we follow a similar procedure towards the formulation of a
classical field theory for the NL Klein-Gordon equation (NLKGE) of Ref. 7; analogously, we show
that an additional field needs also to be introduced. In Sec. II, we present the NLSE and NLKGE,
together with their common solution, and its main properties; the classical-field-theory approach
for the NLSE is briefly reviewed. In Sec. III, we derive the classical field theory for NLKGE; in
Sec. IV, we present our main conclusions.

II. NONLINEAR SCHRÖDINGER AND KLEIN-GORDON EQUATIONS:
COMMON SOLUTION AND PROPERTIES

Proposals for nonlinear generalizations of the main equations of quantum physics, namely, the
Schrödinger, Klein-Gordon, and Dirac equations, were presented in Ref. 7 in the case of a free
particle of mass m. Herein, we will be concerned with two of these generalizations, i.e., the NLSE,

i�
∂�(�x, t)

∂t
= − 1

2 − q

�
2

2m
∇2

[
�(�x, t)

]2−q
(1)

and the NLKGE,

∇2�(�x, t) = 1

c2

∂2�(�x, t)

∂t2
+ q

m2c2

�2

[
�(�x, t)

]2q−1
. (2)

The equations above are valid for a general d-dimensional position vector �x and are written herein
in terms of a dimensionless wave function �(�x, t) (corresponding to the one defined in Ref. 7 scaled
by its amplitude). They recover the corresponding linear equations in the limit q → 1 and present
the following q-plane wave as a common solution,

�(�x, t) = expq

[
i

�
( �p · �x − Et)

]
(q ∈ �), (3)

expressed in terms of the q-exponential function exp q(u) that emerges in nonextensive statistical
mechanics.11 This function generalizes the standard exponential, and for a pure imaginary iu, it is
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defined as the principal value of

expq (iu) = [1 + (1 − q)iu ]
1

1−q ; exp1(iu) ≡ exp(iu), (4)

where we used limε → 0(1 + ε)1/ε = e. One may verify that the q-plane wave of Eq. (3) satisfies
both quantum equations above, preserving the corresponding energy-momentum relations for all q,

E = p2

2m
(NLSE); E2 = p2c2 + m2c4 (NLKGE). (5)

For q �= 1 the q-exponential exp q(iu) exhibits an oscillatory behavior characterized by an amplitude
ρq �= 1,35–37

expq (±iu) = cosq (u) ± i sinq (u), (6)

cosq (u) = ρq (u) cos

{
1

q − 1
arctan[(q − 1)u]

}
, (7)

sinq (u) = ρq (u) sin

{
1

q − 1
arctan[(q − 1)u]

}
, (8)

ρq (u) = [
1 + (1 − q)2u2

]1/[2(1−q)]
, (9)

from which one sees that ρq(u) decreases for increasing arguments, if q > 1. From Eqs. (6)–(9) one
notices that cos q(u) and sin q(u) cannot be zero simultaneously, so that exp q( ± iu) �= 0. Moreover,
exp q(iu) presents further peculiar properties,

[expq (iu)]∗ = expq (−iu) = [1 − (1 − q)iu ]
1

1−q , (10)

expq (iu)[expq (iu)]∗ = [ρq (u)]2 = [
1 + (1 − q)2u2

] 1
1−q , (11)

expq (iu1) expq (iu2) = expq [iu1 + iu2 − (1 − q)u1u2], (12)

{
[expq (iu)]α

}∗ = {
[expq (iu)]∗

}α = [expq (−iu)]α, (13)

for any α real. By integrating Eq. (11) from − ∞ to +∞, one obtains,36

Iq =
∫ ∞

−∞
du [ρq (u)]2 =

⎡
⎣

√
π 	

(
3−q

2(q−1)

)

(q − 1) 	
(

1
q−1

)
⎤
⎦

1/2

(14)

leading to the physically important property of square integrability for 1 < q < 3; as some simple
typical examples, one has I3/2 = I2 = √

π . One should notice that this integral diverges in both
limits q → 1 and q → 3, as well as for any q < 1. Since Iq is related to the norm of the wave
function,38 its divergence in the limit q → 1 reflects the nonintegrability of the standard free particle
solution (plane wave) in open space, e.g., its norm is not defined. As a consequence, in this case, the
free particle is only treatable inside a box of finite dimensions.

An exact classical field theory associated with Eq. (1) was developed in Ref. 34. One curious
aspect concerns the fact that a Lagrangian density constructed only in terms of �(�x, t) and �∗(�x, t)
(as usually done in the case q = 139–41) does not lead to the NLSE of Eq. (1) and its complex
conjugate; for this reason, a second field, �(�x, t), had to be introduced by means of a Lagrangian
density,

L ≡ L
(
�, �∇�, �̇,�, �∇�, �̇,�∗, �∇�∗, �̇∗,�∗, �∇�∗, �̇∗

)
, (15)
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which depends also on the spatial and time derivatives of these fields. The equations of motion for
the classical fields were derived in the usual way, through the principle of stationary action; the
Euler-Lagrange equation for the field � yielded the NLSE of Eq. (1). Similarly, the Euler-Lagrange
equation for the field �(�x, t) led to

i�
∂�(�x, t)

∂t
= �

2

2m
[�(�x, t)]1−q ∇2�(�x, t), (16)

as an additional equation, associated with Eq. (1); similar frameworks hold for the complex-conjugate
fields, �∗(�x, t) and �∗(�x, t). One should notice that Eq. (16) becomes the complex conjugate of
Eq. (1) only for q = 1, in which case �(�x, t) = �∗(�x, t). For all q �= 1, one has a field �(�x, t) distinct
from �∗(�x, t), with �(�x, t) and �(�x, t) being related through Eq. (16). Substituting the solution of
Eq. (1) [i.e., the q-exponential of Eq. (3)] in Eq. (16), one finds,

�(�x, t) =
{

expq

[
i

�
( �p · �x − Et)

]}−q

= [�(�x, t)]−q . (17)

From the fields �(�x, t) and �(�x, t) above the following quantities and properties related to the
NLSE were obtained:34 (i) the canonical conjugate fields leading to the corresponding Hamiltonian
density; (ii) the energy spectrum of a free particle; (iii) a probability density satisfying a continuity
equation; and (iv) the physically important property that the global gauge invariance does not hold
in the present formalism. Considering the form of the solution in Eq. (17), such transformations are
given by

�(�x, t) → eiα�(�x, t); �∗(�x, t) → e−iα�∗(�x, t),

�(�x, t) → e−iqα�(�x, t); �∗(�x, t) → eiqα�∗(�x, t); (α ∈ �), (18)

where exp ( ± iα) and exp ( ± iqα) represent constant phase factors. Therefore, the Lagrangian
density is not invariant under a constant phase change in the fields; as a consequence, all equations
and corresponding physical properties derived from this Lagrangian are not invariant under global
gauge transformations.

In Sec. III, we apply the procedure described above for the NLKGE of Eq. (2), showing that it
leads to many common properties as compared to those found in Ref. 34.

III. CLASSICAL FIELD THEORY FOR THE NONLINEAR KLEIN-GORDON EQUATION

Although Eq. (2) and its solution in Eq. (3) are valid for a general d-dimensional position
vector �x , herein, for simplicity, we will restrict ourselves to a three-dimensional vector �x ; let us then
introduce the four-dimensional space-time operators,39–41

∂μ ≡ ∂

∂xμ

≡
{

∂

∂(ct)
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

}
; ∂μ ≡ ∂

∂xμ
≡

{
∂

∂(ct)
,

∂

∂x
,

∂

∂y
,

∂

∂z

}
, (19)

whereas the same notation applies for the spatial derivatives, ∂ j and ∂ j. Therefore, Eq. (2) may be
rewritten as

∂μ∂μ�(�x, t) + q
m2c2

�2

[
�(�x, t)

]2q−1 = 0. (20)

Similar to the case of the NLSE,34 below we develop a field theory in terms two classical fields,
�(�x, t) and �(�x, t); then, we write the following Lagrangian density,

L = A

{
�(�x, t)[∂μ∂μ�(�x, t)] + q

m2c2

�2
�(�x, t)[�(�x, t)](2q−1)

+ �∗(�x, t)[∂μ∂μ�∗(�x, t)] + q
m2c2

�2
�∗(�x, t)[�∗(�x, t)](2q−1)

}
, (21)

with the multiplicative factor, A ≡ �
2c2/[2(1 − 3q)EV ], depending on the total energy E, and as

usual, the fields �(�x, t) and �(�x, t) are confined to a finite volume V .41 The Lagrangian above is
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equivalent to

L = A

{
−[∂μ�(�x, t)][∂μ�(�x, t)] + q

m2c2

�2
�(�x, t)[�(�x, t)](2q−1) + ∂μ[�(�x, t)∂μ�(�x, t)]

− [∂μ�∗(�x, t)][∂μ�∗(�x, t)] + q
m2c2

�2
�∗(�x, t)[�∗(�x, t)](2q−1) + ∂μ[�∗(�x, t)∂μ�∗(�x, t)]

}
, (22)

where the total derivative terms are relevant for q �= 1 (contrary to what happens in the linear case),
as will be seen later on. One should notice that the above Lagrangian density presents higher-order
derivatives, as compared to the one of Eq. (15), i.e., it depends on the fields �(�x, t) and �(�x, t), as
well as on their first and second derivatives,

L ≡ L (
�, ∂μ�, ∂μ∂ν�,�, ∂μ�, ∂μ∂ν�,�∗, ∂μ�∗, ∂μ∂ν�

∗,�∗, ∂μ�∗, ∂μ∂ν�
∗) . (23)

In this case, the Euler-Lagrange equations should take into account higher-order terms, in such a
way that for the field � one has,42, 43

∂L
∂�

− ∂μ

[
∂L

∂(∂μ�)

]
+ ∂μ∂ν

[
∂L

∂(∂μ∂ν�)

]
= 0. (24)

Substituting the Lagrangian density of Eq. (22) in the above Euler-Lagrange equation, one obtains
the NLKGE of Eq. (20); carrying the same procedure in the Euler-Lagrange equation for the
field �,

∂L
∂�

− ∂μ

[
∂L

∂(∂μ�)

]
+ ∂μ∂ν

[
∂L

∂(∂μ∂ν�)

]
= 0, (25)

one obtains an additional equation for the field �,

∇2�(�x, t) = 1

c2

∂2�(�x, t)

∂t2
+ q(2q − 1)

m2c2

�2
�(�x, t)

[
�(�x, t)

]2(q−1)
. (26)

The equation above becomes the complex conjugate of Eq. (2) for q → 1 through the identification
�(�x, t) = �∗(�x, t); substituting the q-exponential of Eq. (3) in Eq. (26), one finds,

�(�x, t) =
{

expq

[
i

�
( �p · �x − Et)

]}−(2q−1)

= [�(�x, t)]−(2q−1). (27)

One important aspect of Eq. (26) may be seen by substituting the above solutions for �(�x, t) and
�(�x, t) in order to reproduce the same energy-momentum relation of Eq. (5), for all q.

Let us now define the Hamiltonian density by43

H = ���̇ + ��∗�̇∗ + ���̇ + ��∗�̇∗ + ��̇�̈ + ��̇�̈ + �∗
�̇∗�̈

∗ + �∗
�̇∗�̈

∗ − L, (28)

where the canonical momenta conjugated to the fields �, �, �̇, and �̇ are

�� = ∂L
∂�̇

− ∂

∂t

∂L
∂�̈

− 2∂ j
∂L

∂(∂ j �̇)
= −A�̇, (29)

�� = ∂L
∂�̇

− ∂

∂t

∂L
∂�̈

− 2∂ j
∂L

∂(∂ j�̇)
= 0, (30)

��̇ = ∂L
∂�̈

= �, (31)

��̇ = ∂L
∂�̈

= 0, (32)
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with similar results holding for the corresponding complex conjugates. The Hamiltonian density
becomes

H = A

{
− 1

c2

∂�(�x, t)

∂t

∂�(�x, t)

∂t
+ �∇2�(�x, t) − q

m2c2

�2
�(�x, t)[�(�x, t)](2q−1)

− 1

c2

∂�∗(�x, t)

∂t

∂�∗(�x, t)

∂t
+ �∗∇2�∗(�x, t) − q

m2c2

�2
�∗(�x, t)[�∗(�x, t)](2q−1)

}
. (33)

Considering the solutions for the fields � and � according to Eqs. (3) and (27), the integral of the
above Hamiltonian density in the volume V yields the energy,∫

d3x H = −2AV

�2c2
[(2q − 1)E2 + qp2c2 + qm2c4] = −2AV

�2c2
[(3q − 1)E2] = E, (34)

which is valid for all values of q. In the calculations above one notices the relevance of the contour
terms introduced in Eq. (22) for obtaining the correct energy.

For a Lagrangian density with a dependence like the one in Eq. (23), the components of the
energy-momentum tensor may be calculated as42

T αμ =
[

∂L
∂(∂α�)

− ∂β

∂L
∂(∂α∂β�)

]
∂μ� + ∂L

∂(∂α∂β�)
∂β∂μ�

+
[

∂L
∂(∂α�)

− ∂β

∂L
∂(∂α∂β�)

]
∂μ� + ∂L

∂(∂α∂β�)
∂β∂μ�

+
[

∂L
∂(∂α�∗)

− ∂β

∂L
∂(∂α∂β�∗)

]
∂μ�∗ + ∂L

∂(∂α∂β�∗)
∂β∂μ�∗

+
[

∂L
∂(∂α�∗)

− ∂β

∂L
∂(∂α∂β�∗)

]
∂μ�∗ + ∂L

∂(∂α∂β�∗)
∂β∂μ�∗ − gαμL, (35)

where gαμ denotes components of the metric tensor (gαμ = 0, for α �= μ, and g00 = 1, gjj = − 1).
Using the Lagrangian density of Eq. (22), one gets

T αμ = A
{−[∂α�(�x, t)][∂μ�(�x, t)] + �(�x, t)∂α∂μ�(�x, t) − gαμ�(�x, t)∂ρ∂ρ�(�x, t)

− [∂α�∗(�x, t)][∂μ�∗(�x, t)] + �∗(�x, t)∂α∂μ�∗(�x, t) − gαμ�∗(�x, t)∂ρ∂ρ�
∗(�x, t)

− q
m2c2

�2
�(�x, t)[�(�x, t)](2q−1) − q

m2c2

�2
�∗(�x, t)[�∗(�x, t)](2q−1)

}
. (36)

As expected, the component T00 yields the Hamiltonian density, i.e., T 00 = H, whereas the momen-
tum density components are given by

T 0 j = A

c

{
[∂t�(�x, t)][∂ j�(�x, t)] − �(�x, t)∂ j [∂t�(�x, t)]

+ [∂t�
∗(�x, t)][∂ j�

∗(�x, t)] − �∗(�x, t)∂ j [∂t�
∗(�x, t)]

}
. (37)

Integrating over the volume V and taking the solutions for the fields � and � of
Eqs. (3) and (27), one obtains the momentum components,∫

d3x T 0 j = −2AV

c

[
(3q − 1)

Ep j

�2

]
= cp j , (38)

for all values of q.
Apart from satisfying the energy-momentum relation of Eq. (5), the present field equations

[Eqs. (2) and (26)] are invariant under Lorentz transformations: since this property is directly related
to the terms containing derivatives41—which were not changed in the present proposal—these
equations preserve the Lorentz invariance. It should be mentioned that the fields � and � above do
not satisfy a continuity equation; this comes as a consequence of the probability definition, which is
troublesome already in the linear case (q = 1), where it may take negative values.41
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IV. CONCLUSIONS

We have presented a classical field theory associated with a recently proposed nonlinear Klein-
Gordon equation. This nonlinearity was introduced by means of an exponent, depending on an index
q, in the field �(�x, t) that appears in the corresponding mass term of the well-known linear equation;
in this way, the linear equation is recovered in the limit q → 1. Analogously to a recent classical
field theory for a similar generalization of the Schrödinger equation,34 herein we have shown that
besides the usual �(�x, t), a new field �(�x, t), defined by means of an additional equation, must be
introduced; this later field becomes �∗(�x, t) only when q → 1.

The equations for the fields �(�x, t) and �(�x, t) present simple solutions, written in terms of the
q-plane wave, expq [i( �p · �x − Et)/�]. By using these solutions, both equations lead to the Einstein
relation, E2 = p2c2 + m2c4, for all values of q. For 1 < q < 3 the q-plane wave presents the
property that its amplitude decreases when its argument ( �p · �x − Et) increases, and so, this new
type of solution describes a typical nonlinear oscillatory phenomenon. Due to this modulation, one
may characterize a given physical system by a single value of q; therefore, by specifying the rate of
decay of the q-plane wave amplitude (which should be a characteristic of a given physical system),
we may determine the appropriate value of q. Hence, this type of solution can be considered as a
good candidate for describing nonlinear physical phenomena characterized by oscillatory motion
with modulation in both space and time, like those appearing in superconductivity, plasma physics,
nonlinear optics, and lattice dynamics of solids. Exploratory efforts in possible applications to such
nonlinear physical phenomena would be welcome.

A further interesting aspect concerns the fact the Lagrangian density proposed herein is not
invariant under global gauge transformations; considering the form of solutions presented, such
transformations are given by

�(�x, t) → eiα�(�x, t); �∗(�x, t) → e−iα�∗(�x, t),

�(�x, t) → e−i(2q−1)α�(�x, t); �∗(�x, t) → ei(2q−1)α�∗(�x, t); (α ∈ �), (39)

where exp ( ± iα) and exp [ ± i(2q − 1)α] represent constant phase factors. This result implies that
all equations derived from this Lagrangian also violate this symmetry. One should remind that, in
standard field theory, the invariance of the Lagrangian under global gauge transformations is directly
related to the property that the corresponding fields may be associated to charged particles that
interact with light.

An important aspect concerns the identification of how the breakdown of global gauge invariance
in Eq. (39) appears in the above formalism. Below we present a simple argument indicating that
this violation comes as a direct consequence of the nonlinearity introduced. Let us consider a weak
nonlinear contribution, q = 1 + ε/2 (ε small, positive or negative), in the term

[
�(�x, t)

]2q−1
that

appears in Eq. (2). Moreover, we allow small fluctuations η around a value �̃, such that � = �̃ + η;
hence, this nonlinear contribution may be expanded,

�2q−1 = (�̃ + η)1+ε = exp
[
ln(�̃ + η)1+ε

] = (�̃ + η) exp
[
ε ln(�̃ + η)

]

= (�̃ + η)
[
1 + ε ln(�̃ + η) + · · · ] = (�̃ + η)

[
1 + ε

(
ln �̃ + η

�̃
− 1

2

η2

�̃2

)
+ · · ·

]

= �̃ + η(1 + ε + ε ln �̃) + ε�̃ ln �̃ + ε η2

2�̃
+ · · · . (40)

The linear contribution in η can be interpreted as a modification in the mass of the system; moreover,
for ε �= 0 the gauge symmetry is broken by the contribution O(η2) and only for ε = 0 is that
this symmetry is restored. The same analysis may be carried in the equation for the field �(�x, t)
[Eq. (26)], leading to an analogous conclusion. This breaking of global gauge invariance may be
useful for generating a mass for the electromagnetic field, describing a procedure similar to the
Higgs mechanism; this can be analyzed by modifying the Lagrangian density of Eq. (21) such as to
introduce an interaction with the electromagnetic field.44
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Since a similar procedure has been proposed recently for the nonlinear Schrödinger equation,
this work suggests that the approach presented herein should be rather general, in the sense that a
wide class of classical field theories, associated with nonlinear equations, may be formulated by
means of Lagrangian densities depending on two (or even more) classical fields. As natural extension
of this work, the quantization and renormalization of the present classical field theory appear to be
nontrivial and constitute goals for future investigations.
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